6 research outputs found

    Near-Optimal Modulo-and-Forward Scheme for the Untrusted Relay Channel

    Full text link
    This paper studies an untrusted relay channel, in which the destination sends artificial noise simultaneously with the source sending a message to the relay, in order to protect the source's confidential message. The traditional amplify-and-forward (AF) scheme shows poor performance in this situation because of the interference power dilemma: providing better security by using stronger artificial noise will decrease the confidential message power from the relay to the destination. To solve this problem, a modulo-and-forward (MF) operation at the relay with nested lattice encoding at the source is proposed. For this system with full channel state information at the transmitter (CSIT), theoretical analysis shows that the proposed MF scheme approaches the secrecy capacity within 1/2 bit for any channel realization, and hence achieves full generalized security degrees of freedom (G-SDoF). In contrast, the AF scheme can only achieve a small fraction of the G-SDoF. For this system without any CSIT, the total outage event, defined as either connection outage or secrecy outage, is introduced. Based on this total outage definition, analysis shows that the proposed MF scheme achieves the full generalized secure diversity gain (G-SDG) of order one. On the other hand, the AF scheme can only achieve a G-SDG of 1/2 at most

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    On robustness of physical layer network coding to pollution attack

    Get PDF

    Compute-and-Forward in Multi-User Relay Networks: Optimization, Implementation, and Secrecy

    Get PDF
    In this thesis, we investigate physical-layer network coding in an L × M × K relay network, where L source nodes want to transmit messages to K sink nodes via M relay nodes. We focus on the information processing at the relay nodes and the compute-and-forward framework. Nested lattice codes are used, which have the property that every linear combination of codewords is a valid codeword. This property is essential for physical-layer network coding. Because the actual network coding occurs on the physical layer, the network coding coefficients are determined by the channel realizations. Finding the optimal network coding coefficients for given channel realizations is a non-trivial optimization problem. In this thesis, we provide an algorithm to find network coding coefficients that result in the highest data rate at a chosen relay. The solution of this optimization problem is only locally optimal, i.e., it is optimal for a particular relay. If we consider a multi-hop network, each potential receiver must get enough linear independent combinations to be able to decode the individual messages. If this is not the case, outage occurs, which results in data loss. In this thesis, we propose a new strategy for choosing the network coding coefficients locally at the relays without solving the optimization problem globally. We thereby reduce the solution space for the relays such that linear independence between their decoded linear combinations is guaranteed. Further, we discuss the influence of spatial correlation on the optimization problem. Having solved the optimization problem, we combine physical-layer network coding with physical-layer secrecy. This allows us to propose a coding scheme to exploit untrusted