
Information and Computation 209 (2011) 173–182

Contents lists available at ScienceDirect

Information and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i c

Observations on complete sets between linear time and polynomial time

Armin Hemmerling

Ernst-Moritz-Arndt–Universität Greifswald, Institut für Mathematik und Informatik, Walther-Rathenau-Str. 47, D–17487 Greifswald, Germany

A R T I C L E I N F O A B S T R A C T

Article history:

Received 7 June 2010

Available online 7 December 2010

Keywords:

Many-one reducibility

Completeness

Determinism versus nondeterminism

Polynomial-time hierarchy

Linear-time hierarchy

Boolean hierarchy

There is a single set that is complete for a variety of nondeterministic time complexity

classes with respect to related versions of m-reducibility. This observation immediately

leads to transfer results for determinism versus nondeterminism solutions. Also, an upward

transfer of collapses of certain oracle hierarchies, built analogously to the polynomial-time

or the linear-time hierarchies, can be shown by means of uniformly constructed sets that

are complete for related levels of all these hierarchies. A similar result holds for difference

hierarchies overnondeterministic complexity classes. Finally,wegive anoracle set relative to

which the nondeterministic classes coincide with the deterministic ones, for several sets of

timebounds, andweprove that the strictness of the tape-numberhierarchy for deterministic

linear-time Turing machines does not relativize.

© 2010 Elsevier Inc. All rights reserved.

0. Introduction and overview

The technique of many-one reducibility and related completeness results are dominated by polynomial-time and

logarithmic-space reductions. These are commonly used for several complexity classes. In this paper, we consider classes

defined by sets of time bounds satisfying certain regularity properties that can be fulfilled in defining a variety of complexity

classes between linear and polynomial time. If one always considers the m-reducibility which is defined by the same set

of bounds that determines the complexity class, then there is a language which is complete for all such nondeterministic

classes. A first application of this crucial observation in Section 2 yields upward transfers of inclusions between certain

complexity classes.

Our main interest is directed to oracle hierarchies defined by generalizing the constructions underlying the linear-time

and the polynomial-time hierarchies. Section 3 prepares the fundamentals on relativization. A sequence of languages being

complete for the related levels of all oracle hierarchies is specified in Section 4. It easily follows an upward transfer of

collapses of the hierarchies. Quite similar results for the difference hierarchies over nondeterministic complexity classes are

obtained in Section 5.

The final Section 6 deals with certain space complexity classes, where completeness remains defined by means of time

bounds. We give a simple language that is complete for all such nondeterministic space classes. Taken as an oracle in

time-bounded computations, it enforces the equality of nondeterministic and deterministic classes. Another application

shows that the statement of strictness of the tape-number hierarchy for deterministic linear-time Turingmachines does not

relativize.

Even if all results follow by means of standard techniques of computational complexity theory, this paper provides a

unifying view to questions and constructions around determinism versus nondeterminism and gives new relationships

between them on different complexity levels.

E-mail address: hemmerli@uni-greifswald.de

0890-5401/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2010.11.027

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82569627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ic.2010.11.027
http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2010.11.027

174 A. Hemmerling / Information and Computation 209 (2011) 173–182

1. Basic notions and facts

Throughout this paper, we restrict ourselves to languages L ⊆ X
∗ for the fixed two-letter alphabet X = {0, 1}. This does

not cause any loss of generality. For a set B of complexity bounds β : N −→ N, the related (time) complexity class is

[N]Time(B) = ⋃
β∈B

[N]Time(β), where

[N]Time(β) = {L ⊆ X
∗ : L is accepted by an [N]TM Mwith timeM(w) ≤ β(|w|) for almost all w ∈ X

∗}.

By an [N]TM, we understand a [nondeterministic] k-tape Turing machine with a distinguished read-only input tape and k

read–write work tapes, on which symbols from an arbitrary working alphabet can be used. The acceptance of a language L

and the time complexity measure timeM : X
∗ −→ N are defined as usual. For further details concerning basic notions,

the reader is referred to textbooks like [4,15]. Here we only sketch some essentials.

By means of the brackets [. . .], two analogous sentences or statements are summarized by one formulation: one of

these is obtained by deleting the brackets only, the other one by deleting the brackets and their contents, everywhere in the

related context. In order to have this opportunity of abbreviation, the prefix D in the denotations of deterministic TMs and

complexity classes is suppressed.

