
HAL Id: hal-00917911
https://hal.inria.fr/hal-00917911

Submitted on 12 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating and benchmarking SPARQL query
containment solvers

Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, Nabil Layaïda

To cite this version:
Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, Nabil Layaïda. Evaluating and bench-
marking SPARQL query containment solvers. Proc. 12th International semantic web conference
(ISWC), Oct 2013, Sydney, Australia. pp.408-423, �10.1007/978-3-642-41338-4_26�. �hal-00917911�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49702924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00917911
https://hal.archives-ouvertes.fr

Evaluating and Benchmarking

SPARQL Query Containment Solvers

Melisachew Wudage Chekol1,3, Jérôme Euzenat1,
Pierre Genevès2, and Nabil Layaïda1

1 INRIA and LIG
2 CNRS
3 LORIA

{melisachew.chekol|firstname.lastname}@inria.fr

Abstract. Query containment is the problem of deciding if the an-
swers to a query are included in those of another query for any queried
database. This problem is very important for query optimization pur-
poses. In the SPARQL context, it can be equally useful. This problem
has recently been investigated theoretically and some query containment
solvers are available. Yet, there were no benchmarks to compare theses
systems and foster their improvement. In order to experimentally assess
implementation strengths and limitations, we provide a first SPARQL
containment test benchmark. It has been designed with respect to both
the capabilities of existing solvers and the study of typical queries. Some
solvers support optional constructs and cycles, while other solvers sup-
port projection, union of conjunctive queries and RDF Schemas. No
solver currently supports all these features or OWL entailment regimes.
The study of query demographics on DBPedia logs shows that the vast
majority of queries are acyclic and a significant part of them uses UNION

or projection. We thus test available solvers on their domain of applicabil-
ity on three different benchmark suites. These experiments show that (i)
tested solutions are overall functionally correct, (ii) in spite of its com-
plexity, SPARQL query containment is practicable for acyclic queries,
(iii) state-of-the-art solvers are at an early stage both in terms of capa-
bility and implementation.

1 Introduction

Since its recommendation by the W3C, SPARQL has come to widespread use
in the semantic web. Large datasets are being made available due to the rapid
emergence of linked data and queries are executed at remote endpoints. It be-
comes more important to be able to optimize queries, which requires analyzing
them before evaluating them. We concentrate here on query containment anal-
ysis since query equivalence and query satisfiability can be reduced to query
containment.

The benefits of static analysis are well known for database query optimization
and information integration. Indeed, the static analysis of queries may reveal,

without trying to evaluate it, that a query will not return any answer. It may
also be used for evaluating queries against precompiled views, which requires to
know if the answers to the query against the view are the same as the answers to
the database itself. The same benefits can apply for SPARQL queries. It is even
more important in a distributed setting when federated queries are evaluated at
different SPARQL endpoints. Before sending a query to an endpoint, it is useful
to know if this query has any chance to receive answers: this saves communication
time.

SPARQL static analysis has attracted some attention recently [7, 8, 13]. These
studies are supported by sound mathematical analysis and complexity results.
Although they provide results for implementing query containment, very few
tools are available (to the exception of [13]). Moreover, to our knowledge, no
experimental evaluation of SPARQL query containment has been performed.
Due to the relatively high complexity of this problem, it is important to know
if the proposed solutions can be applied in practice. Moreover, well established
benchmarks for query containment would help fostering the development and
improvement of solvers.

The overall purpose of this paper is to design a benchmark suite for testing
SPARQL query containment and to evaluate the performance of current solvers.
For that purpose, we analyze state-of-the-art solver capabilities as well as ac-
tual queries being asked on the web. This allows us to identify two classes of
solvers addressing different types of problems: some solvers [13] are restricted to
conjunctive queries without projections, some other techniques based on query
translations into the µ-calculus [8] are so far restricted to acyclic queries with-
out OPTIONAL. The analysis of DBPedia query logs show that more than 90%
of correct queries are acyclic, queries being distributed in large sets of DAG and
tree queries.

We thus designed three test sets involving: conjunctive queries without pro-
jection, union of conjunctive queries with projection and union of conjunctive
queries to be analyzed with respect to an RDF Schema. We also provide an
evaluation protocol allowing to run the exact same queries through a specific in-
terface and wrapped the three considered tools. We run these tests and observe
the capabilities of different solvers in the different categories of tests.

Hence the contribution of this paper is threefold: (i) the analysis of the
demographics of SPARQL queries actually produced on the web, (ii) the design
of benchmark suites for evaluating query containment solver capabilities, (iii)
the evaluation of three different solvers through these benchmarks. The proposed
benchmark suites as well as our testing and analysis tools are available on the
web and we expect that this will motivate others to produce even better query
containment solvers.

