180 research outputs found

    On the Impossibility of Probabilistic Proofs in Relativized Worlds

    Get PDF
    We initiate the systematic study of probabilistic proofs in relativized worlds, where the goal is to understand, for a given oracle, the possibility of "non-trivial" proof systems for deterministic or nondeterministic computations that make queries to the oracle. This question is intimately related to a recent line of work that seeks to improve the efficiency of probabilistic proofs for computations that use functionalities such as cryptographic hash functions and digital signatures, by instantiating them via constructions that are "friendly" to known constructions of probabilistic proofs. Informally, negative results about probabilistic proofs in relativized worlds provide evidence that this line of work is inherent and, conversely, positive results provide a way to bypass it. We prove several impossibility results for probabilistic proofs relative to natural oracles. Our results provide strong evidence that tailoring certain natural functionalities to known probabilistic proofs is inherent

    Relativization and Interactive Proof Systems in Parameterized Complexity Theory

    Get PDF
    We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First, we study relativization for the machine models that were used by Chen, Flum, and Grohe (2005) to characterize a number of parameterized complexity classes. Here we obtain a new and non-trivial characterization of the A-Hierarchy in terms of oracle machines, and parameterize a famous result of Baker, Gill, and Solovay (1975), by proving that, relative to specific oracles, FPT and A[1] can either coincide or differ (a similar statement holds for FPT and W[P]). Second, we initiate the study of interactive proof systems in the parameterized setting, and show that every problem in the class AW[SAT] has a proof system with "short" interactions, in the sense that the number of rounds is upper-bounded in terms of the parameter value alone

    Observations on complete sets between linear time and polynomial time

    Get PDF
    AbstractThere is a single set that is complete for a variety of nondeterministic time complexity classes with respect to related versions of m-reducibility. This observation immediately leads to transfer results for determinism versus nondeterminism solutions. Also, an upward transfer of collapses of certain oracle hierarchies, built analogously to the polynomial-time or the linear-time hierarchies, can be shown by means of uniformly constructed sets that are complete for related levels of all these hierarchies. A similar result holds for difference hierarchies over nondeterministic complexity classes. Finally, we give an oracle set relative to which the nondeterministic classes coincide with the deterministic ones, for several sets of time bounds, and we prove that the strictness of the tape-number hierarchy for deterministic linear-time Turing machines does not relativize

    Resource Bounded Immunity and Simplicity

    Get PDF
    Revisiting the thirty years-old notions of resource-bounded immunity and simplicity, we investigate the structural characteristics of various immunity notions: strong immunity, almost immunity, and hyperimmunity as well as their corresponding simplicity notions. We also study limited immunity and simplicity, called k-immunity and feasible k-immunity, and their simplicity notions. Finally, we propose the k-immune hypothesis as a working hypothesis that guarantees the existence of simple sets in NP.Comment: This is a complete version of the conference paper that appeared in the Proceedings of the 3rd IFIP International Conference on Theoretical Computer Science, Kluwer Academic Publishers, pp.81-95, Toulouse, France, August 23-26, 200

    On the structure of intractable sets

    Get PDF
    There are two parts to this dissertation. The first part is motivated by nothing less than a reexamination of what it means for a set to be NP-complete. Are there sets in NP that in a mathematically meaningful sense should be considered to be complete for NP, but that are not NP-complete in the usual sense that every set in NP is ≤q[subscript]spmP-reducible to it? We define a noneffective binary relation that makes precise the notion that the complexity of A is polynomially related to the complexity of B, This relation yields new completeness and hardness notions for complexity classes, and we show that there are sets that are hard for NP that are not NP-hard in the usual sense. We also show that there are sets that must be considered to be complete for E that are not even ≤q[subscript]spTP-complete for E;In a certain way, hardness and completeness with respect to the relation we define is related to the notion of almost everywhere (a.e.) complexity, and so we initiate this study by first investigating this notion. We state and prove a deterministic time hierarchy theorem for a.e. complexity that is as tight as the Hartmanis-Stearns hierarchy theorem for infinitely often complexity. This result is a significant improvement over all previously known hierarchy theorems for a.e. complex sets. We derive similar, very tight, hierarchy theorems for sets that cannot be a.e. complex for syntactic reasons, but for which, intuitively, a.e. complex notions should exit. Similar results are applied to the study of P-printable sets and sets of low generalized Kolmogorov complexity;The second part of this study deals with relativization. Does the fact that DTIME(O (n)) ≠ NTIME(n) help in leading us to a proof that P ≠ NP? Does one imply the other? We seek evidence that this is a hard . We construct an oracle that answers this question in the affirmative, and we construct an oracle that answers this question in the negative. We conclude that the result that DTIME(O (n)) ≠ NTIME(n) does not imply P ≠ NP by recursive theoretic techniques;Finally, we study the relationships between P, NP, and the unambiguous and random time classes UP, and RP. Questions concerning these relationships are motivated by complexity issues to public-key cryptosystems. We prove that there exists a recursive oracle A such that P[superscript]A ≠ UP[superscript]A≠ NP[superscript]A, and such that the first inequality is strong, i.e., there exists a P[superscript]A-immune set in UP[superscript]A. Further, we constructed a recursive oracle B such that UP[superscript]B contains an RP[superscript]B-immune set. As a corollary we obtain P[superscript]B ≠ RB[superscript]B≠ NP[superscript]B and both inequalities are strong. By use of the techniques employed in the proof that P[superscript]A≠ UP[superscript]A≠ NP[superscript]A, we are also able to solve an open problem raised by Book, Long and Selman

    On W[1]-Hardness as Evidence for Intractability

    Get PDF
    The central conjecture of parameterized complexity states that FPT !=W[1], and is generally regarded as the parameterized counterpart to P !=NP. We revisit the issue of the plausibility of FPT !=W[1], focusing on two aspects: the difficulty of proving the conjecture (assuming it holds), and how the relation between the two classes might differ from the one between P and NP. Regarding the first aspect, we give new evidence that separating FPT from W[1] would be considerably harder than doing the same for P and NP. Our main result regarding the relation between FPT and W[1] states that the closure of W[1] under relativization with FPT-oracles is precisely the class W[P], implying that either FPT is not low for W[1], or the W-Hierarchy collapses. This theorem also has consequences for the A-Hierarchy (a parameterized version of the Polynomial Hierarchy), namely that unless W[P] is a subset of some level A[t], there are structural differences between the A-Hierarchy and the Polynomial Hierarchy. We also prove that under the unlikely assumption that W[P] collapses to W[1] in a specific way, the collapse of any two consecutive levels of the A-Hierarchy implies the collapse of the entire hierarchy to a finite level; this extends a result of Chen, Flum, and Grohe (2005). Finally, we give weak (oracle-based) evidence that the inclusion W[t]subseteqA[t] is strict for t>1, and that the W-Hierarchy is proper. The latter result answers a question of Downey and Fellows (1993)
    • …
    corecore