
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using linear constraints for logic program termination analysis

Citation for published version:
Calautti, M, Greco, S, Molinaro, C & Trubitsyna, I 2016, 'Using linear constraints for logic program
termination analysis' Theory and Practice of Logic Programming, vol. 16, no. 3, pp. 353–377. DOI:
10.1017/S1471068416000077

Digital Object Identifier (DOI):
10.1017/S1471068416000077

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Theory and Practice of Logic Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77047691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S1471068416000077
https://www.research.ed.ac.uk/portal/en/publications/using-linear-constraints-for-logic-program-termination-analysis(fd8a7722-e0c4-47ae-a0c3-6e733814f53a).html


Under consideration for publication in Theory and Practice of Logic Programming 1

Using Linear Constraints for Logic Program
Termination Analysis

MARCO CALAUTTI, SERGIO GRECO,

CRISTIAN MOLINARO, IRINA TRUBITSYNA
DIMES, Università della Calabria
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Abstract

It is widely acknowledged that function symbols are an important feature in answer set
programming, as they make modeling easier, increase the expressive power, and allow us to
deal with infinite domains. The main issue with their introduction is that the evaluation of
a program might not terminate and checking whether it terminates or not is undecidable.
To cope with this problem, several classes of logic programs have been proposed where the
use of function symbols is restricted but the program evaluation termination is guaranteed.
Despite the significant body of work in this area, current approaches do not include many
simple practical programs whose evaluation terminates. In this paper, we present the novel
classes of rule-bounded and cycle-bounded programs, which overcome different limitations
of current approaches by performing a more global analysis of how terms are propagated
from the body to the head of rules. Results on the correctness, the complexity, and the
expressivity of the proposed approach are provided.

KEYWORDS: Answer set programming, function symbols, bottom-up evaluation, pro-
gram evaluation termination, stable models

1 Introduction

Enriching answer set programming with function symbols has recently seen a surge

in interest. Function symbols make modeling easier, increase the expressive power,

and allow us to deal with infinite domains. At the same time, this comes at a cost:

common inference tasks (e.g., cautious and brave reasoning) become undecidable.

Recent research has focused on identifying classes of logic programs that im-

pose some limitations on the use of function symbols but guarantee decidability

of common inference tasks. Efforts in this direction are the class of finitely-ground

programs (Calimeri et al. 2008) and the more general class of bounded term-size

programs (Riguzzi and Swift 2013). Finitely-ground programs have a finite number

of stable models, each of finite size, whereas bounded term-size (normal) programs

have a finite well-founded model. Unfortunately, checking if a logic program is

bounded term-size or even finitely-ground is semi-decidable.

Considering the stable model semantics, decidable subclasses of finitely-ground
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programs have been proposed. These include the classes of ω-restricted programs (Syr-

janen 2001), λ-restricted programs (Gebser et al. 2007), finite domain programs (Cal-

imeri et al. 2008), argument-restricted programs (Lierler and Lifschitz 2009), safe

and Γ-acyclic programs (Greco et al. 2012; Calautti et al. 2015), mapping-restricted

programs (Calautti et al. 2013), and bounded programs (Greco et al. 2013a). The

above techniques, that we call termination criteria, provide (decidable) sufficient

conditions for a program to be finitely-ground.

Despite the significant body of work in this area, there are still many simple

practical programs whose evaluation terminates but this is not detected by any of

the current termination criteria. Below is an example.

Example 1

Consider the following program P1 implementing the bubble sort algorithm:

r0 : bub(L, [ ], [ ])← input(L).

r1 : bub([Y|T], [X|Cur], Sol)← bub([X|[Y|T]], Cur, Sol), X ≤ Y.

r2 : bub([X|T], [Y|Cur], Sol)← bub([X|[Y|T]], Cur, Sol), Y < X.

r3 : bub(Cur, [ ], [X|Sol])← bub([X|[ ]], Cur, Sol).

The list to be sorted is given by means of a fact of the form input([a1, ..., an]). The

bottom-up evaluation of this program always terminates for any input list. The

ordered list Sol can be obtained from the atom bub([ ], [ ], Sol) in the program’s

minimal model. 2

Although the bottom-up evaluation of P1 always terminates for any input list,

none of the termination criteria in the literature is able to realize it. One problem

with them is that when they analyze how terms are propagated from the body to

the head of rules, they look at arguments individually. For instance, in rule r1 above,

the simple fact that the second argument of bub has a size in the head greater than

the one in the body prevents several techniques from realizing termination of the

bottom-up evaluation of P1. More general classes such as mapping-restricted and

bounded programs are able to do a more complex (yet limited) analysis of how

some groups of arguments affect each other. Still, all current termination criteria

are not able to realize that in every rule of P1 the overall size of the terms in the

head does not increase w.r.t. the overall size of the terms in the body. One of the

novelties of the technique proposed in this paper is the capability of doing this kind

of analysis, thereby identifying programs (whose evaluation terminates) that none

of the current techniques include.

The technique proposed in this paper easily realizes that the bottom-up evalu-

ation of P1 always terminates for any input list. In particular, this is done using

linear constraints which measure the size of terms and atoms in order to check if

the rules’ head sizes are bounded by the size of some body atom when propagation

occurs. Thus, our technique can understand that, in every rule, the overall size

of the terms in the body does not increase during their propagation to the head,

as there is only a simple redistribution of terms. Many practical programs dealing

with lists and tree-like structures satisfy this property—below are two examples.

However, our technique is not limited only to this kind of programs.
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Example 2

Consider the program P2 below, performing a depth-first traversal of an input tree:

r0 : visit(Tree, [ ], [ ])← input(Tree).

r1 : visit(Left, [Root|Visited], [Right|ToVisit])←
visit(tree(Root, Left, Right), Visited, ToVisit).

r2 : visit(Next, Visited, ToVisit)← visit(null, Visited, [Next|ToVisit]).

The input tree is given by means of a fact of the form input(tree(value, left, right))

where tree is a ternary function symbol used to represent tree structures. The

program visits the nodes of the tree and puts them in a list following a depth-first

search. The list L of visited elements can be obtained from the atom visit(null, L, [ ])

in the program’s minimal model. For instance, if the input tree is

input(tree(a, tree(c, null, tree(d, null, null)), tree(b, null, null))).

the program produces the list [b, d, c, a] containing the nodes of the tree in opposite

order w.r.t. the traversal. 2

Also in the case above, even if the program evaluation terminates for every input

tree, none of the currently known techniques is able to detect it, while the technique

proposed in this paper does.

Example 3

Consider the following program P3 computing the concatenation of two lists:

r0 : reverse(L1, [ ]) ← input1(L1).

r1 : reverse(L1, [X|L2]) ← reverse([X|L1], L2).
r2 : append(L1, L2) ← reverse([ ], L1), input2(L2).

r3 : append(L1, [X|L2]) ← append([X|L1], L2).

Here input1 and input2 are used to store the lists L1 and L2 to be concatenated.

The result list L can be retrieved from the atom append([ ], L) in the minimal model

of P3. Clearly, the bottom-up evaluation of the program always terminates. 2

We point out that the problem of detecting decidable classes of programs is rel-

evant not only from a theoretical point of view, as real applications make use of

structured data and functions symbols (e.g., lists, sets, bags, arithmetic). Classical

applications need the use of structured data such as bill of materials consisting

in the description of all items that compose a product, down to the lowest level

of detail (Ceri et al. 1990), management of strings in bioinformatics applications,

managing and querying ontological data using logic languages (Cal̀I et al. 2010;

Chaudhri et al. 2013), as well as applications based on greedy and dynamic pro-

gramming algorithms (Greco et al. 1992; Greco 1999).