Outline: after presenting the foundations of SPARQL and query containment
(§2), we discuss related work both from databases and the semantic web (§3).
Then, we present the state of the art in SPARQL query containment solvers,
before analyzing the query landscape (§4). From this, we design our benchmark

suite (§5). Finally, we report evaluation experiments for the three available sys-
tems and discuss the results (§6).

2 SPARQL query containment

2.1 SPARQL

SPARQL is a W3C recommended query language [16] based on simple graph
patterns. It allows variables to be bound to components in the queried RDF
graph. In addition, operators akin to relational joins, unions, left outer joins,
selections, and projections can be combined to build more expressive queries.
Queries are formed from query patterns which in turn are defined inductively.
A triple pattern is an RDF triple that may contain variables. Triple patterns
grouped together using operators AND (.), UNION and OPTIONAL form query

patterns. We do not consider FILTER query patterns here.

Definition 1. A graph pattern p is inductively defined as follows:

p ::= (U ∪B ∪ V)× (U ∪ V)× (U ∪B ∪ L ∪ V)

| p1 . p2 | {p1} UNION {p2} | p1 OPTIONAL {p2}

such that U is the set of URI references, B the set of blank nodes, L the set of

literals and V a set of variables, all disjoints.

SPARQL queries are built around the classical pattern SELECT U FROM G

WHERE P such that FROM identifies an RDF graph G on which the query will
be evaluated, WHERE contains a graph pattern P that the query answers should
satisfy and SELECT singles out the distinguished variables U ⊆ V in the graph
pattern (see Example 1). An answer for such a query is an assignment of values
to the distinguished variables such that the graph pattern is satisfied in the
graph. Because query containment works independently from the queried graph,
we consider such a query q independently from the graph G, as in Example 1.

We denote the set of answers with respect to a graph G as ANS(q,G). We
refer the readers to [16] for a formal presentation and semantics of SPARQL. We
consider SPARQL under set semantics which is practical in most cases and for
which query containment is decidable.

Example 1. Consider the following queries that retrieve student information
from a university dataset.

Select the URI and name of all students
taking a course in either computer sci-
ence or mathematics.

SELECT ?x ?y

WHERE { Q1

?x a :Student . ?x :name ?y .
?x :takesCourse ?c .
{ ?c rdf:type :CsCourse . }
UNION
{ ?c rdf:type :MathCourse . }

}

Select the URI and name of all master
students taking a course in computer
science.

SELECT ?x ?y

WHERE { Q2

?x a :Student . ?x :name ?y .
?x :masterDegreeFrom ?master .
?x :takesCourse ?c .
?c rdf:type :CsCourse .

}

Acyclic SPARQL queries. Following, the tradition from databases (see §3),
we consider SPARQL queries as graphs. More specifically, a SPARQL query is
represented as a bipartite graph, with two kinds of nodes: triple nodes and term
nodes (representing URIs, blank nodes, and literals), as in Figure 1. If this graph
contains a cycle going uniquely through variable and triple nodes, then the query
is cyclic.

SELECT ?x WHERE {
?x :married ?y . ?y :knows ?z .
?z :knows ?r . ?r :knows ?y .

}

x

y

married

z

knows

r

Fig. 1. Cyclic query.

2.2 The query containment problem

The arity of a query is defined as the arity of the query answers. When there
is an outer projection it is defined by its distinguished variables, otherwise, it
is defined by all free variables of the query. This is analogous to the arity of a
predicate in logic.

A query is said to be contained into another if for any RDF graph, its answers
are included in those of the other query.

Definition 2 (SPARQL query containment). Given queries q and q′ with

the same arity, q is contained in q′, denoted q ⊑ q′, if and only if ANS(q,G) ⊆
ANS(q′, G) for every RDF graph G.

From the queries in Example 1, Q2 ⊑ Q1 and Q1 6⊑ Q2.
The definitions of SPARQL query answers and of query containment exclude

testing containment of query of differing arities. Indeed, it makes little sense in

practice to replace a query with another query of a different arity. Projection
can be used for making queries comparable.

When the queried graph is assumed to satisfy a particular ontology or schema,
it is useful to take this schema into account because two queries may not be
contained in each other without the schema, but they may under the schema
constraints.

Definition 3 (SPARQL query containment with respect to a schema).
Given a set of RDFS axioms S and two queries q and q′ with the same arity, q

is contained in q′ with respect to S, denoted q ⊑S q′, if and only if ANS(q,G) ⊆
ANS(q′, G) for every RDF graph G satisfying S.

