395 research outputs found

    Evaluating and benchmarking SPARQL query containment solvers

    Get PDF
    International audienceQuery containment is the problem of deciding if the answers to a query are included in those of another query for any queried database. This problem is very important for query optimization purposes. In the SPARQL context, it can be equally useful. This problem has recently been investigated theoretically and some query containment solvers are available. Yet, there were no benchmarks to compare theses systems and foster their improvement. In order to experimentally assess implementation strengths and limitations, we provide a first SPARQL containment test benchmark. It has been designed with respect to both the capabilities of existing solvers and the study of typical queries. Some solvers support optional constructs and cycles, while other solvers support projection, union of conjunctive queries and RDF Schemas. No solver currently supports all these features or OWL entailment regimes. The study of query demographics on DBPedia logs shows that the vast majority of queries are acyclic and a significant part of them uses UNION or projection. We thus test available solvers on their domain of applicability on three different benchmark suites. These experiments show that (i) tested solutions are overall functionally correct, (ii) in spite of its complexity, SPARQL query containment is practicable for acyclic queries, (iii) state-of-the-art solvers are at an early stage both in ter

    On the Static Analysis for SPARQL Queries Using Modal Logic

    Get PDF
    International audienceStatic analysis is a core task in query optimization and knowledge base verification. We study static analysis techniques for SPARQL, the standard language for querying Semantic Web data. Specifically , we investigate the query containment problem and query-update independence analysis. We are interested in developing techniques through reductions to the validity problem in logic

    Context-Free Path Queries on RDF Graphs

    Full text link
    Navigational graph queries are an important class of queries that canextract implicit binary relations over the nodes of input graphs. Most of the navigational query languages used in the RDF community, e.g. property paths in W3C SPARQL 1.1 and nested regular expressions in nSPARQL, are based on the regular expressions. It is known that regular expressions have limited expressivity; for instance, some natural queries, like same generation-queries, are not expressible with regular expressions. To overcome this limitation, in this paper, we present cfSPARQL, an extension of SPARQL query language equipped with context-free grammars. The cfSPARQL language is strictly more expressive than property paths and nested expressions. The additional expressivity can be used for modelling graph similarities, graph summarization and ontology alignment. Despite the increasing expressivity, we show that cfSPARQL still enjoys a low computational complexity and can be evaluated efficiently.Comment: 25 page

    Answering SPARQL queries modulo RDF Schema with paths

    Get PDF
    SPARQL is the standard query language for RDF graphs. In its strict instantiation, it only offers querying according to the RDF semantics and would thus ignore the semantics of data expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS semantics and/or considering external ontologies. We introduce a general framework which allows for expressing query answering modulo a particular semantics in an homogeneous way. In this paper, we discuss extensions of SPARQL that use regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. We also consider their embedding as extensions of SPARQL. These SPARQL extensions are interpreted within the proposed framework and their drawbacks are presented. In particular, we show that the PSPARQL query language, a strict extension of SPARQL offering transitive closure, allows for answering SPARQL queries modulo RDFS graphs with the same complexity as SPARQL through a simple transformation of the queries. We also consider languages which, in addition to paths, provide constraints. In particular, we present and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding fragment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL, being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL.Comment: RR-8394; alkhateeb2003
    • …
    corecore