By code(M) ∈ X
∗, we denote the code of an [N]TMMwhich is defined in some standardway such that the components of

M, as number of tapes, state set, working alphabet and transition function, can easily be extracted by another machine, e.g.,

in order to simulate M. One can suppose that the sets {code(M) : M is an [N]TM} and {code(M) : M is a k-tape [N]TM},
for any k ∈ N, are deterministically decidable in linear time, i.e., they belong to

Lin = Time(Blin), where Blin = {β : β(n) = c · n, with some c ∈ N+ }
denotes the set of linear bounds; let N+ = N \ {0}.

Furthermore, it is supposed that the strings code(M) start with a unique prefix or terminate with a unique suffix such

that the single copies of code(M) can easily be identified in concatenations of them like code(M)t , for any t ∈ N+ .

It is well-known that the number of tapes of NTMs accepting languages can be restricted to two, without enlarging the

order of time complexity. More precisely:

Lemma 1. If a language L is accepted by an arbitrary multi-tape NTM with a time bound β , then L can also be accepted by a

2-tape NTM in time O(β).

To sketch an idea of proof, let M be a k-tape NTM accepting L in time β . A simulating 2-tape NTM M′ first guesses, on
one of its work tapes, a candidate of a sequence of states and tape symbols on the actually scanned cells as well as of signs

indicating which of the possible reactions according to the transition relation has to be chosen in each step. Then, by means

of the other work tape, M′ tries to verify that this sequence belongs to an accepting computation of M on the given input.

This is done by simulating the related behavior of M on tape κ, successively in special stages for each κ ∈ {1, . . . , k}. All
this is possible within the time bound (k + 1) · β(n). �

Let 〈 · , · 〉 be a pairing function computable in linear time, with inverses (projections) computable in linear time, too.

To compute word functions (within certain complexity bounds), we employ deterministic TMs with an additional one-

way write-only output tape on which the values of the functions have to be produced. A function β : N −→ N is called

time-constructible iff the word function fβ : X
∗ −→ X

∗, defined by fβ(w) = 1β(|w|), is (deterministically) computable in

time O(β). Equivalently, one could require that there is a deterministic multi-tape TM which halts on any input w ∈ X
∗

after O(β(|w|)) steps such that the last work tape carries the inscription 1β(|w|) then.
For functions β1, β2 : N −→ N (or β1, β2 : X

∗ −→ N), let β1 ≤a β2 mean that β1(x) ≤ β2(x) for almost all

arguments x. Operations on numbers are naturally transferred to number functions, e.g., (β1 + β2)(n) = β1(n) + β2(n)
and (c · β)(n) = c · β(n) for any constant c ∈ N.

Definition 1. A non-empty set of bounds, B, is called regular iff the following hold:

(i) for all β ∈ B and all n ∈ N, n ≤ β(n) ≤ β(n + 1);
(ii) for all β ∈ B, there is a time-constructible β ′ ∈ B such that β ≤a β ′;
(iii) for all β, β ′ ∈ B, there is a β ′′ ∈ B such that β + β ′ ◦ β ≤a β ′′.

From (i) and (iii) we immediately obtain:

(iv) for all β, β ′ ∈ B, there is a β ′′ ∈ B such that β + β ′ ≤a β ′′;
(v) for all β ∈ B and c ∈ N, there is a β ′ ∈ B such that c · β ≤a β ′;
(vi) for all β, β ′ ∈ B, there is a β ′′ ∈ B such that β ′ ◦ β ≤a β ′′.

Conversely, (iv) and (vi) imply (iii).

Examples of regular sets are Blin, the set of linear bounds we defined above,

A. Hemmerling / Information and Computation 209 (2011) 173–182 175

Bpol = {β : β(n) = nk, with some k ∈ N+ }, the set of polynomial bounds, and

Bqlin = {β : β(n) = c · n · log(n)k, with c, k ∈ N+ }, the set of quasilinear bounds.

Here let log(n) denotes the length of the binary expansion of n, i.e., log(0) = 0, log(1) = 1, log(2) = log(3) = 2, etc. The

importance of quasilinear-time computations was first stressed in [11].

Conditions (i) and (ii) are rather natural and fulfilled by a variety of sets of bounds. The condition (iii) implies a certain

robustness of the complexity classes, in particular, it follows their closedness under B-reducibility, cf. the next section. If

B contains the exponential function βexp(n) = 2n or a function dominating this, then for any β ∈ B there exists a time-

constructible function dominating 2β(n) in B, and it follows NTime(B) = Time(B). Thus, our results are mainly interesting

for sets of subexponential bounds.