3 Related work

In relational databases, query containment is well studied. Notably, [6] proved
that containment and equivalence of relational conjunctive queries is NP-complete.
Union of conjunctive queries (UCQs) containment is also NP-complete. The com-
plexity reduces to P, if the right-hand side query is acyclic [2, 21].

Beyond databases, the query containment problem has been considered in de-
scription logics. [5] demonstrated that containment of DLR (description logics
with n-ary relations) conjunctive queries is double exponential but this complex-
ity reduces to exponential if the query on the right-hand side of the containment
has a tree structure.

The containment problem has also been studied for regular path queries —
languages that are used to query arbitrary length paths in graph databases.
There are different such query languages. A prominent language used in semi-
structured data is XPath developed for navigating in XML documents. Static
analysis of XPath queries has been studied in [10], encompassing containment,
equivalence, coverage, and satisfiability, as well as containment of XPath queries
under XML Schema constraints.

Recently, static analysis and optimization of SPARQL queries has attracted
attention, notably for static analysis [7, 8, 13] and for optimization [11, 19, 18, 13].
The query containment problem for full SPARQL is undecidable [15, 1]. Hence,
it is necessary to reduce SPARQL in order to consider it. A double exponential
upper bound has been proven for the containment and equivalence problems of
SPARQL queries without OPTIONAL, FILTER and under set semantics [7]. The
double exponential upper bound reduces to simple exponential if the right-hand
side query is acyclic. In addition, we studied SPARQL query containment under
schema constraints, either through entailment regimes [7] or query rewriting [8].

These studies have grounded the theoretical aspect of these fundamental
problems, but led to few implementations (see §4). Given the computational
complexity of the query containment problem, it is important to evaluate con-
tainment test performances in practice. Various SPARQL query evaluation per-
formance benchmarks have been proposed [3, 4, 17, 14]. The DBPSB framework
is based on analysing query logs and automatically generating queries which are

representative of actual queries [14]. However, no SPARQL query containment
benchmark is available to our knowledge.

4 Query containment solvers

We briefly present three state-of-the-art query containment solvers used in the
experiments. Our goal is to characterize their capabilities in order to design
appropriate benchmarks. In order to do so, we also analyze actual queries used
on the semantic web.

Out of the three systems, SPARQL-Algebra is self contained whereas the
other two are µ-calculus satisfiability solvers that need an intermediate query
translation into formulas to determine containment.

4.1 SPARQL-Algebra

SPARQL-Algebra is an implementation of SPARQL query subsumption and
equivalence based on the theoretical results in [13]. This implementation sup-
ports AND and OPTIONAL queries with no projection. An on-line version of the
solver is available at http://db.ing.puc.cl/sparql-algebra/.

4.2 AFMU

AFMU (Alternation Free two-way µ-calculus) [20] is a satisfiability solver for the
alternation-free fragment of the µ-calculus [12]. It is a prototype implementation
which determines the satisfiability of a µ-calculus formula by producing a yes-
or-no answer.

To turn it into a query containment solver, it is necessary to turn the problem
into a µ-calculus satisfiability problem.

We developed techniques for encoding queries into the µ-calculus (A) in order
to determine the containment of SPARQL queries [7, 8]. Of the three approaches
introduced in [7] to deal with RDFS, we have chosen the encoding of the schema
(η) into the µ-calculus. We use these encoding schemes for deciding q ⊑S q′: it
is necessary to check if the encoding of its negation, η(S) ∧ A(q) ∧ ¬A(q′), is
satisfiable. If this is the case, then containment does not hold, otherwise, it is
established.

4.3 TreeSolver

The XML tree logic solver TreeSolver4 performs static analysis of XPath queries
which comprise containment, equivalence and satisfiability. To perform these
tasks, the solver translates XPath queries into µ-calculus formulas and then
tests the unsatisfiability of the formula. Unlike AFMU, the unsatisfiability test

4 http://wam.inrialpes.fr/websolver/

is performed in time of 2O(n) whereas it is 2O(n logn) for AFMU, such that n is
the size of the formula.

Using TreeSolver follows the same procedure as using AFMU with a slightly
different encoding. Indeed, because TreeSolver is restricted to tree-shaped mod-
els, we use a specific encoding of query formulas.

4.4 Features supported by solvers

A summary of the features supported by these query containment solvers is
presented in Table 1.

Table 1. Comparison of features supported by current systems.

System projection UCQ optional blanks cycles RDFS

SPARQL-Algebra
√ √

AFMU
√ √ √ √

TreeSolver
√ √ √ √

Part of the query structures can be transformed into concept expressions in
description logics and submitted to satisfiability (or subsumption) tests as well.
So, in principle, query containment solvers based on description logic reasoners
could be designed. However, we do not know any such solver.