relays in multi-user relay networks. We show that physical-layer network coding, especially compute-and-forward, is a key technology for simultaneous and secure communication of several users over an untrusted relay. First, we derive the achievable secrecy rate for the two-way relay channel. Then, we enhance this scenario to a multi-way relay channel with multiple antennas. We describe our implementation of the compute-and-forward framework with software-defined radio and demonstrate the practical feasibility. We show that it is possible to use the framework in real-life scenarios and demonstrate a transmission from two users to a relay. We gain valuable insights into a real transmission using the compute-and-forward framework. We discuss possible improvements of the current implementation and point out further work.In dieser Arbeit untersuchen wir Netzwerkcodierung auf der Übertragungsschicht in einem Relay-Netzwerk, in dem L Quellen-Knoten Nachrichten zu K Senken-Knoten über M Relay-Knoten senden wollen. Der Fokus dieser Arbeit liegt auf der Informationsverarbeitung an den Relay-Knoten und dem Compute-and-Forward Framework. Es werden Nested Lattice Codes eingesetzt, welche die Eigenschaft besitzen, dass jede Linearkombination zweier Codewörter wieder ein gültiges Codewort ergibt. Dies ist eine Eigenschaft, die für die Netzwerkcodierung von entscheidender Bedeutung ist. Da die eigentliche Netzwerkcodierung auf der Übertragungsschicht stattfindet, werden die Netzwerkcodierungskoeffizienten von den Kanalrealisierungen bestimmt. Das Finden der optimalen Koeffizienten für gegebene Kanalrealisierungen ist ein nicht-triviales Optimierungsproblem. Wir schlagen in dieser Arbeit einen Algorithmus vor, welcher Netzwerkcodierungskoeffizienten findet, die in der höchsten Übertragungsrate an einem gewählten Relay resultieren. Die Lösung dieses Optimierungsproblems ist zunächst nur lokal, d. h. für dieses Relay, optimal. An jedem potentiellen Empfänger müssen ausreichend unabhängige Linearkombinationen vorhanden sein, um die einzelnen Nachrichten decodieren zu können. Ist dies nicht der Fall, kommt es zu Datenverlusten. Um dieses Problem zu umgehen, ohne dabei das Optimierungsproblem global lösen zu müssen, schlagen wir eine neue Strategie vor, welche den Lösungsraum an einem Relay soweit einschränkt, dass lineare Unabhängigkeit zwischen den decodierten Linearkombinationen an den Relays garantiert ist. Außerdem diskutieren wir den Einfluss von räumlicher Korrelation auf das Optimierungsproblem. Wir kombinieren die Netzwerkcodierung mit dem Konzept von Sicherheit auf der Übertragungsschicht, um ein Übertragungsschema zu entwickeln, welches es ermöglicht, mit Hilfe nicht-vertrauenswürdiger Relays zu kommunizieren. Wir zeigen, dass Compute-and-Forward ein wesentlicher Baustein ist, um solch eine sichere und simultane Übertragung mehrerer Nutzer zu gewährleisten. Wir starten mit dem einfachen Fall eines Relay-Kanals mit zwei Nutzern und erweitern dieses Szenario auf einen Relay-Kanal mit mehreren Nutzern und mehreren Antennen. Die Arbeit wird abgerundet, indem wir eine Implementierung des Compute-and-Forward Frameworks mit Software-Defined Radio demonstrieren. Wir zeigen am Beispiel von zwei Nutzern und einem Relay, dass sich das Framework eignet, um in realen Szenarien eingesetzt zu werden. Wir diskutieren mögliche Verbesserungen und zeigen Richtungen für weitere Forschungsarbeit auf

