66,158 research outputs found

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    A goal-oriented requirements modelling language for enterprise architecture

    Get PDF
    Methods for enterprise architecture, such as TOGAF, acknowledge the importance of requirements engineering in the development of enterprise architectures. Modelling support is needed to specify, document, communicate and reason about goals and requirements. Current modelling techniques for enterprise architecture focus on the products, services, processes and applications of an enterprise. In addition, techniques may be provided to describe structured requirements lists and use cases. Little support is available however for modelling the underlying motivation of enterprise architectures in terms of stakeholder concerns and the high-level goals that address these concerns. This paper describes a language that supports the modelling of this motivation. The definition of the language is based on existing work on high-level goal and requirements modelling and is aligned with an existing standard for enterprise modelling: the ArchiMate language. Furthermore, the paper illustrates how enterprise architecture can benefit from analysis techniques in the requirements domain

    Enterprise engineering using semantic technologies

    No full text
    Modern Enterprises are facing unprecedented challenges in every aspect of their businesses: from marketing research, invention of products, prototyping, production, sales to billing. Innovation is the key to enhancing enterprise performances and knowledge is the main driving force in creating innovation. The identification and effective management of valuable knowledge, however, remains an illusive topic. Knowledge management (KM) techniques, such as enterprise process modelling, have long been recognised for their value and practiced as part of normal business. There are plentiful of KM techniques. However, what is still lacking is a holistic KM approach that enables one to fully connect KM efforts with existing business knowledge and practices already in IT systems, such as organisational memories. To address this problem, we present an integrated three-dimensional KM approach that supports innovative semantics technologies. Its automated formal methods allow us to tap into modern business practices and capitalise on existing knowledge. It closes the knowledge management cycle with user feedback loops. Since we are making use of reliable existing knowledge and methods, new knowledge can be extracted with less effort comparing with another method where new information has to be created from scratch

    Deriving Information Requirements from Responsibility Models

    Get PDF
    This paper describes research in understanding the requirements for complex information systems that are constructed from one or more generic COTS systems. We argue that, in these cases, behavioural requirements are largely defined by the underlying system and that the goal of the requirements engineering process is to understand the information requirements of system stakeholders. We discuss this notion of information requirements and propose that an understanding of how a socio-technical system is structured in terms of responsibilities is an effective way of discovering this type of requirement. We introduce the idea of responsibility modelling and show, using an example drawn from the domain of emergency planning, how a responsibility model can be used to derive information requirements for a system that coordinates the multiple agencies dealing with an emergency

    An Ontology Approach for Knowledge Acquisition and Development of Health Information System (HIS)

    Get PDF
    This paper emphasizes various knowledge acquisition approaches in terms of tacit and explicit knowledge management that can be helpful to capture, codify and communicate within medical unit. The semantic-based knowledge management system (SKMS) supports knowledge acquisition and incorporates various approaches to provide systematic practical platform to knowledge practitioners and to identify various roles of healthcare professionals, tasks that can be performed according to personnel’s competencies, and activities that are carried out as a part of tasks to achieve defined goals of clinical process. This research outcome gives new vision to IT practitioners to manage the tacit and implicit knowledge in XML format which can be taken as foundation for the development of information systems (IS) so that domain end-users can receive timely healthcare related services according to their demands and needs

    Model-driven design, simulation and implementation of service compositions in COSMO

    Get PDF
    The success of software development projects to a large extent depends on the quality of the models that are produced in the development process, which in turn depends on the conceptual and practical support that is available for modelling, design and analysis. This paper focuses on model-driven support for service-oriented software development. In particular, it addresses how services and compositions of services can be designed, simulated and implemented. The support presented is part of a larger framework, called COSMO (COnceptual Service MOdelling). Whereas in previous work we reported on the conceptual support provided by COSMO, in this paper we proceed with a discussion of the practical support that has been developed. We show how reference models (model types) and guidelines (design steps) can be iteratively applied to design service compositions at a platform independent level and discuss what tool support is available for the design and analysis during this phase. Next, we present some techniques to transform a platform independent service composition model to an implementation in terms of BPEL and WSDL. We use the mediation scenario of the SWS challenge (concerning the establishment of a purchase order between two companies) to illustrate our application of the COSMO framework
    • …
    corecore