4.5 State of the query landscape

To the best of our knowledge, no experimental work has been conducted to verify
how many of real world queries are acyclic or cyclic. To answer this question,
we analyzed DBpedia query logs5. We report on two log sets because there is a
lot of variation between them. 2 905 035 queries from the logs were syntactically
correct (90%). The results are given in Table 2. We tested the cyclicness of
queries and found out that more than 90% of these queries are acyclic (94% of
the small sample and 99% on the total). This justifies designing and evaluating
acyclic queries. Projection is used in 11% of the large log and 22% of the smaller
one, but such figures more than double if only "SELECT *" queries are counted
as projection-free queries.

OPTIONAL are used in around 30% of queries, whereas UNION is used in 18%
of those in the full log and 43% in the large one. Union of conjunctive queries with
optional are 15 to 30% of the logs. This make them operators to be supported
in query containment.

5 DBpedia 3.5.1 logs (ftp://download.openlinksw.com/support/dbpedia/)
contain 3 210 368 queries between 30/04/2010 and 20/07/2010 and 378 530 queries
of 13/07/2010 only.

Table 2. Query characteristics of the full DBPedia logs.

projection no projection

operator tree dag cycle tree dag cycle

none 175 220 562 1 1 534 150 1 761 1 748

union 9 26 625 547 24 29 629 1 166

opt 2 052 685 0 311 608 722 1

filter 7 912 711 6 264 821 340 1

un-opt 0 306 0 0 12 659 1

opt-filt 7 991 779 0 4 933 52 401 0

filt-un 2 183 0 23 802 12 286 0

un-opt-filt 0 102 765 0 0 302 657 23 969

5 Benchmark design

We first present the design of containment benchmark suites. Each test suite
is made of elementary test cases asking for the containment of one query into
another. We then introduce the principles and software used for evaluating con-
tainment solvers. The benchmark and software is available on-line at http:

//sparql-qc-bench.inrialpes.fr/.

5.1 Structure of the benchmark

There are three qualitative dimensions along which tests can be designed: the
type of graph pattern connectors (AND, UNION, MINUS, Projection, OPTIONAL,
FILTER etc.), the type of ontology: (no schema, RDFS, SHI, OWL, etc.) and the
query structure (tree, DAG, cyclic). In addition to these dimensions, quantitative
measures are:

– the number of triple patterns,
– the number of variables,
– the number of triple patterns involving more than one variable (Tjoins),
– the size of the ontology.

We designed test suites of homogeneous qualitative dimensions selected with
respect to the capacity of the current state-of-the-art solvers. The benchmark
contains three test suites:

– Conjunctive Queries with No Projection (CQNoProj)
– Union of Conjunctive Queries with Projection (UCQProj)
– Union of Conjunctive Queries under RDFS reasoning (UCQrdfs)

The test suites are designed to model increasing expected difficulty by using more
constructors. We did not provide tests of cyclic queries since only one solver is

Table 3. The CQNoProj testsuite. In the AND column, figures correspond to the
number of AND in the left-hand side query of the test. Vars is the number of variables
in each queries and Tjoin the number of triples in which occurs at least two variables.

Test case Problem A
N

D
V

a
rs

T
jo

in

nop1 Q1a ⊑ Q1b 1
1

0

nop2 Q1b ⊑ Q1a 0 0

nop3 Q2a ⊑ Q2b 5
3

3

nop4 Q2b ⊑ Q2a 5 3

nop5 Q3a ⊑ Q3b 2
2

2

nop6 Q3b ⊑ Q3a 1 1

nop7 Q4c ⊑ Q4b 5
3

2

nop8 Q4b ⊑ Q4c 3 2

nop9 Q6a ⊑ Q6b 2
3

1

nop10 Q6b ⊑ Q6a 2 1

Test case Problem A
N

D

V
a
rs

T
jo

in

nop11 Q6a ⊑ Q6c 2
3

1

nop12 Q6c ⊑ Q6a 0 1

nop13 Q6b ⊑ Q6c 2
3

1

nop14 Q6c ⊑ Q6b 0 1

nop15 Q7a ⊑ Q7b 9
10

9

nop16 Q7b ⊑ Q7a 10 9

nop17 Q8a ⊑ Q8b 3
4

3

nop18 Q8b ⊑ Q8a 2 3

nop19 Q9a ⊑ Q9b 4
3

2

nop20 Q9b ⊑ Q9a 4 2

currently able to deal with them. However, this would be a natural addition to
these tests.