Contribution. We propose novel techniques for checking if the evaluation of a

logic program terminates (clearly, we define sufficient conditions). Our techniques

overcome several limitations of current approaches being able to perform a more

global analysis of how terms are propagated from the body to the head of rules.

To this end, we use linear constraints to measure and relate the size of head and

body atoms. We first introduce the class of rule-bounded programs, which looks
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at individual rules, and then propose the class of cycle-bounded programs, which

relies on the analysis of groups of rules. We show the correctness of the proposed

techniques and provide upper bounds on their complexity. We also study the rela-

tionship between the proposed classes and current termination criteria.

Organization. Section 2 reports preliminaries on logic programs with function

symbols. Sections 3 introduces the class of rule-bounded programs, whereas Sec-

tion 4 presents several theoretical results on its correctness and expressivity. Sec-

tion 5 introduces the class of cycle-bounded programs along with results on its

correctness and expressivity. The complexity analysis is addressed in Section 6.

Related work and conclusions are reported in Sections 7 and 8, respectively.

2 Preliminaries

This section recalls syntax and the stable model semantics of logic programs with

function symbols (Gelfond and Lifschitz 1988; Gebser et al. 2012).

Syntax. We assume to have (pairwise disjoint) infinite sets of logical variables,

predicate symbols, and function symbols. Each predicate and function symbol g is

associated with an arity, denoted arity(g), which is a non-negative integer. Function

symbols of arity 0 are called constants. Variables appearing in logic programs are

called “logical variables” and will be denoted by upper-case letters in order to

distinguish them from variables appearing in linear constraints, which are called

“integer variables” and will be denoted by lower-case letters. A term is either a

logical variable, or an expression of the form f(t1, ..., tm), where f is a function

symbol of arity m ≥ 0 and t1, ..., tm are terms.

An atom is of the form p(t1, ..., tn), where p is a predicate symbol of arity n ≥ 0

and t1, ..., tn are terms. A literal is an atom A (positive literal) or its negation ¬A
(negative literal).

A rule r is of the form A1 ∨ ... ∨ Am ← B1, ..., Bk,¬C1, ...,¬Cn, where m > 0,

k ≥ 0, n ≥ 0, and A1, ..., Am, B1, ..., Bk, C1, ..., Cn are atoms. The disjunction

A1 ∨ ... ∨ Am is called the head of r and is denoted by head(r). The conjunction

B1, ..., Bk,¬C1, ...,¬Cn is called the body of r and is denoted by body(r). With a

slight abuse of notation, we sometimes use body(r) (resp. head(r)) to also denote

the set of literals appearing in the body (resp. head) of r. If m = 1, then r is

normal; in this case, head(r) denotes the head atom. If n = 0, then r is positive.

A program is a finite set of rules. A program is normal (resp. positive) if every rule

in it is normal (resp. positive). We assume that programs are range restricted, i.e.,

for every rule, every logical variable appears in some positive body literal. W.l.o.g.,

we also assume that different rules do not share logical variables.

A term (resp. atom, literal, rule, program) is ground if no logical variables occur

in it. A ground normal rule with an empty body is also called a fact. A predicate

symbol p is defined by a rule r if p appears in the head of r.

A substitution θ is of the form {X1/t1, ..., Xn/tn}, where X1, ..., Xn are distinct

logical variables and t1, ..., tn are terms. The result of applying θ to an atom (or

term) A, denoted Aθ, is the atom (or term) obtained from A by simultaneously
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replacing each occurrence of a logical variable Xi in A with ti if Xi/ti belongs

to θ. Two atoms A1 and A2 unify if there exists a substitution θ, called a uni-

fier of A1 and A2, such that A1θ = A2θ. The composition of two substitutions

θ = {X1/t1, ..., Xn/tn} and ϑ = {Y1/u1, ..., Ym/um}, denoted θ ◦ ϑ, is the substi-

tution obtained from the set {X1/t1ϑ, ...,Xn/tnϑ, Y1/u1, ..., Ym/um} by removing

every Xi/tiϑ such that Xi = tiϑ and every Yj/uj such that Yj ∈ {X1, ..., Xn}. A

substitution θ is more general than a substitution ϑ if there exists a substitution η

such that ϑ = θ ◦ η. A unifier θ of A1 and A2 is called a most general unifier (mgu)

of A1 and A2 if it is more general than any other unifier of A1 and A2 (indeed, the

mgu is unique modulo renaming of logical variables).

Semantics. Consider a program P. The Herbrand universe HP of P is the possibly

infinite set of ground terms constructible using function symbols (and thus, also

constants) appearing in P. The Herbrand base BP of P is the set of ground atoms

constructible using predicate symbols appearing in P and ground terms of HP .

A rule (resp. atom) r′ is a ground instance of a rule (resp. atom) r in P if r′ can

be obtained from r by substituting every logical variable in r with some ground

term in HP . We use ground(r) to denote the set of all ground instances of r and

define ground(P) to denote the set of all ground instances of the rules in P, i.e.,

ground(P) = ∪r∈Pground(r).

An interpretation of P is any subset I of BP . The truth value of a ground atom

A w.r.t. I, denoted valueI(A), is true if A ∈ I, false otherwise. The truth value

of ¬A w.r.t. I, denoted valueI(¬A), is true if A 6∈ I, false otherwise. A ground

rule r is satisfied by I, denoted I |= r, if there is a ground literal L in body(r) s.t.

valueI(L) = false or there is a ground atom A in head(r) s.t. valueI(A) = true.

Thus, if the body of r is empty, r is satisfied by I if there is an atom A in head(r)

s.t. valueI(A) = true. An interpretation of P is a model of P if it satisfies every

ground rule in ground(P). A model M of P is minimal if no proper subset of M is

a model of P. The set of minimal models of P is denoted by MM(P).

Given an interpretation I of P, let PI denote the ground positive program derived

from ground(P) by (i) removing every rule containing a negative literal ¬A in the

body with A ∈ I, and (ii) removing all negative literals from the remaining rules.

An interpretation I is a stable model of P if I ∈MM(PI). The set of stable models

of P is denoted by SM(P). It is well known that stable models are minimal models

(i.e., SM(P) ⊆MM(P)), and SM(P) =MM(P) for positive programs.

A positive normal program P has a unique minimal model, which, with a slight

abuse of notation, we denote as MM(P). The immediate consequence operator

of P is a function TP : 2BP → 2BP defined as follows: for every interpretation

I, TP(I) = {A | A ← B1, ..., Bn ∈ ground(P) and {B1, ..., Bn} ⊆ I}. The i-th

iteration of TP (i ≥ 1) w.r.t. an interpretation I is defined as follows: T 1
P(I) =

TP(I) and T i
P(I) = TP(T i−1

P (I)) for i > 1. The minimal model of P coincides

with T∞P (∅).

Finite programs. A program P is said to be finite under stable model semantics

if, for every finite set of facts D, the program P∪D admits a finite number of stable
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r1 r2 r3

r0

Fig. 1. Firing graph of P1.

models and each is of finite size, that is, |SM(P ∪ D)| is finite and every stable

model M ∈ SM(P ∪D) is finite.

Equivalently, a positive normal program P is finite if for every finite set of facts

D, there is a finite natural number n such that Tn
P∪D(∅) = T∞P∪D(∅). We call such

programs terminating. In this paper we study new conditions under which a positive

normal program P is terminating. It is worth mentioning that such conditions can

be easily extended to general programs. This will be shown in the next section.

3 Rule-bounded Programs

In this section, we present rule-bounded programs, a class of programs whose evalua-

tion always terminates and for which checking membership in the class is decidable.

