28,267 research outputs found

    On the Termination of Logic Programs with Function Symbols

    Get PDF
    Recently there has been an increasing interest in the bottom-up evaluation of the semantics of logic programs with complex terms. The main problem due to the presence of functional symbols in the head of rules is that the corresponding ground program could be infinite and that finiteness of models and termination of the evaluation procedure is not guaranteed. This paper introduces, by deeply analyzing program structure, new decidable criteria, called safety and Gamma-acyclicity, for checking termination of logic programs with function symbols under bottom-up evaluation. These criteria guarantee that stable models are finite and computable, as it is possible to generate a finitely ground program equivalent to the source program. We compare new criteria with other decidable criteria known in the literature and show that the Gamma-acyclicity criterion is the most general one. We also discuss its application in answering bound queries

    Using linear constraints for logic program termination analysis

    Get PDF
    It is widely acknowledged that function symbols are an important feature in answer set programming, as they make modeling easier, increase the expressive power, and allow us to deal with infinite domains. The main issue with their introduction is that the evaluation of a program might not terminate and checking whether it terminates or not is undecidable. To cope with this problem, several classes of logic programs have been proposed where the use of function symbols is restricted but the program evaluation termination is guaranteed. Despite the significant body of work in this area, current approaches do not include many simple practical programs whose evaluation terminates. In this paper, we present the novel classes of rule-bounded and cycle-bounded programs, which overcome different limitations of current approaches by performing a more global analysis of how terms are propagated from the body to the head of rules. Results on the correctness, the complexity, and the expressivity of the proposed approach are provided.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Automated Termination Proofs for Logic Programs by Term Rewriting

    Full text link
    There are two kinds of approaches for termination analysis of logic programs: "transformational" and "direct" ones. Direct approaches prove termination directly on the basis of the logic program. Transformational approaches transform a logic program into a term rewrite system (TRS) and then analyze termination of the resulting TRS instead. Thus, transformational approaches make all methods previously developed for TRSs available for logic programs as well. However, the applicability of most existing transformations is quite restricted, as they can only be used for certain subclasses of logic programs. (Most of them are restricted to well-moded programs.) In this paper we improve these transformations such that they become applicable for any definite logic program. To simulate the behavior of logic programs by TRSs, we slightly modify the notion of rewriting by permitting infinite terms. We show that our transformation results in TRSs which are indeed suitable for automated termination analysis. In contrast to most other methods for termination of logic programs, our technique is also sound for logic programming without occur check, which is typically used in practice. We implemented our approach in the termination prover AProVE and successfully evaluated it on a large collection of examples.Comment: 49 page

    Homeomorphic Embedding for Online Termination of Symbolic Methods

    No full text
    Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems

    Polytool: polynomial interpretations as a basis for termination analysis of Logic programs

    Full text link
    Our goal is to study the feasibility of porting termination analysis techniques developed for one programming paradigm to another paradigm. In this paper, we show how to adapt termination analysis techniques based on polynomial interpretations - very well known in the context of term rewrite systems (TRSs) - to obtain new (non-transformational) ter- mination analysis techniques for definite logic programs (LPs). This leads to an approach that can be seen as a direct generalization of the traditional techniques in termination analysis of LPs, where linear norms and level mappings are used. Our extension general- izes these to arbitrary polynomials. We extend a number of standard concepts and results on termination analysis to the context of polynomial interpretations. We also propose a constraint-based approach for automatically generating polynomial interpretations that satisfy the termination conditions. Based on this approach, we implemented a new tool, called Polytool, for automatic termination analysis of LPs

    Recurrence with affine level mappings is P-time decidable for CLP(R)

    Full text link
    In this paper we introduce a class of constraint logic programs such that their termination can be proved by using affine level mappings. We show that membership to this class is decidable in polynomial time.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Non-Termination Inference of Logic Programs

    Full text link
    We present a static analysis technique for non-termination inference of logic programs. Our framework relies on an extension of the subsumption test, where some specific argument positions can be instantiated while others are generalized. We give syntactic criteria to statically identify such argument positions from the text of a program. Atomic left looping queries are generated bottom-up from selected subsets of the binary unfoldings of the program of interest. We propose a set of correct algorithms for automating the approach. Then, non-termination inference is tailored to attempt proofs of optimality of left termination conditions computed by a termination inference tool. An experimental evaluation is reported. When termination and non-termination analysis produce complementary results for a logic procedure, then with respect to the leftmost selection rule and the language used to describe sets of atomic queries, each analysis is optimal and together, they induce a characterization of the operational behavior of the logic procedure.Comment: Long version (algorithms and proofs included) of a paper submitted to TOPLA
    • …
    corecore