Each test suite contains tests of different quantitative measures. Most of them
are used for conformance testing, i.e., testing that solvers return the correct
answer, but we also identify some stress tests trying to evaluate solvers at or
beyond their limits. We discuss these test suites below.

CQNoProj This test suite is designed for containment of basic graph patterns.
It contains conjunctive queries with no projection. We have identified 20 different
test cases (nop1–nop20), each one testing containment between two queries.
All the cases in this setting are shown in Table 3, along with the number of
connectives and variables in the queries. The more difficult test used for stress
testing are nop3, nop4, nop15, and nop16. The two former ones have a larger
number of conjunction (and of Tjoin), while the two latter ones have an even
larger number of conjunctions and variables. We have selected Tjoins (triples
having two variables) as a measure of difficulty because simple triple joins may
be compiled efficiently as tuples.

The worse case complexity of CQ without projection containment is PTime

[9].

UCQProj This test suite is made of 28 test cases, each comprising two acyclic
union of conjunctive queries with projection. In fact, 14 tests contain projection
only, 6 tests contains union only and 2 tests contains both (see Table 4). The
test cases differ in the number of distinguished variables (Dvars) and connectives
(conjunction or union). Particular stress tests are p3, p4 (without union nor
projection), p15, p16, p23, and p24.

The worse case complexity of UCQ with projection containment is NP-
complete with cycles [6], it is unknown for acyclic queries.

Table 4. The UCQProj test suite.

T
es

t
ca

se

Problem A
N

D
U

N
IO

N
D

va
rs

V
a
rs

T
jo

in

p1 Q11a ⊑ Q11b 1 0
1

1 0

p2 Q11b ⊑ Q11a 0 0 1 0

p3 Q12a ⊑ Q12b 5 0
3

3 3

p4 Q12b ⊑ Q12a 5 0 3 3

p5 Q13a ⊑ Q13b 2 0
2

2 2

p6 Q13b ⊑ Q13a 1 0 2 1

p7 Q14c ⊑ Q14b 3 0
1

3 2

p8 Q14b ⊑ Q14c 5 0 3 2*

p9 Q15a ⊑ Q15b 0 0
2

3 1

p10 Q15b ⊑ Q15a 0 0 2 1

p11 Q16a ⊑ Q16b 2 0
1

3 1

p12 Q16b ⊑ Q16a 2 0 3 1

p13 Q16a ⊑ Q16c 2 0
1

3 1

p14 Q16c ⊑ Q16a 0 0 3 1

T
es

t
ca

se

Problem A
N

D
U

N
IO

N
D

va
rs

V
a
rs

T
jo

in

p15 Q17a ⊑ Q17b 9 0
10

10 9

p16 Q17b ⊑ Q17a 10 0 11 10

p17 Q18a ⊑ Q18b 3 0
4

4 3

p18 Q18b ⊑ Q18a 2 0 4 3

p19 Q19a ⊑ Q19b 4 0
2

3 2

p20 Q19b ⊑ Q19a 4 0 3 2

p21 Q19c ⊑ Q19b 4 0
2

4 3

p22 Q19b ⊑ Q19c 4 0 3 2

p23 Q20a ⊑ Q20b 2 7
10

10 9

p24 Q20b ⊑ Q20a 8 1 10 9

p25 Q21a ⊑ Q21b 6 2
2

4-6 5

p26 Q21b ⊑ Q21a 8 0 6 5

p27 Q22a ⊑ Q22b 3 1
2

2 2

p28 Q22b ⊑ Q22a 3 1 2 2

UCQrdfs In query containment under RDFS reasoning, there are 28 test cases
(Table 5). In comparison to the test cases in UCQProj and CQNoProj setting,
the size of the queries is small. Each test case is composed of two acyclic UCQs
and a schema. There are 4 different small schemas, C1–C4 whose characteristics,
with respect to the type and number of axioms, are presented in Table 5. These
small schemas are used for testing the correctness of solvers and are not realistic
schemas. The most difficult tests are supposed to be rdfs23, rdfs24, rdfs25, rdfs26,
rdfs27 and rdfs28 with both projection and union.

The worse case complexity of UCQ under RDFS has an ExpTime upper
bound [7].

5.2 Benchmarking software architecture

For testing containment solvers, we designed an experimental setup which com-
prises several software components. This setup is illustrated in Figure 2. It sim-
ply considers a containment checker as a software module taking as input two

Table 5. The UCQrdfs test suite.