Their definition relies on a novel technique which uses linear inequalities to mea-

sure terms and atoms’ sizes and checks if the size of the head of a rule is always

bounded by the size of a mutually recursive body atom (we will formally define

what “mutually recursive” means in Definition 2 below).

For ease of presentation, we restrict our attention to positive normal programs.

However, our technique can be applied to an arbitrary program P with disjunction

in the head and negation in the body by considering a positive normal program

st(P) derived from P as follows. Every rule A1 ∨ ... ∨ Am ← body in P is replaced

with m positive normal rules of the form Ai ← body+ (1 ≤ i ≤ m) where body+ is

obtained from body by deleting all negative literals. In fact, the minimal model of

st(P) contains every stable model of P (Greco et al. 2012)—whence, the termination

of st(P), which implies finiteness and computability of the minimal model will also

imply that P has a finite number of stable models, each of finite size, which can

be computed. In the rest of the paper, a program is understood to be positive and

normal. We start by introducing some preliminary notions.

Definition 1 (Firing graph)

The firing graph of a program P, denoted Ω(P), is a directed graph whose nodes

are the rules in P and such that there is an edge 〈r, r′〉 if there exist two (not

necessarily distinct) rules r, r′ ∈ P s.t. head(r) and an atom in body(r′) unify. 2

Intuitively, an edge 〈r, r′〉 of Ω(P) means that rule r may cause rule r′ to “fire”.

The firing graph of program P1 of Example 1 is depicted in Figure 1. In the definition

above, when r = r′ we assume that r and r′ are two “copies” that do not share any

logical variable.

We say that a rule r depends on a rule r′ if r can be reached from r′ through the
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edges of Ω(P). A strongly connected component (SCC) of a directed graph G is a

maximal set C of nodes of G s.t. every node of C can be reached from every node of

C (through the edges in G). We say that an SCC C is non-trivial if there exists at

least one edge in G between two not necessarily distinct nodes of C. For instance,

the firing graph in Figure 1 has two SCCs, C1 = {r0} and C2 = {r1, r2, r3}, but only

C2 is non-trivial. Given a program P and an SCC C of Ω(P), pred(C) denotes the

set of predicate symbols defined by the rules in C. We now define when the head

atom and a body atom of a rule are mutually recursive.

Definition 2 (Mutually recursive atoms)

Let P be a program and r a rule in P. The head atom A = head(r) and an atom

B ∈ body(r) are mutually recursive if there is an SCC C of Ω(P) s.t.:

1. C contains r, and

2. C contains a rule r′ (possibly equal to r) s.t. head(r′) and B unify. 2

In the previous definition, when r = r′ we assume that r and r′ are two “copies”

that do not share any logical variable. Intuitively, the head atom A of a rule r

and an atom B in the body of r are mutually recursive when there might be an

actual propagation of terms from A to B (through the application of a sequence

of rules). As a very simple example, if we have an SCC consisting only of the rule

p(f(X)) ← p(X), p(g(X)), the first body atom is mutually recursive with the head,

while the second one is not as it does not unify with the head atom.

Given a rule r, we use rbody(r) to denote the set of atoms in body(r) which are

mutually recursive with head(r). Moreover, we define sbody(r) as the set consisting

of every atom in body(r) that contains all logical variables appearing in head(r),

and define srbody(r) = rbody(r) ∩ sbody(r).

We say that a rule r in a program P is relevant if it is not a fact and the set of

atoms body(r) \ rbody(r) does not contain all logical variables in head(r). Roughly

speaking, a non-relevant rule will be ignored because either it cannot propagate

terms or its head size is bounded by body atoms which are not mutually recursive

with the head. We illustrate the notions introduced so far in the following example.

Example 4

Consider the following program P4:

r1 : s(f(X), Y)︸ ︷︷ ︸
A

← q(X, f(Y))︸ ︷︷ ︸
B

, s(Z, f(Y))︸ ︷︷ ︸
C

.

r2 : q(f(U), V)︸ ︷︷ ︸
D

← s(U, f(V))︸ ︷︷ ︸
E

.

The firing graph consists of the edges 〈r1, r1〉, 〈r1, r2〉, 〈r2, r1〉. Thus, there is only

one SCC C = {r1, r2}, which is non-trivial, and pred(C) = {q, s}. Atoms A and B

(resp. A and C, D and E) are mutually recursive. Moreover, rbody(r1) = {B,C},
srbody(r1) = {B}, rbody(r2) = srbody(r2) = {E}. Both r1 and r2 are relevant. 2

We use N to denote the set of natural numbers {1, 2, 3, ...} and N0 to denote

the set of natural numbers including the zero. Moreover, Nk = {(v1, ..., vk) | vi ∈
N for 1 ≤ i ≤ k} and Nk0 = {(v1, ..., vk) | vi ∈ N0 for 1 ≤ i ≤ k}. Given a k-vector
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v = (v1, ..., vk) in Nk0 , we use v[i] to refer to vi, for 1 ≤ i ≤ k. Given two k-vectors

v = (v1, ..., vk) and w = (w1, ..., wk) in Nk0 , we use v ·w to denote the classical scalar

product, i.e., v · w =
∑k
i=1 vi · wi.

As mentioned earlier, the basic idea of the proposed technique is to measure the

size of terms and atoms in order to check if the rules’ head sizes are bounded when

propagation occurs. Thus, we introduce the notions of term and atom size.

Definition 3

Let t be a term. The size of t is recursively defined as follows:

size(t) =

x if t is a logical variable X;

m+
m∑
i=1

size(ti) if t = f(t1, ..., tm).

where x is an integer variable. The size of an atom A = p(t1, ..., pn), denoted

size(A), is the n-vector (size(t1), ..., size(tn)). 2

In the definition above, an integer variable x intuitively represents the possible

sizes that the logical variable X can have during the bottom-up evaluation. The

size of a term of the form f(t1, ..., tm) is defined by summing up the size of its terms

ti’s plus the arity m of f . Note that from the definition above, the size of every

constant is 0.

Example 5

Consider rule r1 of program P1 (see Example 1). Using lc to denote the list con-

structor operator “|”, the rule can be rewritten as follows:

bub(lc(Y, T), lc(X, Cur), Sol)← bub(lc(X, lc(Y, T)), Cur, Sol), X ≤ Y.

Let A (resp. B) be the atom in the head (resp. the first atom in the body). Then,

size(A) = (2 + y + t, 2 + x+ cur, sol)

size(B) = (2 + [x+ (2 + y + t)], cur, sol) 2

We are now ready to define rule-bounded programs.

Definition 4 (Rule-bounded programs)

Let P be a program, C a non-trivial SCC of Ω(P), and pred(C) = {p1, ..., pk}. We

say that C is rule-bounded if there exist k vectors αph ∈ Narity(ph), 1 ≤ h ≤ k, such

that for every relevant rule r ∈ C with A = head(r) = pi(t1, ..., tn), there exists an

atom B = pj(u1, ..., um) in srbody(r) s.t. the following inequality is satisfied

αpj · size(B)− αpi · size(A) ≥ 0

for every non-negative value of the integer variables in size(B) and size(A).

We say that P is rule-bounded if every non-trivial SCC of Ω(P) is rule-bounded. 2

Intuitively, for every relevant rule of a non-trivial SCC of Ω(P), Definition 4

checks if the size of the head atom is bounded by the size of a mutually recursive

body atom for all possible sizes the terms can assume.
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Example 6

Consider again program P4 of Example 4. Recall that the only non-trivial SCC

of Ω(P4) is C = {r1, r2}, and both r1 and r2 are relevant. To determine if the

program is rule-bounded we need to check if C is rule-bounded. Thus, we need to

find αq, αs ∈ N2 such that there is an atom in srbody(r1) and an atom in srbody(r2)

which satisfy the two inequalities derived from r1 and r2 for all non-negative values

of the integer variables therein. Since both srbody(r1) and srbody(r2) contain only

one element, we have only one choice, namely the one where B is selected for r1
and E is selected for r2.