    Resilience mechanisms for carrier-grade networks

    Get PDF
    In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. These requirements are pushing network carriers for high transport capacity, energy efficiency, as well as high-availability services with low latency. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Indeed, optical transport technologies are the foundation supporting the current telecommunication network backbones, because of the high transmission bandwidth achieved in fiber optical networks. Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization, specifically with transmission rates above 100 Gbps. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). Recently, a new protection scheme referred to as Network Coding Protection (NCP) has emerged as an innovative solution to proactively enable protection in an agile and efficient manner by means of throughput improvement techniques such as Network Coding. It is an intuitive reasoning that the throughput advantages of NCP might be magnified by means of the flexible-grid provided by EONs. The goal of this thesis is three-fold. The first, is to study the advantages of NCP schemes in planning scenarios. For this purpose, this thesis focuses on the performance of NCP assuming both a fixed as well as a flexible spectrum grid. However, conversely to planning scenarios, in dynamic scenarios the accuracy of Network State Information (NSI) is crucial since inaccurate NSI might substantially affect the performance of an NCP scheme. The second contribution of this thesis is to study the performance of protection schemes in dynamic scenarios considering inaccurate NSI. For this purpose, this thesis explores prediction techniques in order to mitigate the negative effects of inaccurate NSI. On the other hand, Internet users are continuously demanding new requirements that cannot be supported by the current host-oriented communication model.This communication model is not suitable for future Internet architectures such as the so-called Internet of Things (IoT). Fortunately, there is a new trend in network research referred to as ID/Locator Split Architectures (ILSAs) which is a non-disruptive technique to mitigate the issues related to host-oriented communications. Moreover, a new routing architecture referred to as Path Computation Element (PCE) has emerged with the aim of overcoming the well-known issues of the current routing schemes. Undoubtedly, routing and protection schemes need to be enhanced to fully exploit the advantages provided by new network architectures.In light of this, the third goal of this thesis introduces a novel PCE-like architecture termed as Context-Aware PCE. In a context-aware PCE scenario, the driver of a path computation is not a host/location, as in conventional PCE architectures, rather it is an interest for a service defined within a context.En los últimos años la llegada de nuevas aplicaciones del llamado Internet del Futuro (FI) está creando requerimientos sumamente exigentes. Estos requerimientos están empujando a los proveedores de redes a incrementar sus capacidades de transporte, eficiencia energética, y sus prestaciones de servicios de alta disponibilidad con baja latencia. Es una práctica sumamente extendida para proveer servicios (FI) la adopción de un modelo multi-capa el cual consiste en el uso de tecnologías IP/MPLS así como también ópticas como por ejemplo Wavelength Division Multiplexing (WDM). De hecho, las tecnologías de transporte son el sustento del backbone de las redes de telecomunicaciones actuales debido al gran ancho de banda que proveen las redes de fibra óptica. Las redes ópticas tradicionales consisten en el uso de un espectro fijo de 50 GHz. Esto resulta en una baja utilización del espectro Óptico, específicamente con tasas de transmisiones superiores a 100 Gbps. Recientemente, las redes ópticas están experimentado cambios significativos con el propósito de proveer un espectro flexible que pueda explotar el potencial de las redes ópticas. Esto ha llevado a un nuevo paradigma denominado Redes Ópticas Elásticas (EON). Por otro lado, un nuevo esquema de protección llamado Network Coding Protection (NCP) ha emergido como una solución innovadora para habilitar de manera proactiva protección eficiente y ágil usando técnicas de mejora de throughput como es Network Coding (NC). Es un razonamiento lógico pensar que las ventajas relacionadas con throughput de NCP pueden ser magnificadas mediante el espectro flexible proveído por las redes EONs. El objetivo de esta tesis es triple. El primero es estudiar las ventajas de esquemas NCP en un escenario de planificación. Para este propósito, esta tesis se enfoca en el rendimiento de NCP asumiendo un espectro fijo y un espectro flexible. Sin embargo, contrario a escenarios de planificación, en escenarios dinámicos la precisión relacionada de la Información de Estado de Red (NSI) es crucial, ya que la imprecisión de NSI puede afectar sustancialmente el rendimiento de un esquema NCP. La segunda contribución de esta tesis es el estudio del rendimiento de esquemas de protección en escenarios dinámicos considerando NSI no precisa. Para este propósito, esta tesis explora técnicas predictivas con el propósito de mitigar los efectos negativos de NSI impreciso. Por otro lado, los usuarios de Internet están demandando continuamente nuevos requerimientos los cuales no pueden ser soportados por el modelo de comunicación orientado a hosts. Este modelo de comunicaciones no es factible para arquitecturas FI como es el Internet de las cosas (IoT). Afortunadamente, existe un nueva línea investigativa llamada ID/Locator Split Architectures (ILSAs) la cual es una técnica no disruptiva para mitigar los problemas relacionadas con el modelo de comunicación orientado a hosts. Además, un nuevo esquema de enrutamiento llamado as Path Computation Element (PCE) ha emergido con el propósito de superar los problemas bien conocidos de los esquemas de enrutamiento tradicionales. Indudablemente, los esquemas de enrutamiento y protección deben ser mejorados para que estos puedan explotar las ventajas introducidas por las nuevas arquitecturas de redes. A luz de esto, el tercer objetivo de esta tesis es introducir una nueva arquitectura PCE denominada Context-Aware PCE. En un escenario context-aware PCE, el objetivo de una acción de computación de camino no es un host o localidad, como es el caso en lo esquemas PCE tradicionales. Más bien, es un interés por un servicio definido dentro de una información de contexto
    corecore