Schema Axiom types
C1 subclass (2)
C2 domain (1) and range (1)
C3 subclass (1), subproperty (2) and domain (1)
C4 subclass (1)

Test O
n
to

lo
g
y

Problem A
N

D
U

N
IO

N
D

va
rs

V
a
rs

T
jo

in

rdfs1
C1

Q39a ⊑ Q39c 0 0
1

1 0

rdfs2 Q39c ⊑ Q39a 0 1 1 0

rdfs3
C1

Q39a ⊑ Q39b 0 0
1

1 0

rdfs4 Q39b ⊑ Q39a 0 0 1 0

rdfs5
C1

Q39b ⊑ Q39c 0 0
1

1 0

rdfs6 Q39c ⊑ Q39b 0 1 1 0

rdfs7
C1

Q39d ⊑ Q39e 4 0
1

3 2

rdfs8 Q39e ⊑ Q39d 4 0 3 2

rdfs9
C2

Q40b ⊑ Q40d 0 0
1

2 1

rdfs10 Q40d ⊑ Q40b 0 0 1 0

rdfs11
C2

Q40e ⊑ Q40b 1 0
1

2 2

rdfs12 Q40b ⊑ Q40e 0 0 1 0

rdfs13
C3

Q41b ⊑ Q41c 0 0
1

2 1

rdfs14 Q41c ⊑ Q41b 0 0 2 1

Test O
n
to

lo
g
y

Problem A
N

D
U

N
IO

N
D

va
rs

V
a
rs

T
jo

in

rdfs15
C3

Q41b ⊑ Q41d 0 0
1

2 1

rdfs16 Q41d ⊑ Q41b 0 0 2 1

rdfs17
C3

Q41c ⊑ Q41d 0 0
1

2 1

rdfs18 Q41d ⊑ Q41c 0 0 2 1

rdfs19
C3

Q41b ⊑ Q41a 0 0
1

2 1

rdfs20 Q41a ⊑ Q41b 0 0 1 0

rdfs21
C3

Q41e ⊑ Q41a 0 1
1

2 2

rdfs22 Q41a ⊑ Q41e 0 0 1 0

rdfs23
C4

Q43a ⊑ Q43b 3 1
2

2 2

rdfs24 Q43b ⊑ Q43a 3 1 2 2

rdfs25
C4

Q43a ⊑ Q43c 3 1
2

2 2

rdfs26 Q43c ⊑ Q43a 3 1 2 2

rdfs27
C4

Q43b ⊑ Q43c 3 3
2

2 2

rdfs28 Q43c ⊑ Q43b 3 1 2 2

SPARQL queries (q and q′), eventually an RDF Schema (S), and returning true
or false depending if q′ is entailed by q (under the constraints of S).

This has been provided as a Java interface using Jena to express queries and
RDF Schema. We have developed three wrappers implementing this interface for
the three tested systems. Other systems may be wrapped in the same interface
(dashed rectangles in Figure 2) and tested in the same conditions. This platform
may also be used for providing non regression tests for containment solvers.

Tests proceeds by providing test cases to the interface, timing the execution
of the containment test around this common interface call. So timing occurs at
the frontier of the dashed box of Figure 2, i.e., after query and schema pars-
ing. This advantages SPARQL-Algebra, because it works directly on the ARQ
representation, whereas the two other solvers have first to translate the ARQ
representation into a µ-calculus formula which is then parsed and transformed
in each solver’s internal representation.

q q′ S

ARQ Parser ARQ Parser Jena parser

µ-calculus
Encoder 1

µ-calculus
Encoder 2SPARQL-

Algebra
AFMU TreeSolver

q ⊑S q′?

Fig. 2. Experimental setup for testing query containment. The tester (plain rectangle)
parses queries and schemas and passes them to a solver wrapper (dashed rectangle).

6 Experiments

We evaluated the three identified query containment solvers with the three test
suites. Rather than a definitive assessment of these solvers, our goal is to give first
insights into the state-of-the-art and highlight deficiencies of engines based on
the benchmark outcome. None of these systems is sharply optimized. However,
their behavior is sufficient for highlighting test difficulty.

We run the experiments on a Debian Linux virtual machine configured with
four processors and 20GB of RAM running under a Dell PowerEdge T610 with
2*Intel Xeon Quad Core 2.26GHz E5607 processors and 32GB of RAM, under
Linux ProxMox 2 (Debian).

The solvers were not genuinely reentrant. Hence, each test case has been run
in a separate process after that the first case of each suite has been run as a
warm up.

All solvers are Java programs. The Java virtual machines were run with
maximum heap size of 2024MB and a timeout at 20s (20000ms). Raising memory
size to 1GB and timeout to 40s does not change timeout results. The µ-calculus
solvers take advantage of a native BDD library. Using the native implementation
doubles the speed of these solvers, however, it also brings large initialization time
(in spite of warm-up set up).

Reported figures are the average of 5 runs (we run the tests 7 times and ruled
out each time the best and worse performance).