Thus, we need to check if there exist αq, αs ∈ N2 s.t. the following linear constraints

are satisfied for all non-negative values of the integer variables appearing in them:{
αq · size(B)− αs · size(A) ≥ 0

αs · size(E)− αq · size(D) ≥ 0
⇒

{
αq · (x, 1 + y)− αs · (1 + x, y) ≥ 0

αs · (u, 1 + v)− αq · (1 + u, v) ≥ 0

By expanding the scalar products and isolating every integer variable we obtain:{
(αq[1]− αs[1]) · x+ (αq[2]− αs[2]) · y + (αq[2]− αs[1]) ≥ 0

(αs[1]− αq[1]) · u+ (αs[2]− αq[2]) · v + (αs[2]− αq[1]) ≥ 0

The previous inequalities must hold for all x, y, u, v ∈ N0; it is easy to see that this

is the case iff the following system admits a solution:{
αq[1]− αs[1] ≥ 0, αq[2]− αs[2] ≥ 0, αq[2]− αs[1] ≥ 0,

αs[1]− αq[1] ≥ 0, αs[2]− αq[2] ≥ 0, αs[2]− αq[1] ≥ 0

Since a solution does exist, e.g. αs[1] = αs[2] = αq[1] = αq[2] = 1 (recall that every

α[i] must be greater than 0), the SCC C is rule-bounded, and so is the program. 2

The method in the previous example to find vectors αp for all p ∈ pred(C) can al-

ways be applied. That is, we can always isolate the integer variables in the original

inequalities and then derive one inequality for each expression that multiplies an in-

teger variable plus the one for the constant term, imposing that all such expressions

must be greater than or equal to 0—we precisely state this property in Lemma 5.

It is worth noting that the proposed technique can easily recognize many termi-

nating practical programs where terms are simply exchanged from the body to the

head of rules (e.g., see Examples 1, 2, and 3).

Example 7

Consider program P1 of Example 1. Recall that the only non-trivial SCC of Ω(P1)

is {r1, r2, r3} (see Figure 1) and all rules in it are relevant. Since |srbody(ri)| = 1

for every ri in the SCC, we have only one set of inequalities, which is the following

one after isolating integer variables(we assume that the empty list is represented

by a simple constant):
(αb[1]− αb[2]) · x1 + (2αb[1]− 2αb[2]) ≥ 0

(αb[1]− αb[2]) · y2 + (2αb[1]− 2αb[2]) ≥ 0

(αb[1]− αb[3]) · x3 + (αb[2]− αb[1]) · cur3 + (2αb[1]− 2αb[3]) ≥ 0
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where subscript b stands for predicate symbol bub, whereas subscripts associated

with integer variables are used to refer to the occurrences of logical variables in

different rules (e.g., y2 is the integer variable associated to the logical variable Y in

rule r2). A possible solution is α
b

= (1, 1, 1) and thus P1 is rule-bounded.

Considering program P2 of Example 2, we obtain the following constraints:{
(αv[1]− αv[2]) · root1 + (αv[1]− αv[3]) · right1 + (3αv[1]− 2αv[2]− 2αv[3]) ≥ 0

(αv[3]− αv[1]) · next2 + 2αv[3] ≥ 0

where subscript v stands for predicate symbol visit. By setting αv = (2, 1, 2),

we get positive integer values of αv[1], αv[2], αv[3] s.t. the inequalities above are

satisfied for all root1, right1, next2 ∈ N0. Thus, P2 is rule-bounded.

The firing graph of program P3 of Example 3 has two non-trivial SCCs C1 = {r1}
and C2 = {r3}. The constraints for C1 are:{

(αr[1]− αr[2]) · x1 + (2αr[1]− 2αr[2]) ≥ 0

where subscript r stands for predicate symbol reverse. It is easy to see that by

choosing any (positive integer) values of αr[1] and αr[2] such that αr[1] ≥ αr[2],

the inequality above holds for all x1 ∈ N0. Likewise, the constraints for C2 are{
(αa[1]− αa[2]) · x3 + (2αa[1]− 2αa[2]) ≥ 0

where subscript a stands for predicate symbol append. By choosing any (positive

integer) values of αa[1] and αa[2] such that αa[1] ≥ αa[2], the inequality above

holds for all x3 ∈ N0. Thus, P3 is rule-bounded. 2

4 Correctness and expressiveness

In this section, we show that every rule-bounded program is terminating and provide

results on the relative expressiveness of rule-bounded programs and other criteria.

Note that every program P can be partitioned into an ordered sequence of sub-

programs P1, ...,Pn, called stratification, such that, for every 1 ≤ i ≤ n, every rule

r in Pi depends only on rules belonging to some sub-program Pj with 1 ≤ j ≤ i.

Recall that a rule r depends on a rule r′ if r can be reached from r′ through the

edges of the firing graph. Moreover, there always exists a stratification where every

sub-program Pi is either a non-trivial SCC or a set of trivial SCCs. Given a set of

facts D, it is well known thatMM(P ∪D) can be defined in terms of the minimal

model of the Pi’s following the order of the partition as follows: if M0 = D and

Mi =MM(Pi ∪Mi−1) for 1 ≤ i ≤ n, then Mn =MM(P ∪D).

Lemma 1

A program P is terminating iff every non-trivial SCC of Ω(P) is terminating.

Proof

(⇒) Clearly, if there is an SCC which is not terminating, then P is not terminating.

(⇐) Assume now that P does not terminate and all its non-trivial SCCs terminates.

This means that there is a set of facts D such that the fixpoint of P∪D is not finite.
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Since P ∪ D can be partitioned into (P1, ...,Pn), there must be a non-trivial (i.e.

recursive) SCC Pi such that Pi ∪Mi−1 does not terminate. This contradicts the

hypothesis that all non-trivial SCCs terminate. Indeed if Pi terminates, then for

every set of facts D′ including the facts in Mi−1, the fixpoint of Pi ∪D′ terminates

and, therefore, the fixpoint of Pi ∪Mi−1 terminates as well.

We now refine the previous lemma by showing that to see if a program P is

terminating it is not necessary to analyze every non-trivial SCC entirely, but we

can focus on its relevant rules. Henceforth, for every set of rules C, we use Rel(C)
to denote the set of relevant rules of C.

Lemma 2

Let P be a program and let C be an SCC of Ω(P). Then, C is terminating iff Rel(C)
is terminating.

Proof

It follows from the fact that we can derive only a finite number of ground atoms

using the rules in ground(C) \ ground(Rel(C)) starting from a finite set of facts—

recall that, by definition, every non-relevant rule has a set of atoms in the body that

are not mutually recursive with the head and contain all variables in the head.

To show the correctness of our approach, we first show that every rule-bounded

program can be rewritten into an “equivalent” program belonging to a simpler class

of programs, called size-bounded. Then, we prove that size-bounded programs are

terminating and this entails that rule-bounded programs are terminating as well.

Definition 5 (Program expansion)

Let P be a program and let ω = {ωp1 , ..., ωpn} be a set of vectors such that ωpi ∈
Narity(pi) and pi ∈ pred(P) for 1 ≤ i ≤ n. For any atom A = p(t1, ..., tm) occurring

in P, we define Aω = A, if p 6∈ pred(P), otherwise Aω = p(t1, ..., tm), where each

tj is the sequence tj , ..., tj of length ωp[j]. Finally, Pω denotes the program derived

from P by replacing every atom A with Aω. 2

Intuitively, the expansion of a program is obtained from the original program by

increasing the arity of each predicate symbol according to ω. Below is an example.