An example of such a regular set of superpolynomial bounds is

Bspol = {β : β(n) = 2c·log(n)k , with some c, k ∈ N+ }.
For bound sets B1 and B2, let B1 ≤a B2 denote that to any β1 ∈ B1 there is a β2 ∈ B2 such that β1 ≤a β2. So we have

Blin ≤a Bqlin ≤a Bpol ≤a Bspol, and Blin ≤a B for any regular set of bounds B. Infinitely many sets of bounds between Blin
and Bqlin are given by

Bqmlin = {β : β(n) = c · n · (log〈m〉(n))k, with c, k ∈ N+ },

where log〈m〉 denotes them-fold iteration of log, form ∈ N+ . All these sets Bqmlin are regular, and it holds Blin ≤a · · · ≤a

Bq3lin ≤a Bq2lin ≤a Bq1lin = Bqlin.

2. A complete set and simple transfer results

For a regular bound set B, the related B-reducibility ≤B between languages is defined as the m-reducibility by means of

word functions computable with time bounds from B. More precisely, for L, L′ ⊆ X
∗,

L ≤B L′ iff there is a word function f : X
∗ −→ X

∗ which is computable in time β , for some β ∈ B,

such that for all w ∈ X
∗: w ∈ L iff f (w) ∈ L′.

Lemma 2. The relation ≤B is reflexive and transitive. The complexity classes [N]Time(B) are (downward) closed under ≤B, i.e.,

if L′ ≤B L and L ∈ [N]Time(B), then L′ ∈ [N]Time(B).

This follows immediately fromproperties (i) and (iii) of regular sets. For example, if a function reducing L′ to L is computed

in time β and L is accepted in time β ′, then L′ can be accepted in time O(β + β ′ ◦ β). �
A language L ⊆ X

∗ is said to be NTime(B)-complete iff L ∈ NTime(B) and L′ ≤B L for all L′ ∈ NTime(B). It would bemore

precise to denote this property as B-completeness, since it is determined by the set of bounds but not by the complexity

class. The introduced denotation, however, corresponds to the commonly used one, and its meaning should always be clear

throughout this paper.

Complete sets enable us to express inclusions of nondeterministic classes in deterministic ones by the questionswhether

these special sets belong to the deterministic classes:

Proposition 1. Let B1 and B2 be regular bound sets such that B1 ≤a B2. If L is an NTime(B1)-complete language, then it holds:

NTime(B1) ⊆ Time(B2) iff L ∈ Time(B2).

The forward implication is trivial; the converse holds since Time(B2) is closed under ≤B2 , hence under ≤B1 too. �
If B1 = B2 = B and L is an NTime(B)-complete language, then by Proposition 1 it holds: NTime(B) = Time(B) iff L ∈

Time(B). For example, we have [N]Time(Bpol) = [N]P. These are the famous classes of polynomial-time computability, and

≤Bpol is the usual polynomial-time reducibility. For the linear-time classes [N]Lin = [N]Time(Blin) it is known that NLin �=
Lin, cf. [10]. Thus, no NLin-complete language belongs to Lin. For the quasilinear-time classes [N]Qlin = [N]Time(Bqlin), the
problem whether NQlin = Qlin is open like the P versus NP problem, cf. [9].

Now it is a simple observation that there exists a single language which is NTime(B)-complete for any regular set B. Let

V = {〈w, code(M)t〉 : w ∈ X
∗, |w| ≤ t ∈ N+ and M is a 2-tape NTM that accepts w in ≤ t steps}.

176 A. Hemmerling / Information and Computation 209 (2011) 173–182

Lemma 3. V ∈ NLin.

Given an input u ∈ X
∗, let the NTM MV first check whether u = 〈w, code(M)t〉 for some w ∈ X

∗, a 2-tape NTM Mand

t ∈ N+ . Due to our conventions, this can be done deterministically in linear time. If u has the above form, let MV simulate

at most t steps of Mon input w as follows:

First, the input wordw is copied to a work tape ofMV . Then MV uses two further work tapes to simulate the twowork

tapes of M, where the symbols of the working alphabet of M are encoded by suitable binary strings of equal lengths

≤ |code(M)|, in order to avoid additional delays by shifting tape contents in the course of the simulation. The code

of the actual state of M can be noted on a fourth work tape of MV .