6.1 CQNoProj Results

On the conjunctive queries without projection, the SPARQL Algebra implemen-
tation is at least 10 times faster than the µ-calculus implementations (Figure 3).

This comes as no surprise, since the latter are exponential time solvers whereas
the former is a polynomial time solver.

AFMU times out on stress tests (nop3, nop4, nop15 and nop16). This happens
whenever containment is determined between queries that contain more than 10
joins, such as in test cases nop15 and nop16. TreeSolver is able to deal with such
cases albeit at the price of longer response time.

The fact that SPARQL-Algebra does not suffer from these sets, shows that
the encoding of the µ-calculus solvers can be improved for such practical cases.

SPARQL-Algebra responded incorrectly, in test case nop7 (cf. Table 3), when
blank nodes are used in the queries. It is not expected to deal with blank nodes.
The other solvers are able to take them into account.

ms

n
op

1
n
op

2
n
op

3
n
op

4
n
op

5
n
op

6
n
op

7
n
op

8
n
op

9
n
op

10
n
op

11
n
op

12
n
op

13
n
op

14
n
op

15
n
op

16
n
op

17
n
op

18
n
op

19
n
op

20

101

102

103

SPARQL-Algebra TreeSolver AFMU

Fig. 3. Results for the CQNoProj test suite (logarithmic scale).

6.2 UCQProj Results

On the UCQProj test suite (see Section 5.1), we compared the two systems able
to deal with UNION: TreeSolver and AFMU. Figure 4 shows AFMU is nearly
always slightly faster than TreeSolver, but on tests p17 and p18. This is surprising
given the difference in complexity of both solvers. However, TreeSolvers times
out only on tests p23 and p24, while AFMU cannot deal with all stress tests:
p3-p4, p15-p16, p23-p26. The necessary run time tends to be far longer as it
often ends up in filling the available heap. For some of these tests (p15-16), this
could also be improved by adopting a better encoding of triples.

6.3 UCQrdfs Results

The results for containment of acyclic UCQs under RDFS (cf. Section 5.1) are
better. Figure 5 shows that both solvers answer containment queries within a few
hundreds of milliseconds. In this tests, AFMU and TreeSolver have contrasted
results. AFMU is faster in 15 tests, TreeSolver faster in 9 tests, and there is a tie
on 3 tests. Tests rdfs7 and rdfs8 have been difficult for both solvers. Tests rdfs23-
28 have been more difficult for TreeSolver than for AFMU. This should not be

ms

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

p
11

p
12

p
13

p
14

p
15

p
16

p
17

p
18

p
19

p
20

p
21

p
22

p
23

p
24

p
25

p
26

p
27

p
28

102

103

104 TreeSolver AFMU

Fig. 4. Results for the UCQProj test suite (logarithmic scale).

due to the C4 ontology which is reduced to only one subsumption assertion, but
rather to the presence of UNION and projection. AFMU returns an incorrect
answer for rdfs9 which seems to be a bug in the solver.

ms

rd
fs
1

rd
fs
2

rd
fs
3

rd
fs
4

rd
fs
5

rd
fs
6

rd
fs
7

rd
fs
8

rd
fs
9

rd
fs
10

rd
fs
11

rd
fs
12

rd
fs
13

rd
fs
14

rd
fs
15

rd
fs
16

rd
fs
17

rd
fs
18

rd
fs
19

rd
fs
20

rd
fs
21

rd
fs
22

rd
fs
23

rd
fs
24

rd
fs
25

rd
fs
26

rd
fs
27

rd
fs
28

0

500

1,000

TreeSolver AFMU

Fig. 5. Results for the UCQrdfs test suite.

6.4 Discussion

In summary, all solvers under all experimental settings responded positively i.e.,
they all determined containment correctly under their stated application limits
(we tested this independently). However, from these experiments, a lot remains
to be done in order to alleviate the shortcomings of the current systems.

SPARQL-Algebra is faster on its domain of application. The advantages of
this solver compared to the others are that it supports subsumption of OPTIONAL

query patterns and also cyclic CQs. However, blank nodes are not supported.

AFMU is able to determine containment of acyclic UCQs under ontological
axioms. For queries of reasonable size, the solver determined their containment
correctly. The problem is that when queries have a larger size, e.g., more than
8 joins, the solver saturates memory. This is shown for test cases nop15 and
nop16 (Figure 3) as well as for test cases p15 and p16 (Figure 4). However,

the implementation of this solver is not optimal: the authors have documented
improvements. Moreover, determining containment of general UCQs (beyond the
acyclic ones) will require extending the solver.