Example 8

Consider program P4 of Example 4 and the set of vectors ω = {ωs, ωq} where

ωs = (2, 3) and ωq = (2, 1). The program Pω4 is as follows:

r1 : s(f(X), f(X), Y, Y, Y) ← q(X, X, f(Y)), s(Z, Z, f(Y), f(Y), f(Y)).

r2 : q(f(U), f(U), V) ← s(U, U, f(V), f(V), f(V)). 2

We now show that for every program P and every set of vectors ω, P is ter-

minating iff Pω is terminating. In the following, for every program P, we define

ω(P) = { {ωp1 , ..., ωpn} | pi ∈ pred(P) ∧ ωpi ∈ Narity(pi)}.

Lemma 3

For every program P and every ω ∈ ω(P), P is terminating iff Pω is terminating.
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Proof

For every atom Aω occurring in Pω let A be the corresponding atom in P. The claim

follows from the observation that whenever there is a instance D such that T∞P∪D(∅)
is infinite, it is always possible to construct the instance Dω which guarantees that

T∞Pω∪Dω (∅) is infinite as well.

Conversely, for every instance Dω of Pω, if T∞Pω∪Dω (∅) is infinite, then we can

always construct the instance D guaranteeing that T∞P∪D(∅) is infinite as well.

We now introduce the class of size-bounded programs and show that such pro-

grams are terminating. To this aim, we define the total size of an atom A =

p(t1, ..., tn) as tsize(A) =
n∑
i=1

size(ti).

Definition 6 (Size-bounded program)

A program P is said to be size-bounded if for every rule r ∈ P which is not a

fact, there is an atom B in sbody(r) such that tsize(B) ≥ tsize(head(r)) for every

non-negative value of the integer variables occurring in tsize(B) and tsize(head(r)).

Theorem 1

Every size-bounded program is terminating.

Proof

Let P be a size-bounded program and D a finite set of facts, we consider only rules

in P having a non-empty body. Given an atom A and a ground instance A′ of A,

let θ be the mgu of A and A′. Notice that θ is of the form {X1/t1, ..., Xn/tn} where

the Xi’s are exactly the logical variables occurring in A and all the tj ’s are ground

terms. It can be easily verified that tsize(A′) can be obtained from tsize(A) by

replacing every integer variable xi in tsize(A) with size(ti).

We now show that for every ground rule r′ ∈ ground(P) there is an atom

B′ ∈ body(r′) such that tsize(B′) ≥ tsize(head(r′)). Consider a rule r in P of the

form A← B1, ..., Bk and a ground rule r′ ∈ ground(r) of the form A′ ← B′1, ..., B
′
k.

Since P is size-bounded, there exists an atom Bj in sbody(r) such that tsize(Bj) ≥
tsize(A) for every non-negative value of the integer variables occurring in the in-

equality. Notice every logical variable in A appears also in Bj by definition of sbody.

Let {X1/t1, ..., Xn/tn} be the mgu of Bj and B′j . As tsize(Bj) ≥ tsize(A) holds

for all non-negative value of its integer variables, it also holds when every integer

variable xi is replaced with size(ti), for 1 ≤ i ≤ n. Thus, tsize(B′j) ≥ tsize(A′).
Let us denote T i

P∪D(∅) as Mi for every i ≥ 1 and let tsizemax = max{tsize(B) |
B ← is a fact in P ∪D}. We show that for every i ≥ 1 and every ground atom A

in Mi the following holds tsizemax ≥ tsize(A). The proof is by induction on i.

• Base case (i=1). It follows from the fact that M1={B | B← is a fact in P ∪ D}.
• Inductive step (i → i + 1). Let r′ be a ground rule in ground(P) such that

body(r′) ⊆ Mi. Then, as shown above, there is an atom B in body(r′) such that

tsize(B) ≥ tsize(head(r′)). By the induction hypothesis, tsizemax ≥ tsize(B) and

thus tsizemax ≥ tsize(head(r′)).

Thus, for every i ≥ 1 and every ground atom A in Mi, we have that tsize(A)
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is bounded by tsizemax. Since programs are range-restricted, atoms in ∪i≥1Mi are

built from constants and function symbols appearing in P ∪D, which are finitely

many. These observations and the definition of tsize imply that we can have only

finitely many ground atoms in ∪i≥1Mi. Hence, P is terminating.

We are now ready to show the correctness of the rule-bounded technique.

Theorem 2
Every rule-bounded program is terminating.

Proof
Let P be a rule-bounded program and C a non-trivial SCC of Ω(P). Since P is

rule-bounded, then there exists ω ∈ ω(C) which satisfies the condition of Defini-

tion 4, that is, C is rule-bounded. This implies that Rel(C)ω is size-bounded. Thus,

Rel(C)ω is terminating by Theorem 1. Lemma 3 implies that Rel(C) is terminating

and Lemma 2 in turn implies that C is terminating. Finally, by Lemma 1, we can

conclude that P is terminating.

The class of rule-bounded programs is incomparable with different termination

criteria in the literature, including the most general ones.

Theorem 3
Rule-bounded programs are incomparable with argument-restricted, mapping-re-

stricted, and bounded programs.

Proof
Recall that both bounded and mapping-restricted programs include argument-

restricted programs. To prove the claim we show that (i) there is a program which

is rule-bounded but is neither mapping-restricted nor bounded, and (ii) there is a

program which is argument-restricted but not rule-bounded. (i) As already shown,

program P1 of Example 1 is rule-bounded; however, it can be easily verified that P1

is neither mapping-restricted nor bounded. (ii) Consider the program consisting of

the rules p(f(X))← q(X) and q(Y)← p(f(Y)). This program is argument-restricted

(and thus also mapping-restricted and bounded) but is not rule-bounded.

Regarding the termination criteria mentioned in Theorem 3, we recall that map-

ping restriction (MR) and bounded programs (BP ) are incomparable and both

extend argument restriction (AR). Concerning the computational complexity, while

AR is polynomial time, both MR and BP are exponential. As a remark, it is inte-

resting to note that the above result highlights the fact that our technique analyzes

logic programs from a radically different point of view w.r.t. previously defined

approaches, which analyze how complex terms are propagated among arguments.

5 Cycle-bounded Programs

As saw in the previous section, to determine if a program is rule-bounded we check

through linear constraints if the size of the head atom is bounded by the size of

a body atom for every relevant rule in a non-trivial SCC of the firing graph (cf.

Definition 4). Looking at each rule individually has its limitations, as shown by the

following example.
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Example 9
Consider the following simple program P9:

r1 : p(X, Y) ← q(f(X), Y).

r2 : q(W, f(Z)) ← p(W, Z).

It is easy to see that the program above is terminating, but it is not rule-bounded.

The linear inequalities for the program are (cf. Definition 4):{
(αq[1]− αp[1]) · x+ (αq[2]− αp[2]) · y + αq[1] ≥ 0

(αp[1]− αq[1]) · w + (αp[2]− αq[2]) · z − αq[2] ≥ 0

It can be easily verified that there are no positive integer values for αp[1], αp[2],

αq[1], αq[2] such that the inequalities hold for all x, y, w, z ∈ N0. The reason is

the presence of the expression −αq[2] in the second inequality. Intuitively, this is

because the size of the head atom increases w.r.t. the size of the body atom in r2.

