133,049 research outputs found

    Dynamic concentration of the triangle-free process

    Full text link
    The triangle-free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle-free graph at which the triangle-free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on the Ramsey numbers R(3,t): we show R(3,t) > (1-o(1)) t^2 / (4 log t), which is within a 4+o(1) factor of the best known upper bound. Our improvement on previous analyses of this process exploits the self-correcting nature of key statistics of the process. Furthermore, we determine which bounded size subgraphs are likely to appear in the maximal triangle-free graph produced by the triangle-free process: they are precisely those triangle-free graphs with density at most 2.Comment: 75 pages, 1 figur

    Saturating the random graph with an independent family of small range

    Full text link
    Motivated by Keisler's order, a far-reaching program of understanding basic model-theoretic structure through the lens of regular ultrapowers, we prove that for a class of regular filters DD on II, I=λ>0|I| = \lambda > \aleph_0, the fact that P(I)/\de has little freedom (as measured by the fact that any maximal antichain is of size <λ<\lambda, or even countable) does not prevent extending DD to an ultrafilter D1D_1 on II which saturates ultrapowers of the random graph. "Saturates" means that M^I/\de_1 is λ+\lambda^+-saturated whenever M is a model of the theory of the random graph. This was known to be true for stable theories, and false for non-simple and non-low theories. This result and the techniques introduced in the proof have catalyzed the authors' subsequent work on Keisler's order for simple unstable theories. The introduction, which includes a part written for model theorists and a part written for set theorists, discusses our current program and related results.Comment: 14 page

    Maximal Entropy Random Walk: solvable cases of dynamics

    Get PDF
    We focus on the study of dynamics of two kinds of random walk: generic random walk (GRW) and maximal entropy random walk (MERW) on two model networks: Cayley trees and ladder graphs. The stationary probability distribution for MERW is given by the squared components of the eigenvector associated with the largest eigenvalue \lambda_0 of the adjacency matrix of a graph, while the dynamics of the probability distribution approaching to the stationary state depends on the second largest eigenvalue \lambda_1. Firstly, we give analytic solutions for Cayley trees with arbitrary branching number, root degree, and number of generations. We determine three regimes of a tree structure that result in different statics and dynamics of MERW, which are due to strongly, critically, and weakly branched roots. We show how the relaxation times, generically shorter for MERW than for GRW, scale with the graph size. Secondly, we give numerical results for ladder graphs with symmetric defects. MERW shows a clear exponential growth of the relaxation time with the size of defective regions, which indicates trapping of a particle within highly entropic intact region and its escaping that resembles quantum tunneling through a potential barrier. GRW shows standard diffusive dependence irrespective of the defects.Comment: 13 pages, 6 figures, 24th Marian Smoluchowski Symposium on Statistical Physics (Zakopane, Poland, September 17-22, 2011

    The jamming constant of uniform random graphs

    Get PDF
    By constructing jointly a random graph and an associated exploration process, we define the dynamics of a “parking process” on a class of uniform random graphs as a measure-valued Markov process, representing the empirical degree distribution of non-explored nodes. We then establish a functional law of large numbers for this process as the number of vertices grows to infinity, allowing us to assess the jamming constant of the considered random graphs, i.e. the size of the maximal independent set discovered by the exploration algorithm. This technique, which can be applied to any uniform random graph with a given–possibly unbounded–degree distribution, can be seen as a generalization in the space of measures, of the differential equation method introduced by Wormald.Fil: Bermolen, Paola. Universidad de la República; UruguayFil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Moyal, Pascal. Northwestern University; Estados Unidos. Universite de Technologie de Compiegne; Franci

    Essential edges in Poisson random hypergraphs

    Full text link
    Consider a random hypergraph on a set of N vertices in which, for k between 1 and N, a Poisson(N beta_k) number of hyperedges is scattered randomly over all subsets of size k. We collapse the hypergraph by running the following algorithm to exhaustion: pick a vertex having a 1-edge and remove it; collapse the hyperedges over that vertex onto their remaining vertices; repeat until there are no 1-edges left. We call the vertices removed in this process "identifiable". Also any hyperedge all of whose vertices are removed is called "identifiable". We say that a hyperedge is "essential" if its removal prior to collapse would have reduced the number of identifiable vertices. The limiting proportions, as N tends to infinity, of identifiable vertices and hyperedges were obtained by Darling and Norris. In this paper, we establish the limiting proportion of essential hyperedges. We also discuss, in the case of a random graph, the relation of essential edges to the 2-core of the graph, the maximal sub-graph with minimal vertex degree 2.Comment: 12 pages, 3 figures. Revised version with minor corrections/clarifications and slightly expanded introductio
    corecore