The crucial point of the simulation is that, for each step τ , a suitable action of M is chosen by means of the τ -th copy

of code(M) within the component code(M)t of the input u. So MV can perform the simulation of t steps of M by

a one-way sweeping over the component code(M)t of input u, and the whole simulation does not need more than

O(t · |code(M)|) = O(|u|) steps.
Let MV accept the input u as soon as Mhas accepted w in the simulated run; if this has not occurred after the t steps

have been simulated, let MV enter a cycle of work without halting. �

Proposition 2. V is NTime(B)-complete for any regular set of bounds B.

By Lemma 3 and Blin ≤a B, we have V ∈ NTime(B). If L ∈ NTime(B), by Lemma 1 there is a 2-tape NTM M accepting

L with a time bound β ∈ B. By property (ii) of regularity, β can be assumed to be time-constructible. The word function

fM : X
∗ −→ X

∗ defined by

fM(w) = 〈w, code(M)β(|w|)〉
is computable in time O(β(|w|)). Also, w ∈ L iff fM(w) ∈ V . Hence L ≤B V . �

An immediate consequence of Propositions 1 and 2 is an upward transfer of inclusions between certain complexity

classes. Such transfer results are usually obtained by means of padding. This does not seem to apply to the following one,

however.

Proposition 3. Let B1, B2 and B3 be regular sets of bounds such that B1 ≤a B2 ≤a B3. Then

NTime(B1) ⊆ Time(B2) implies NTime(B3) = Time(B3).

If NTime(B1) ⊆ Time(B2), then V ∈ Time(B2) ⊆ Time(B3), but from V ∈ Time(B3) it follows NTime(B3) = Time(B3).
�

Even if the supposition B1 ≤a B2 has not been used in the proof, it was added in the statement in order to indicate the

main direction of applications. The related remark applies to similar results in the sequel. The assertion of Proposition 3may

look more interesting in the converse direction: if, e.g., P �= NP, then NLin �⊆ P. This is obtained by putting B1 = Blin and

B2 = B3 = Bpol. By [1], the languages from NLin can even be accepted by real-time NTMs. Thus, if P �= NP, then there is a

nondeterministically real-time acceptable language which does not belong to P.

In a similar simple way, inclusions of co-classes in complexity classes can be transferred. For a class of languages, L, let
coL = {X∗ \ L : L ∈ L}. A language L ⊆ X

∗ is called coNTime(B)-complete iff it belongs to coNTime(B) and L′ ≤B L for

all L′ ∈ coNTime(B). Obviously, L is NTime(B)-complete iff its complement, L = X
∗ \ L, is coNTime(B)-complete. Thus, by

Proposition 2, V is coNTime(B)-complete for any regular bound set B.

Proposition 4. Let B1, B2 and B3 be regular sets of bounds such that B1 ≤a B2 ≤a B3. Then

coNTime(B1) ⊆ [N]Time(B2) implies coNTime(B3) = [N]Time(B3).

Indeed, if coNTime(B1) ⊆ [N]Time(B2), then V ∈ [N]Time(B2) ⊆ [N]Time(B3). Thus, coNTime(B3) ⊆ [N]Time(B3),
and it follows coNTime(B3) = [N]Time(B3). �

For example, if coNLin ⊆ [N]P, then coNP = [N]P.

3. Relativization and o-regularity

The results of the previous section relativize in a straightforward way. We sketch some features which are fundamental

for the sequel. For a general discussion of relativization, see [6].

By an [N]OTM, we understand a [nondeterministic] oracle Turing machine M in the usual sense. Then code(M) ∈ X
∗ is

defined in a straightforwardway. Note that code(M), likeMtoo, does not depend on an oracle set. To perform a computation

or to estimate the complexity, however, it is necessary to specify an oracle. If the work of Mwith a special oracle set A ⊆ X
∗

is considered, we shall write MA. The function timeMA : X
∗ −→ N describes the corresponding time complexity. Under

the relativized complexity classes, we understand

A. Hemmerling / Information and Computation 209 (2011) 173–182 177

[N]TimeA(B) = ⋃
β∈B

[N]TimeA(β), where

[N]TimeA(β) = {L ⊆ X
∗ : L is accepted by an [N]OTM Mwith oracle set A

such that timeMA(w) ≤ β(|w|) for almost all w ∈ X
∗}.

The classes [N]LinA, [N]QlinA and [N]PA are straightforwardly defined bymeans of the bound sets Blin, Bqlin and Bpol, respec-

tively.

Lemma1 relativizes, hence in accepting languages fromNTimeA(B)wecan restrict ourselves to 2-tapeNOTMs, i.e., NOTMs

with an input tape, a special oracle tape and two work tapes, time-bounded by functions from B.