However, notice that the cycle involving r1 and r2 does not increase the overall

size of propagated terms. This suggests we can check if an entire cycle (rather than

each individual rule) propagates terms of bounded size. 2

To deal with programs like the one shown in the previous example, we introduce

the class of cycle-bounded programs, which is able to perform an analysis of how

terms propagate through a group of rules, rather than looking at rules individually

as done by the rule-bounded criterion.

Given a program P, a cyclic path π of Ω(P) is a sequence of edges 〈r1, r2〉, 〈r2, r3〉,
..., 〈rn, r1〉. Moreover a cyclic path π is basic if every edge π does not occur more

than once. We say that π is relevant if every ri is relevant, for 1 ≤ i ≤ n.

In the following, we first present the cycle-bounded criterion for linear programs

and then show how it can be applied to non-linear ones.

Dealing with linear programs. A program P is linear if every rule in P is linear.

A rule r is linear if |rbody(r)| ≤ 1. Notice that rbody(r) contains exactly one atom

B for every linear rule r in a non-trivial SCC of the firing graph; thus, with a slight

abuse of notation, we use rbody(r) to refer to B.

Definition 7 (Cycle constraints)
Let P be a linear program and let π = 〈r1, r2〉, ..., 〈rn, r1〉 be a basic cyclic path

of Ω(P). For every mgu θi of head(ri) and rbody(ri+1) (1 ≤ i < n)1, we define

the set of (linear) equalities eq(θi) = {x = size(t) | X/t ∈ θi}. Then, we define

eq(π) =
⋃

1≤i<n
eq(θi). 2

Example 10
Consider the program P9 and the two basic cyclic paths π1 = 〈r1, r2〉 〈r2, r1〉 and

π2 = 〈r2, r1〉 〈r1, r2〉 of Ω(P9). The mgu of head(r1) and rbody(r2) is θ = {X/W, Y/Z}
and thus eq(π1) = {x = w, y = z}. Furthermore, the mgu of head(r2) and rbody(r1)

is θ = {W/f(X), Y/f(Z)} and thus eq(π2) = {w = 1 + x, y = 1 + z}. 2

1 Note that such θi’s always exist by definition of firing graph.
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Definition 8 (Linear cycle-bounded programs)

Let P be a linear program, π = 〈r1, r2〉 ... 〈rn, r1〉 be a basic cyclic path of Ω(P)

and p be the predicate defined by rn. We say that π is cycle-bounded if eq(π) is

satisfiable for some non-negative value of its integer variables and there exists a

vector αp ∈ Narity(p) such that the constraint

αp · size(rbody(r1))− αp · size(head(rn)) ≥ 0

is satisfied for every non-negative value of its integer variables that satisfy eq(π).

We say that P is cycle-bounded if every relevant basic cyclic path of Ω(P) is cycle-

bounded. 2

In the definition above, we assume that distinct basic cyclic paths do not share

any logical variable.

Example 11

Consider again program P9 of Example 9. The program is clearly linear and Ω(P9)

has only two relevant basic cyclic paths π1 = 〈r1, r2〉〈r2, r1〉 and π2 = 〈r2, r1〉〈r1, r2〉.
To check if P9 is cycle-bounded, we need to check if eq(π1) = {x1 = w1, y1 = z1}
and eq(π2) = {w2 = 1 + x2, y2 = 1 + z2} admit a solution and if there exist

αp, αq ∈ N2 s.t. the constraints:

αq · (x1 + 1, y1) − αq · (w1, z1 + 1) ≥ 0,

αp · (w2, z2) − αp · (x2, y2) ≥ 0

are satisfied for all x1, y1, w1, z1 ∈ N0 and all x2, y2, w2, z2 ∈ N0 that satisfy eq(π1)

and eq(π2).

By applying the equality conditions eq(π1) and eq(π2) to the above constraints

we get the below inequalities for the basic cyclic paths π1 and π2:

(αq[1], αq[2]) · (x1 + 1, z1) − (αq[1], αq[2])) · (x1, z1 + 1) ≥ 0,

(αp[1], αp[2])) · (x2 + 1, z2) − (αp[1], αp[2])) · (x2, z2 + 1) ≥ 0

It is easy to see that the first constraint (resp. the second) is satisfied for every

vector αp ∈ N2 (resp. αq ∈ N2) such that αp[1] ≥ αp[2] (resp. αq[1] ≥ αq[2]). Thus,

P9 is cycle-bounded. 2

To prove the correctness of our approach, we introduce a simpler class of termi-

nating programs, as we did in the case of rule-bounded programs.

Definition 9 (Linear cycle-size-bounded programs)

Let P be a linear program. We say that P is cycle-size-bounded if for every relevant

basic cyclic path π = 〈r1, r2〉 ... 〈rn, r1〉 of Ω(P), eq(π) is satisfiable for some non-

negative value of its integer variables and the constraint

tsize(rbody(r1))− tsize(head(rn)) ≥ 0

is satisfied for every non-negative value of its integer variables that satisfy eq(π). 2

Theorem 4

Every linear cycle-size-bounded program is terminating.
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Proof
Let P be a cycle-size-bounded program and D a finite set of facts. Consider a

relevant basic cyclic path π = 〈r1, r2〉 ... 〈rn, r1〉 of Ω(P). Let r′1, ..., r
′
n be ground

rules s.t. r′i ∈ ground(ri) for 1 ≤ i ≤ n and head(r′i) = rbody(r′i+1) for 1 ≤ i < n.

For 1 ≤ i ≤ n, let θhi be the mgu of head(ri) and head(r′i), and θbi the mgu of

rbody(ri) and rbody(r′i). Then,

• tsize(head(r′i)) can be obtained from tsize(head(ri)) by replacing every integer

variable x in tsize(head(ri)) with size(t) provided that X/t ∈ θhi , for 1 ≤ i ≤ n;

• tsize(rbody(r′i)) can be obtained from tsize(rbody(ri)) by replacing every integer

variable x in tsize(rbody(ri)) with size(t) provided that X/t ∈ θbi , for 1 ≤ i ≤ n;

• if we replace every integer variable x in eq(π) with size(t) iff X/t belongs to

∪ni=1(θhi ∪ θbi ), then eq(π) is satisfied.

The items above entail that tsize(rbody(r′1))− tsize(head(r′n)) ≥ 0. This means

that we cannot derive atoms of increasing size through the cyclic application of

rules and thus P ∪D is terminating.

Theorem 5 (Soundness)
Every linear cycle-bounded program is terminating.

Proof
The proof is similar to the one presented for rule-bounded programs. Given a linear

cycle-bounded program P, we are going to construct an equivalent program (like

Pω) to P as follows: for every relevant basic cyclic path π = 〈r1, r2〉 ... 〈rn, r1〉 of

Ω(P), let αp be the vector such that αp · size(rbody(r1))−αp · size(head(rn)) ≥ 0.

Then, remove rules r1 and rn from P and insert the rules head(r1)← rbody(r1)αp

and head(rn)αp ← rbody(rn) respectively. Finally, in order to preserve the ac-

tivation of rules in the obtained program, for every pair of basic cyclic paths

π1 = 〈r1, r2〉 ... 〈rn, r1〉, π2 = 〈s1, s2〉 ... 〈sm, s1〉, where p is the predicate defined

by rn and sn with arity k, add to P a rule of the form Aαp ← Aβp , where A is

the atom p(X1, ..., Xk) and αp, βp are the vectors such that αp · size(rbody(r1))−
αp · size(head(rn)) ≥ 0 and βp · size(rbody(s1))− βp · size(head(sm)) ≥ 0 respec-

tively. It is not difficult to show that the obtained program is terminating iff P is

terminating. Moreover, since P is cycle-bounded the new program is consequently

cycle-size-bounded. From Theorem 4, we get that the new program is terminating

and so it is P.

