1,965 research outputs found

    On the structure of graphs without short cycles

    Get PDF
    The objective of this thesis is to study cages, constructions and properties of such families of graphs. For this, the study of graphs without short cycles plays a fundamental role in order to develop some knowledge on their structure, so we can later deal with the problems on cages. Cages were introduced by Tutte in 1947. In 1963, Erdös and Sachs proved that (k, g) -cages exist for any given values of k and g. Since then, large amount of research in cages has been devoted to their construction. In this work we study structural properties such as the connectivity, diameter, and degree regularity of graphs without short cycles. In some sense, connectivity is a measure of the reliability of a network. Two graphs with the same edge-connectivity, may be considered to have different reliabilities, as a more refined index than the edge-connectivity, edge-superconnectivity is proposed together with some other parameters called restricted connectivities. By relaxing the conditions that are imposed for the graphs to be cages, we can achieve more refined connectivity properties on these families and also we have an approach to structural properties of the family of graphs with more restrictions (i.e., the cages). Our aim, by studying such structural properties of cages is to get a deeper insight into their structure so we can attack the problem of their construction. By way of example, we studied a condition on the diameter in relation to the girth pair of a graph, and as a corollary we obtained a result guaranteeing restricted connectivity of a special family of graphs arising from geometry, such as polarity graphs. Also, we obtained a result proving the edge superconnectivity of semiregular cages. Based on these studies it was possible to develop the study of cages. Therefore obtaining a relevant result with respect to the connectivity of cages, that is, cages are k/2-connected. And also arising from the previous work on girth pairs we obtained constructions for girth pair cages that proves a bound conjectured by Harary and Kovács, relating the order of girth pair cages with the one for cages. Concerning the degree and the diameter, there is the concept of a Moore graph, it was introduced by Hoffman and Singleton after Edward F. Moore, who posed the question of describing and classifying these graphs. As well as having the maximum possible number of vertices for a given combination of degree and diameter, Moore graphs have the minimum possible number of vertices for a regular graph with given degree and girth. That is, any Moore graph is a cage. The formula for the number of vertices in a Moore graph can be generalized to allow a definition of Moore graphs with even girth (bipartite Moore graphs) as well as odd girth, and again these graphs are cages. Thus, Moore graphs give a lower bound for the order of cages, but they are known to exist only for very specific values of k, therefore it is interesting to study how far a cage is from this bound, this value is called the excess of a cage. We studied the excess of graphs and give a contribution, in the sense of the work of Biggs and Ito, relating the bipartition of girth 6 cages with their orders. Entire families of cages can be obtained from finite geometries, for example, the graphs of incidence of projective planes of order q a prime power, are (q+1, 6)-cages. Also by using other incidence structures such as the generalized quadrangles or generalized hexagons, it can be obtained families of cages of girths 8 and 12. In this thesis, we present a construction of an entire family of girth 7 cages that arises from some combinatorial properties of the incidence graphs of generalized quadrangles of order (q,q)

    From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

    Full text link
    Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth

    Cycle lengths in sparse graphs

    Full text link
    Let C(G) denote the set of lengths of cycles in a graph G. In the first part of this paper, we study the minimum possible value of |C(G)| over all graphs G of average degree d and girth g. Erdos conjectured that |C(G)| =\Omega(d^{\lfloor (g-1)/2\rfloor}) for all such graphs, and we prove this conjecture. In particular, the longest cycle in a graph of average degree d and girth g has length \Omega(d^{\lfloor (g-1)/2\rfloor}). The study of this problem was initiated by Ore in 1967 and our result improves all previously known lower bounds on the length of the longest cycle. Moreover, our bound cannot be improved in general, since known constructions of d-regular Moore Graphs of girth g have roughly that many vertices. We also show that \Omega(d^{\lfloor (g-1)/2\rfloor}) is a lower bound for the number of odd cycle lengths in a graph of chromatic number d and girth g. Further results are obtained for the number of cycle lengths in H-free graphs of average degree d. In the second part of the paper, motivated by the conjecture of Erdos and Gyarfas that every graph of minimum degree at least three contains a cycle of length a power of two, we prove a general theorem which gives an upper bound on the average degree of an n-vertex graph with no cycle of even length in a prescribed infinite sequence of integers. For many sequences, including the powers of two, our theorem gives the upper bound e^{O(\log^* n)} on the average degree of graph of order n with no cycle of length in the sequence, where \log^* n is the number of times the binary logarithm must be applied to n to get a number which is at mos

    On First-Order Definable Colorings

    Full text link
    We address the problem of characterizing HH-coloring problems that are first-order definable on a fixed class of relational structures. In this context, we give several characterizations of a homomorphism dualities arising in a class of structure

    Characterization and Efficient Search of Non-Elementary Trapping Sets of LDPC Codes with Applications to Stopping Sets

    Full text link
    In this paper, we propose a characterization for non-elementary trapping sets (NETSs) of low-density parity-check (LDPC) codes. The characterization is based on viewing a NETS as a hierarchy of embedded graphs starting from an ETS. The characterization corresponds to an efficient search algorithm that under certain conditions is exhaustive. As an application of the proposed characterization/search, we obtain lower and upper bounds on the stopping distance smins_{min} of LDPC codes. We examine a large number of regular and irregular LDPC codes, and demonstrate the efficiency and versatility of our technique in finding lower and upper bounds on, and in many cases the exact value of, smins_{min}. Finding smins_{min}, or establishing search-based lower or upper bounds, for many of the examined codes are out of the reach of any existing algorithm
    • …
    corecore