TreeSolver has similar limitations as AFMU: no support for cyclic queries and
difficulty with queries of large size, such as nop16 and p16. This is surprising
with respect to its worse case complexity.

In addition, determining the type of queries to compare (cyclic, disjunctive,
with blank nodes, with projections, etc.) is easy. Hence, it is possible to build
a system assembling these solvers and providing the best possible performances
for each case.

7 Conclusion

The evaluation of SPARQL query containment should help developers to pro-
duce more and better solvers. This paper has contributed to the evaluation of
SPARQL query containment in several ways:

– We have studied the demographics of SPARQL queries on a large example
and found that (1) a large part of these queries are acyclic, and (2) those parts
that either contain projections (effective SELECT) or not, are significant;

– From this study and the state of the art in query containment solvers, we
have designed a benchmark suite made of three suites testing conjunctive
queries without projection, union of conjunctive queries with projection and
with RDFS reasoning;

– We have proposed and implemented a methodology for evaluating this prob-
lem;

– Finally, we have applied these to existing containment solvers (SPARQL-
Algebra, AFMU and TreeSolver) and we can report the following lessons:

• All tested solutions perform correctly with respect to their declared ap-
plicability limits (which are easily testable);

• SPARQL query containment can be practically performed, in spite of its
complexity, in a reasonable time with respect to network communication
costs,

• the current state-of-the-art is at its early stage and requires improvement
and new ways to determine containment and equivalence of queries, in
order to become a useful tool for query optimizers.

These benchmark suites are well-suited for pinpointing the theoretical shortcom-
ings of containment solvers. These have already benefited TreeSolver in diagnos-
ing bad use of memory.

We plan to improve and extend this benchmark, in particular by adding
other test suites designed for containment of cyclic queries and queries under
expressive description logic axioms such as OWL2.

References

1. R. Angles and C. Gutierrez. The expressive power of SPARQL. In Proc. ISWC,
pages 114–129, 2008.

2. P. Bernstein and D. Chiu. Using semi-joins to solve relational queries. Journal of
the ACM, 28(1):25–40, 1981.

3. C. Bizer and A. Schultz. Benchmarking the performance of storage systems that
expose SPARQL endpoints. In Proc. 4 th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS), 2008.

4. C. Bizer and A. Schultz. The Berlin SPARQL benchmark. International Journal
on Semantic Web and Information Systems, 5(2):1–24, 2009.

5. D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive Query Containment
and Answering under Description Logics Constraints. ACM Trans. on Computa-
tional Logic, 9(3):22.1–22.31, 2008.

6. A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunctive Queries
in Relational Data Bases. In Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 77–90. ACM, 1977.

7. M. W. Chekol, J. Euzenat, P. Genevès, and N. Layaïda. SPARQL query contain-
ment under RDFS entailment regime. In Proc. IJCAR, pages 134–148, 2012.

8. M. W. Chekol, J. Euzenat, P. Genevès, and N. Layaïda. SPARQL query contain-
ment under SHI axioms. In Proc. AAAI, pages 10–16, 2012.

9. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In Proc.
ICDT, pages 56–70, 1997.

10. P. Genevès, N. Layaïda, and A. Schmitt. Efficient static analysis of XML paths
and types. In Proc. PLDI, pages 342–351. ACM, 2007.

11. J. Groppe, S. Groppe, and J. Kolbaum. Optimization of SPARQL by using coreS-
PARQL. In Proc. ICEIS, pages 107–112, 2009.

12. D. Kozen. Results on the propositional µ-calculus. Theor. Comp. Sci., 27:333–354,
1983.

13. A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis and optimization
of semantic web queries. In Proc. PODS, pages 89–100. ACM, 2012.

14. M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngomo Ngonga. DBpedia SPARQL
benchmark: performance assessment with real queries on real data. In Proc. 10th
ISWC, pages 454–469, Bonn (DE), 2011. Springer-Verlag.

15. A. Polleres. From SPARQL to rules (and back). In Proc. WWW Conference, pages
787–796, 2007.

16. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
Recommendation, 2008.

17. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: a SPARQL per-
formance benchmark. In Proc. ICDE, pages 222–233, 2009.

18. M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimiza-
tion. In Proc. ICDT, pages 4–33. ACM, 2010.

19. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL
basic graph pattern optimization using selectivity estimation. In Proc. WWW
Conference, pages 595–604, 2008.

20. Y. Tanabe, K. Takahashi, M. Yamamoto, A. Tozawa, and M. Hagiya. A decision
procedure for the alternation-free two-way modal µ-calculus. In TABLEAUX,
pages 277–291, 2005.

21. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. VLDB, pages
82–94, 1981.

