388 research outputs found

    Cortical synchronization as a neural basis for visual perception

    Get PDF
    Cortical synchronization has been suggested as a neural mechanism that is able to solve the feature binding problem. This idea has been intensively studied at neurophysiological, psychophysical and computational level. In this paper, arguments for and against the role of cortical synchronization in visual perception are critically examined. Initial neurophysiological findings of correlated neural activity in the primary visual cortex have been questioned by studies which reveal enhanced firing rate to the figure region compared to the background. Computational investigations reveal that synchronization has capacity limit. At the behavioural level, change blindness has been used as the evidence for capacity limit of visual perception. However, further examination of this issue showed that detailed visual representation exists but it is obscured by limitation of attention and visual working memory. Other behavioural phenomena, such as perceptual asynchrony, also point to the fact that there is dissociation between correlated neural activity and perception. Therefore, at present there is no sufficient evidence to support the conclusion that cortical synchronization plays a crucial role in visual perception

    Six Principles of Visual Cortical Dynamics

    Get PDF
    A fundamental goal in vision science is to determine how many neurons in how many areas are required to compute a coherent interpretation of the visual scene. Here I propose six principles of cortical dynamics of visual processing in the first 150 ms following the appearance of a visual stimulus. Fast synaptic communication between neurons depends on the driving neurons and the biophysical history and driving forces of the target neurons. Under these constraints, the retina communicates changes in the field of view driving large populations of neurons in visual areas into a dynamic sequence of feed-forward communication and integration of the inward current of the change signal into the dendrites of higher order area neurons (30–70 ms). Simultaneously an even larger number of neurons within each area receiving feed-forward input are pre-excited to sub-threshold levels. The higher order area neurons communicate the results of their computations as feedback adding inward current to the excited and pre-excited neurons in lower areas. This feedback reconciles computational differences between higher and lower areas (75–120 ms). This brings the lower area neurons into a new dynamic regime characterized by reduced driving forces and sparse firing reflecting the visual areas interpretation of the current scene (140 ms). The population membrane potentials and net-inward/outward currents and firing are well behaved at the mesoscopic scale, such that the decoding in retinotopic cortical space shows the visual areas’ interpretation of the current scene. These dynamics have plausible biophysical explanations. The principles are theoretical, predictive, supported by recent experiments and easily lend themselves to experimental tests or computational modeling

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Local and global gating of synaptic plasticity

    Full text link
    Mechanisms influencing learning in neural networks are usually investigated on either a local or a global scale. The former relates to synaptic processes, the latter to unspecific modulatory systems. Here we study the interaction of a local learning rule that evaluates coincidences of pre- and postsynaptic action potentials and a global modulatory mechanism, such as the action of the basal forebrain onto cortical neurons. The simulations demonstrate that the interaction of these mechanisms leads to a learning rule supporting fast learning rates, stability, and flexibility. Furthermore, the simulations generate two experimentally testable predictions on the dependence of backpropagating action potential on basal forebrain activity and the relative timing of the activity of inhibitory and excitatory neurons in the neocortex.We are grateful to Konrad Körding and Mike Merzenich for valuable discussions of the previous work on the learning rule and the experimental data and Daniel Kiper for comments on a previous version of the manuscript. We are happy to acknowledge the support of SPP Neuroinformatics (grants 5002–44888/2&3 to P. F. M. J. V.), SNF (grant 31-51059.97, awarded to P. K.), and an FPU grant from MEC (M. A. S.-M., Spain)

    The What and Why of Binding: The Modeler's Perspective

    Get PDF
    In attempts to formulate a computational understanding of brain function, one of the fundamental concerns is the data structure by which the brain represents information. For many decades, a conceptual framework has dominated the thinking of both brain modelers and neurobiologists. That framework is referred to here as "classical neural networks." It is well supported by experimental data, although it may be incomplete. A characterization of this framework will be offered in the next section. Difficulties in modeling important functional aspects of the brain on the basis of classical neural networks alone have led to the recognition that another, general mechanism must be invoked to explain brain function. That mechanism I call "binding." Binding by neural signal synchrony had been mentioned several times in the liter ature (Lege´ndy, 1970; Milner, 1974) before it was fully formulated as a general phenomenon (von der Malsburg, 1981). Although experimental evidence for neural syn chrony was soon found, the idea was largely ignored for many years. Only recently has it become a topic of animated discussion. In what follows, I will summarize the nature and the roots of the idea of binding, especially of temporal binding, and will discuss some of the objec tions raised against it

    Intermediate-Level Visual Representations and the Construction of Surface Perception

    Get PDF
    Visual processing has often been divided into three stages—early, intermediate, and high level vision, which roughly correspond to the sensation, perception, and cognition of the visual world. In this paper, we present a network-based model of intermediate-level vision that focuses on how surfaces might be represented in visual cortex. We propose a mechanism for representing surfaces through the establishment of “ownership”—a selective binding of contours and regions. The representation of ownership provides a central locus for visual integration. Our simulations show the ability to segment real and illusory images in a manner consistent with human perception. In addition, through ownership, other processes such as depth, transparency, and surface completion can interact with one another to organize an image into a perceptual scene

    Progress toward an understanding of cortical computation

    Get PDF
    The additional data, perspectives, questions, and criticisms contributed by the commentaries strengthen our view that local cortical processors coordinate their activity with the context in which it occurs using contextual fields and synchronized population codes. We therefore predict that whereas the specialization of function has been the keynote of this century the coordination of function will be the keynote of the next

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies
    corecore