Also in investigating relativizedcomplexity classes, theun-relativized reducibilities≤Bwill beemployed,however.Hence,

a language L ⊆ X
∗ is briefly called NTimeA(B)-complete iff L ∈ NTimeA(B) and L′ ≤B L for all L′ ∈ NTimeA(B). Since the

classes [N]TimeA(B) are closed under ≤B, Proposition 1 relativizes:

Proposition 5. For regular bound sets B1 ≤a B2 and an NTimeA(B1)-complete language L, it holds:

NTimeA(B1) ⊆ TimeA(B2) iff L ∈ TimeA(B2). �

For any A ⊆ X
∗, let

VA = {〈w, code(M)t〉 : w ∈ X
∗, |w| ≤ t ∈ N+ and M is a 2-tape NOTM such that MA accepts w in ≤ t steps}.

Proposition 6. For any A ⊆ X
∗ it holds VA ∈ NLinA, and VA is NTimeA(B)-complete if B is a regular set of bounds.

This follows by relativizing the proofs of Lemma3 andProposition 2. Obviously, the reducing function fM , where fM(w) =
〈w, code(M)β(|w|)〉 for a 2-tapeNOTMMand a time-constructible boundβ , can be computed oracle-free in timeO(β(|w|)).
�

It immediately follows

Corollary 1. Let A ⊆ X
∗ and B1 ≤a B2 ≤a B3 for regular bound sets B1, B2, B3. Then

NTimeA(B1) ⊆ TimeA(B2) implies NTimeA(B3) = TimeA(B3), and

coNTimeA(B1) ⊆ [N]TimeA(B2) implies coNTimeA(B3) = [N]TimeA(B3). �

For example, from PA �= NPA it follows NLinA �⊆ PA. On the other hand, if LinA = NLinA, then PA = NPA. An oracle set A

with LinA = NLinA will be given in Section 6.

Now it is necessary to determine the way of working of [N]OTMs on their oracle tapes more precisely. As usual, we

assume that the oracle tape is always erased after an oracle query has been asked. Hence, to prepare the next oracle step, the

machine has to generate the new query completely, starting from the empty oracle tape. So the sum of lengths of all oracle

queries within a computation of t steps is bounded by the number t. Another regime of working, where an oracle query does

not change the previous content of the oracle tape, is discussed in [5]. Propositions 5 and 6 and Corollary 1 hold also in this

setting.

According to our understanding, we have [N]LinA ⊆ [N]Lin if A ∈ Lin. Indeed, all queries to oracle A can be replaced by

the decision procedure of A. So, from an [N]OTM M̂ with timeM̂A(w) ≤a β̂(|w|), one obtains an [N]TM M̃ accepting the

same language as M̂ such that, for almost all w ∈ X
∗,

timeM̃(w) ≤ β̂(|w|) +
l∑

i=1

β(|yi|),
if y1, . . . , yl are the oracle queries asked by M̂ in the course of a shortest accepting computation on inputw, and β is a time

bound of a (deterministic) TM deciding A. Since
∑l

i=1 |yi| ≤ β̂(|w|), from β, β̂ ∈ Blin it follows that timeM̃(w) ≤a β ′(|w|),
for some β ′ ∈ Blin:

if β̂(n) = ĉ · n, β(n) = c · n, n = |w| and mi = |yi|, we have

β̂(n) +
l∑

i=1

β(mi) = ĉ · n +
l∑

i=1

c · mi

≤ ĉ · n + c · ĉ · n = ĉ · (1 + c) · n.

In order to enable us to use this technique of replacing oracle queries by decisions, we put a further conditionwhich leads

to the notion of o-regular bound sets. The denotation can be understood as an abbreviation of “oracle-regular”.

178 A. Hemmerling / Information and Computation 209 (2011) 173–182

Definition 2. A regular set B of complexity bounds is said to be o-regular iff it fulfills:

(vii) for all β ∈ B, there is a β ′ ∈ B such that

whenever
∑l

i=1 mi ≤ β(n) for some l,m1, . . . ,ml, n ∈ N+ , then
∑l

i=1 β(mi) ≤ β ′(n).

Applying this property to the above idea of replacing oracle queries by decisions, we get:

timeM̃(w) ≤a β̂(|w|) + β ′(|w|) ≤a β ′′(|w|), for some β ′′ ∈ B, the latter because of condition (iv) of regularity.

