8,505 research outputs found

    Experimental comparison of parameter estimation methods in adaptive robot control

    Get PDF
    In the literature on adaptive robot control a large variety of parameter estimation methods have been proposed, ranging from tracking-error-driven gradient methods to combined tracking- and prediction-error-driven least-squares type adaptation methods. This paper presents experimental data from a comparative study between these adaptation methods, performed on a two-degrees-of-freedom robot manipulator. Our results show that the prediction error concept is sensitive to unavoidable model uncertainties. We also demonstrate empirically the fast convergence properties of least-squares adaptation relative to gradient approaches. However, in view of the noise sensitivity of the least-squares method, the marginal performance benefits, and the computational burden, we (cautiously) conclude that the tracking-error driven gradient method is preferred for parameter adaptation in robotic applications

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    A passivity approach to controller-observer design for robots

    Get PDF
    Passivity-based control methods for robots, which achieve the control objective by reshaping the robot system's natural energy via state feedback, have, from a practical point of view, some very attractive properties. However, the poor quality of velocity measurements may significantly deteriorate the control performance of these methods. In this paper the authors propose a design strategy that utilizes the passivity concept in order to develop combined controller-observer systems for robot motion control using position measurements only. To this end, first a desired energy function for the closed-loop system is introduced, and next the controller-observer combination is constructed such that the closed-loop system matches this energy function, whereas damping is included in the controller- observer system to assure asymptotic stability of the closed-loop system. A key point in this design strategy is a fine tuning of the controller and observer structure to each other, which provides solutions to the output-feedback robot control problem that are conceptually simple and easily implementable in industrial robot applications. Experimental tests on a two-DOF manipulator system illustrate that the proposed controller-observer systems enable the achievement of higher performance levels compared to the frequently used practice of numerical position differentiation for obtaining a velocity estimat

    Stiffness Analysis Of Multi-Chain Parallel Robotic Systems

    Get PDF
    The paper presents a new stiffness modelling method for multi-chain parallel robotic manipulators with flexible links and compliant actuating joints. In contrast to other works, the method involves a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for singular postures and to take into account influence of the external forces. The advantages of the developed technique are confirmed by application examples, which deal with stiffness analysis of a parallel manipulator of the Orthoglide famil

    Dynamic simulation of task constrained of a rigid-flexible manipulator

    Full text link
    A rigid-flexible manipulator may be assigned tasks in a moving environment where the winds or vibrations affect the position and/or orientation of surface of operation. Consequently, losses of the contact and perhaps degradation of the performance may occur as references are changed. When the environment is moving, knowledge of the angle α between the contact surface and the horizontal is required at every instant. In this paper, different profiles for the time varying angle α are proposed to investigate the effect of this change into the contact force and the joint torques of a rigid-flexible manipulator. The coefficients of the equation of the proposed rotating surface are changing with time to determine the new X and Y coordinates of the moving surface as the surface rotates

    A modal approach to hyper-redundant manipulator kinematics

    Get PDF
    This paper presents novel and efficient kinematic modeling techniques for “hyper-redundant” robots. This approach is based on a “backbone curve” that captures the robot's macroscopic geometric features. The inverse kinematic, or “hyper-redundancy resolution,” problem reduces to determining the time varying backbone curve behavior. To efficiently solve the inverse kinematics problem, the authors introduce a “modal” approach, in which a set of intrinsic backbone curve shape functions are restricted to a modal form. The singularities of the modal approach, modal non-degeneracy conditions, and modal switching are considered. For discretely segmented morphologies, the authors introduce “fitting” algorithms that determine the actuator displacements that cause the discrete manipulator to adhere to the backbone curve. These techniques are demonstrated with planar and spatial mechanism examples. They have also been implemented on a 30 degree-of-freedom robot prototype

    A time delay controller for magnetic bearings

    Get PDF
    The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging problems. This is particularly important when high system performance needs to be guaranteed at all times. Recently, the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it combines adaptation with past observations to directly estimate the effect of the plant dynamics. A control law is formulated for a class of dynamic systems and a sufficient condition is presented for control systems stability. The derivation is based on the bounded input-bounded output stability approach using L sub infinity function norms. The control scheme is implemented on a five degrees of freedom high speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency responses, and disturbance rejection properties. The experimental data show an excellent control performance despite the system complexity
    corecore