Dealing with non-linear programs. The application of the cycle-bounded cri-

terion to arbitrary programs consists in applying the technique to a set of linear

programs derived from the original one. Given a rule r, the set of linear versions

of r is defined as the set of rules `(r) = {head(r) ← B | B ∈ rbody(r)}. Given a

program P = {r1, ..., rn}, the set of linear versions of P is defined as the set of

linear programs `(P) = {{r′1, ..., r′n} | r′i ∈ `(ri) for 1 ≤ i ≤ n}.

Definition 10 (Cycle-bounded programs)
A (possibly non-linear) program P is cycle-bounded if every (linear) program in

`(P) is cycle-bounded. 2
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Theorem 6

Every cycle-bounded program is terminating.

Proof

Notice that every linear version P ′ ∈ `(P) of P is such that for every set of facts D,

MM(D ∪ P) ⊆MM(D ∪ P ′). Thus, if every linear version of P is cycle-bounded

then for every set of facts D, MM(D ∪ P) is finite.

Theorem 7 (Expressivity)

Cycle-bounded programs are incomparable with rule-bounded, argument-restricted,

mapping-restricted and bounded programs.

Proof

As shown in Example 9, program P9 is cycle-bounded, but it can be easily verified

that it is neither mapping-restricted (and thus not argument-restricted) nor rule-

bounded. Moreover, the one rule program {p(X, Y, f(Z, W)) ← p(f(Z, Y), X, W).} is

cycle-bounded but it is not bounded.

Conversely, the program {p(f(X)) ← p(f(f(X))), p(X).} is rule-bounded, argument-

restricted (and thus mapping-restricted) and bounded but not cycle-bounded.

6 Complexity

In this section, we provide upper bounds for the time complexity of checking whe-

ther a program is rule-bounded or cycle-bounded. We assume that constant space

is used to store each constant, logical variable, function symbol, and predicate sym-

bol. The syntactic size2 of a term t (resp. atom, rule, program), denoted by ||t||, is

the number of symbols occurring in t, except for the symbols “(”, “)”, “,”, “.”, and

“←”. Thus, in this section, the complexity of a problem involving P is assumed to

be w.r.t. ||P||. Obviously |P| = O(||P||).

Lemma 4

Given a program P, constructing Ω(P) is in PTIME .

Proof

The construction of Ω(P) requires checking, for every atom A in the head of a rule

and every atom B in the body of a rule, if A and B unify. Since we need to check

|P| ×
∑
r∈P |body(r)| times if two atoms unify and checking whether two atoms A

and B unify can be done in quadratic time w.r.t. ||A|| and ||B|| (Venturini Zilli

1975), then the construction of Ω(P) is in PTIME .

It is worth noting that the number of SCCs is bounded by O(|P|) and that after

having built Ω(P), the cost of checking whether a SSC is trivial or nontrivial is

constant, whereas the cost of checking whether a rule is relevant is bounded by

O(||P||). Inequalities associated with basic cycles can be rewritten by grouping

2 We use the name syntactic size to distinguish it from the notion of size introduced in Definition 3.



18 M. Calautti, S. Greco, C. Molinaro and I. Trubitsyna

terms with respect to integer coefficients (also called α-coefficients) or with respect

to integer variables. Therefore, in the following we assume that inequalities grouped

with respect to integer variables are of the form γ1 ·x1,+ · · ·+γn ·xn+γ0 ≥ 0, where

each γi, for 0 ≤ i ≤ n, is an arithmetic expression built by using α-coefficients and

natural numbers, whereas inequalities grouped with respect to integer coefficients

are of the form α1 · w1,+ · · · + αm · wm ≥ 0, where each wj , for 1 ≤ i ≤ m,

is an arithmetic expression built by using integer variables and natural numbers.

Obviously, each γi can be considered an integer coefficient, whereas each wj can be

considered an integer variable.

Lemma 5

Consider a linear inequality of the form

γ1 · x1 + ...+ γn · xn + γ0 ≥ 0

where the γi’s are integer coefficients and the xj ’s are integer variables. The in-

equality is satisfied for every non-negative value of the xj ’s iff γi ≥ 0 for every

0 ≤ i ≤ n.

Proof

(⇐) Straightforward. (⇒) By contradiction, assume that the inequality is satisfied

for every non-negative value of the integer variables occurring in it, but there exists

0 ≤ i ≤ n such that γi < 0. If 1 ≤ i ≤ n, then the inequality is not satisfied when

xi = babs(γn+1/γi)c+ 1 and xj = 0 for every j 6= i. If i = 0, then the inequality is

not satisfied when xj = 0 for every 1 ≤ j ≤ n.

Theorem 8

Checking whether a program P is rule-bounded is in NP .

Proof

In order to check whether P is rule-bounded we need to: 1) construct the firing

graph Ω(P) of P, 2) compute the SCCs of Ω(P), and 3) check if every non-trivial

SCC is rule-bounded.

1) The construction of the firing graph is in PTIME by Lemma 4.

2) It is well known that computing the SCCs of a directed graph can be done in

linear time w.r.t. the number of nodes and edges. Since the number of nodes of

Ω(P) is |P| and the maximum number of edges of Ω(P) is |P|2, then computing all

the SCCs is clearly in PTIME .

3) Let C be a non-trivial SCC of Ω(P), n = O(|P|) the number of relevant rules

in C, v the maximum number of distinct variables occurring in the head atoms

of the relevant rules in C, and a the maximum arity of the predicate symbols in

pred(C). Since it is always possible to rewrite the constraints as in Definition 4 in

the form presented by Lemma 5, given a fixed choice of one atom in srbody(r) for

every relevant rule r of C, checking whether C is rule-bounded according to that

choice can be done by solving a set of at most n × (v + 1) linear constraints with

at most 2 × a non-negative coefficients per constraint—clearly, the size of the set
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of constraints is bounded by O(||P||) and if the set of constraints admit a solution,

then there is a solution where the size of the α-coefficients is polynomial in the size

of ||P|| (bounded by O(v × n × k), where k is the maximum constant appearing

in the set of inequalities). As checking if such a set of linear constraints admits a

solution can be done in non-deterministic polynomial time (Papadimitriou 1981),

it follows from the above discussion that this can be checked in polynomial time.

Hence, checking whether P is rule-bounded is in NP .

We discuss now the complexity of checking whether a program is cycle-bounded.

To this aim, we first introduce a technical lemma similar to Lemma 5.

Lemma 6

Consider a linear inequality of the form

α1 · w1 + ...+ αn · wn < 0 (1)

where the wi’s are integer variables and the αj ’s positive integer coefficients. The

inequality is satisfied iff wi ≤ 0 for every 1 ≤ i ≤ n and wj < 0 for some 1 ≤ j ≤ n.

Proof

(⇐) It follows straightforwardly from the fact that each αj > 0 for every j ∈ [1, n].

(⇒) By contradiction, assume that (1) is satisfied for every αj > 0, where j ∈ [1, n],

but either there is i ∈ [1, n] such that wi > 0 or wi ≤ 0 for every i ∈ [1, n] but none

of such inequalities is strict. If there is i ∈ [1, n], (i = 1, for example) such that

w1 > 0, then, since αj > 0 for each j ∈ [1, n], any assignment of α1, ..., αn > 0 such

that α1 > |α2 ·w2 + ...+αn ·wn| will not satisfy (1). In the case whether no wi ≤ 0

is strict, then wi = 0 for every i ∈ [1, n] and thus α1 ·w1 + ...+αn ·wn will be zero,

which does not satisfy (1).

