3,272 research outputs found

    On the role of robot configuration in Cartesian stiffness control

    Get PDF
    The stiffness ellipsoid, i.e. the locus of task-space forces obtained corresponding to a deformation of unit norm in different directions, has been extensively used as a powerful representation of robot interaction capabilities. The size and shape of the stiffness ellipsoid at a given end-effector posture are influenced by both joint control parameters and - for redundant manipulators - by the chosen redundancy resolution configuration. As is well known, impedance control techniques ideally provide control parameters which realize any desired shape of the Cartesian stiffness ellipsoid at the end-effector in an arbitrary non-singular configuration, so that arm geometry selection could appear secondary. This definitely contrasts with observations on how humans control their arm stiffness, who in fact appear to predominantly use arm configurations to shape the stiffness ellipsoid. To understand this discrepancy, we provide a more complete analysis of the task-space force/deformation behavior of redundant arms, which explains why arm geometry also plays a fundamental role in interaction capabilities of a torque controlled robot. We show that stiffness control of realistic robot models with bounds on joint torques can't indeed achieve arbitrary stiffness ellipsoids at any given arm configuration. We first introduce the notion of maximum allowable Cartesian force/displacement (“stiffness feasibility”) regions for a compliant robot. We show that different robot configurations modify such regions, and explore the role of different configurations in defining the performance limits of Cartesian stiffness controllers. On these bases, we design a stiffness control method that suitably exploits both joint control parameters and redundancy resolution to achieve desired task-space interaction behavior

    Optimal Contact Force Distribution for Compliant Humanoid Robots in Whole-Body Loco-Manipulation Tasks

    Get PDF
    The stiffness ellipsoid, i.e. the locus of task-space forces obtained corresponding to a deformation of unit norm in different directions, has been extensively used as a powerful representation of robot interaction capabilities. The size and shape of the stiffness ellipsoid at a given end-effector posture are influenced by both joint control parameters and - for redundant manipulators - by the chosen redundancy resolution configuration. As is well known, impedance control techniques ideally provide control parameters which realize any desired shape of the Cartesian stiffness ellipsoid at the end-effector in an arbitrary non-singular configuration, so that arm geometry selection could appear secondary. This definitely contrasts with observations on how humans control their arm stiffness, who in fact appear to predominantly use arm configurations to shape the stiffness ellipsoid. To understand this discrepancy, we provide a more complete analysis of the task-space force/deformation behavior of redundant arms, which explains why arm geometry also plays a fundamental role in interaction capabilities of a torque controlled robot. We show that stiffness control of realistic robot models with bounds on joint torques can't indeed achieve arbitrary stiffness ellipsoids at any given arm configuration. We first introduce the notion of maximum allowable Cartesian force/displacement (“stiffness feasibility”) regions for a compliant robot. We show that different robot configurations modify such regions, and explore the role of different configurations in defining the performance limits of Cartesian stiffness controllers. On these bases, we design a stiffness control method that suitably exploits both joint control parameters and redundancy resolution to achieve desired task-space interaction behavior

    Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control

    Control strategy for cooperating disparate manipulators

    Get PDF
    To manipulate large payloads typical of space construction, the concept of a small arm mounted on the end of a large arm is introduced. The main purposes of such a configuration are to increase the structural stiffness of the robot by bracing against or locking to a stationary frame, and to maintain a firm position constraint between the robot's base and workpieces by grasping them. Possible topologies for a combination of disparate large and small arms are discussed, and kinematics, dynamics, controls, and coordination of the two arms, especially when they brace at the tip of the small arm, are developed. The feasibility and improvement in performance are verified, not only with analytical work and simulation results but also with experiments on the existing arrangement Robotic Arm Large and Flexible and Small Articulated Manipulator

    Kinematics and control algorithm development and simulation for a redundant two-arm robotic manipulator system

    Get PDF
    An efficient approach to cartesian motion and force control of a 7 degree of freedom (DOF) manipulator is presented. It is based on extending the active stiffness controller to the 7 DOF case in general and use of an efficient version of the gradient projection technique for solving the inverse kinematics problem. Cooperative control is achieved through appropriate configuration of individual manipulator controllers. In addition, other aspects of trajectory generation using standard techniques are integrated into the controller. The method is then applied to a specific manipulator of interest (Robotics Research T-710). Simulation of the kinematics, dynamics, and control are provided in the context of several scenarios: one pertaining to a noncontact pick and place operation; one relating to contour following where contact is made between the manipulator and environment; and one pertaining to cooperative control

    Kinematics, controls, and path planning results for a redundant manipulator

    Get PDF
    The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented

    Space Frames with Multiple Stable Configurations

    Get PDF
    This paper is concerned with beamlike spaceframes that include a large number of bistable elements, and exploit the bistability of the elements to obtain structures with multiple stable configurations. By increasing the number of bistable elements, structures with a large number of different configurations can be designed. A particular attraction of this approach is that it produces structures able to maintain their shape without any power being supplied. The first part of this paper focuses on the design and realization of a low-cost snap-through strut, whose two different lengths provide the required bistable feature. A parametric study of the length-change of the strut in relation to the peak force that needs to be applied by the driving actuators is carried out. Bistable struts based on this concept have been made by injection molding nylon. Next, beamlike structures based on different architectures are considered. It is shown that different structural architectures produce structures with workspaces of different size and resolution, when made from an identical number of bistable struts. One particular architecture, with 30 bistable struts and hence over 1 billion different configurations, has been demonstrated

    On-line Joint Limit Avoidance for Torque Controlled Robots by Joint Space Parametrization

    Full text link
    This paper proposes control laws ensuring the stabilization of a time-varying desired joint trajectory, as well as joint limit avoidance, in the case of fully-actuated manipulators. The key idea is to perform a parametrization of the feasible joint space in terms of exogenous states. It follows that the control of these states allows for joint limit avoidance. One of the main outcomes of this paper is that position terms in control laws are replaced by parametrized terms, where joint limits must be avoided. Stability and convergence of time-varying reference trajectories obtained with the proposed method are demonstrated to be in the sense of Lyapunov. The introduced control laws are verified by carrying out experiments on two degrees-of-freedom of the humanoid robot iCub.Comment: 8 pages, 4 figures. Submitted to the 2016 IEEE-RAS International Conference on Humanoid Robot

    Compliance error compensation technique for parallel robots composed of non-perfect serial chains

    Get PDF
    The paper presents the compliance errors compensation technique for over-constrained parallel manipulators under external and internal loadings. This technique is based on the non-linear stiffness modeling which is able to take into account the influence of non-perfect geometry of serial chains caused by manufacturing errors. Within the developed technique, the deviation compensation reduces to an adjustment of a target trajectory that is modified in the off-line mode. The advantages and practical significance of the proposed technique are illustrated by an example that deals with groove milling by the Orthoglide manipulator that considers different locations of the workpiece. It is also demonstrated that the impact of the compliance errors and the errors caused by inaccuracy in serial chains cannot be taken into account using the superposition principle.Comment: arXiv admin note: text overlap with arXiv:1204.175

    Trajectory generation of space telerobots

    Get PDF
    The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly
    corecore