The next result says that checking if a program P is cycle-bounded is in coNP .

We recall that a given a set of linear constraints depending on some integer variables

is satisfiable if there exist non-negative integer values of its integer variables that

satisfy the constraints. A solution of such linear constraints is any assignment for

their integer variables to some non-negative integer values satisfying the constraints.

Theorem 9

Checking whether a program P is cycle-bounded is in coNP .

Proof

In order to prove the claim, we focus on the complement of our problem. By def-

inition, a program P is not cycle-bounded if there exists a linear version P ′ of P
which is not cycle-bounded, which means that a relevant basic cyclic path π =

〈r1, r2〉...〈rn, r1〉 of Ω(P ′) is such that either eq(π) is not satisfiable or there is a so-

lution of eq(π) for which the inequality αp ·size(rbody(r1))−αp ·size(head(rn)) ≥ 0

is false, for every αp ∈ Narity(p). Checking the statement above can be carried out

by the following non-deterministic procedure.

Guess a linear version P ′ of P and a basic cyclic path π of Ω(P ′) and check If

π is relevant. if it is not, then reject (i.e., the program is cycle-bounded). Then,
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check if eq(π) is satisfiable, if it is not then accept (i.e., the program is not cycle-

bounded). Now, it remains to check whether there is a solution of eq(π) such that

αp · size(rbody(r1)) − αp · size(head(rn)) ≥ 0 is false for all αp ∈ Narity(p). To

accomplish the aforementioned task, we can check wheher αp ·size(rbody(r1))−αp ·
size(head(rn)) < 0 is true. Moreover, isolating every term αp[i] (1 ≤ i ≤ arity(p))

in the inequality, we get an expression of the form αp[1] · w1 + ... + αp[arity(p)] ·
warity(p) < 0, where each wi depends only on variables occurring in eq(π). Since

from Lemma 6, this is equivalent to check whether wi ≤ 0 for i ∈ [1, n] and there

is j ∈ [1, n] such that wj < 0, checking whether there is a solution of eq(π) such

that αp · size(rbody(r1)) − αp · size(head(rn)) ≥ 0 is false for all αp ∈ Narity(p)

is equivalent to guessing a j ∈ [1, n] and check that the set of linear constraints

eq(π)∪{w1 ≤ 0}∪ · · · ∪ {wj < 0}∪ · · · ∪ {wn ≤ 0} is satisfiable. The input program

is not cycle-bounded iff the previous set of linear constraints is satisfiable.

To show the desired upper bound, note that guessing a linear version P ′ of P
and a basic cyclic path of Ω(P ′) can be done in non-deterministic polynomial time,

since |P ′| = |P| and the maximum length of a basic cyclic path coincides with the

number of edges of Ω(P ′). Moreover, as previously stated, constructing the firing

graph is feasible in deterministic polynomial time. Furthermore, the construction

of eq(π) can be carried on in polynomial time too, by using a polynomially sized

representation of the mgu’s of the rules occurring in π (Venturini Zilli 1975). Finally,

as shown in (Papadimitriou 1981), checking whether the set of linear constraints

eq(π) ∪ {w1 ≤ 0} ∪ · · · ∪ {wj < 0} ∪ · · · ∪ {wn ≤ 0} is satisfiable is in NP .

7 Related Work

A significant body of work has been done on termination of logic programs under

top-down evaluation (De Schreye and Decorte 1994; Voets and De Schreye 2011;

Marchiori 1996; Ohlebusch 2001; Codish et al. 2005; Serebrenik and De Schreye

2005; Nishida and Vidal 2010; Schneider-Kamp et al. 2009; Schneider-Kamp et al.

2010; Nguyen et al. 2007; Bruynooghe et al. 2007; Bonatti 2004; Baselice et al. 2009)

and in the area of term rewriting (Zantema 1995; Sternagel and Middeldorp 2008;

Arts and Giesl 2000; Endrullis et al. 2008; Ferreira and Zantema 1996). Termination

properties of query evaluation for normal programs under tabling have been studied

in (Riguzzi and Swift 2013; Riguzzi and Swift 2014; Verbaeten et al. 2001).

In this paper, we consider logic programs with function symbols under the stable

model semantics (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991) (recall

that, as discussed in Section 3, our approach can be applied to programs with

disjunction and negation by transforming them into positive normal programs),

and thus all the excellent works above cannot be straightforwardly applied to our

setting—for a discussion on this see, e.g., (Calimeri et al. 2008; Alviano et al. 2010).

In our context, (Calimeri et al. 2008) introduced the class of finitely-ground pro-

grams, guaranteeing the existence of a finite set of stable models, each of finite size,

for programs in the class. Since membership in the class is not decidable, decidable

subclasses have been proposed: ω-restricted programs, λ-restricted programs, finite

domain programs, argument-restricted programs, safe programs, Γ-acyclic programs,



Using Linear Constraints for Logic Program Termination Analysis 21

mapping-restricted programs, and bounded programs. An adornment-based approach

that can be used in conjunction with the techniques above to detect more programs

as finitely-ground has been proposed in (Greco et al. 2013b). This paper refines and

extends (Calautti et al. 2014).

Compared with the aforementioned classes, rule- and cycle-bounded programs

allow us to perform a more global analysis and identify many practical programs

as terminating, such as those where terms in the body are rearranged in the head,

which are not included in any of the classes above. We observe that there are also

programs which are not rule- or cycle-bounded but are recognized as terminating

by some of the aforementioned techniques (see Theorems 3 and 7).

Similar concepts of “term size” have been considered to check termination of

logic programs evaluated in a top-down fashion (Sohn and Gelder 1991), to check

local stratification (Palopoli 1992), in the context of partial evaluation to provide

conditions for strong and quasi-termination (Vidal 2007; Leuschel and Vidal 2014),

and in the context of tabled resolution (Riguzzi and Swift 2013; Riguzzi and Swift

2014). These approaches are geared to work under top-down evaluation, looking at

how terms are propagated from the head to the body, while our approach is devel-

oped to work under bottom-up evaluation, looking at how terms are propagated

from the body to the head. This gives rise to significant differences in how the pro-

gram analysis is carried out, making one approach not applicable in the setting of

the other. For instance, the rule p(X)← p(X) leads to a non-terminating top-down

evaluation, while it is harmless under bottom-up evaluation. Linear constraints have

been used for the computation of stable models in (Greco et al. 2010).

We conclude by mentioning that our work is also related to research done on ter-

mination of the chase procedure, where existential rules are considered (Marnette

2009; Greco and Spezzano 2010; Greco et al. 2011); a survey on this topic can be

found in (Greco et al. 2012). Indeed, sufficient conditions ensuring termination of

the bottom-up evaluation of logic programs can be directly applied to existential

rules. Specifically, one can analyze the logic program obtained from the skolemiza-

tion of existential rules, where existentially quantified variables are replaced with

complex terms (Marnette 2009). In fact, the evaluation of such a program behaves

as the “semi-oblivious” chase (Marnette 2009), whose termination guarantees the

termination of the standard chase (Meier 2010; Onet 2013).

8 Conclusions

As a direction for future work, we plan to investigate how our techniques can be

combined with current termination criteria in a uniform way. Since they look at

programs from radically different standpoints, an interesting issue is to study how

they can be integrated so that they can benefit from each other.

To this end, an interesting approach would be to plug termination criteria in the

generic framework proposed in (Eiter et al. 2013) and study their combination in

such a framework. Another intriguing issue would be to analyze the relationships

between the notions of safety of (Eiter et al. 2013) and the notions of boundedness

used by termination criteria.
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