For a class A of oracle sets and a bound set B, let

[N]TimeA(B) = ⋃
A∈A[N]TimeA(B).

So we have shown

Lemma 4. If B is an o-regular set of bounds, then [N]TimeTime(B)(B) = [N]Time(B). �

One easily verifies that the bound setswe dealt with so far, Bpol, Blin, Bqlin, Bspol and Bqmlin, are o-regular. This also enables

us to replace a class A of oracles by an A-complete set A:

Proposition 7. Let B be an o-regular set of bounds, A ∈ A, and A′ ≤B A for all A′ ∈ A. Then it holds:

[N]TimeA(B) = [N]TimeA(B).

To show this, assume that L ∈ [N]TimeA
′
(B), for some A′ ∈ A, and M is an [N]OTM such that MA′

accepts L with a time

bound β ′ ∈ B. Furthermore, let A′ ≤B A via some word function f which can be computed with a time bound β ∈ B. Then

the oracle queries of the form “yi ∈ A′ ?” in MA′
-computations can be replaced by a procedure computing f (yi) and asking

“f (yi) ∈ A ?”. In this way we get an [N]OTM M̃ such that M̃A accepts L too, and

timeM̃A(w) ≤ β ′(|w|) +
l∑

i=1

β(|yi|), for almost all input words w,

with oracle queries y1, . . . , yl such that
∑l

i=1 |yi| ≤ β ′(|w|). By condition (iv) of regularity, there is a bound β ′′ ∈ B with

β + β ′ ≤a β ′′. Then ∑l
i=1 |yi| ≤ β ′′(|w|) for almost all inputs w, and by condition (vii) there is a β ′′′ ∈ B such that∑l

i=1 β(|yi|) ≤ ∑l
i=1 β ′′(|yi|) ≤ β ′′′(|w|). Thus,

timeM̃A(w) ≤a β ′(|w|) + β ′′′(|w|) ≤a β̃(|w|),
with a suitable bound β̃ ∈ B which exists due to condition (iv) applied to β ′ and β ′′′. �

4. Complete sets in oracle hierarchies

By oracle hierarchies, we understand hierarchies defined inductively by means of time-bounded NOTMs analogously to

the polynomial-time hierarchy [12,13] or the linear-time hierarchy [16]. More precisely, for any set of bounds, B, let

�B
1 = NTime(B),

�B
k+1 = NTime�

B
k (B), for k ≥ 1, and

�B
k = co�B

k = {X∗ \ A : A ∈ �B
k }, for k ∈ N+ .

Obviously, �B
k ∪ �B

k ⊆ �B
k+1 ∩ �B

k+1, for all k ∈ N+ , if B contains a function β such that β(n) ≥ n. We put

OHB = ⋃
k∈N+

�B
k .

For B = Bpol, the usual polynomial-time hierarchy is obtained in this way: PH = ⋃
k∈N+ �

pol
k , where �

pol
k = �

Bpol
k ;

B = Blin yields the linear-time hierarchy, LinH = ⋃
k∈N+ �lin

k , where �lin
k = �

Blin
k ; and B = Bqlin yields the quasilinear-

time hierarchy, QlinH = ⋃
k∈N+ �

qlin
k , where �

qlin
k = �

Bqlin
k . The latter one was studied in [9]. It is open, whether these

hierarchies “are infinite” or collapse to one of their levels �B
k .

The join of languages A0, A1 ⊆ X
∗ is defined by

A0 ⊕ A1 = {0w : w ∈ A0} ∪ {1w : w ∈ A1}.
Lemma 5. For any o-regular bound set B and k ∈ N+ , the classes �B

k and �B
k are closed under ≤B as well as under union,

intersection and join of any two sets. Moreover, it holds: OHB = �B
k iff �B

k = �B
k iff �B

k ⊆ �B
k iff �B

k ⊇ �B
k .

A. Hemmerling / Information and Computation 209 (2011) 173–182 179

The closure properties even hold for all complexity classes [N]TimeA(B) if B is a regular set of bounds. Also, it is obvious

that �B
k = �B

k is equivalent to �B
k ⊆ �B

k and to the converse inclusion, as well as that OHB = �B
k implies �B

k = �B
k . Now

suppose �B
k = �B

k . We shall show that �B
k+1 = �B

k . This implies �B
k+1 = �B

k , hence �B
k+l = �B

k+l = �B
k for all l ∈ N,

what completes the proof of Lemma 5.

If L ∈ �B
k+1, it is accepted by M̂A with a time bound β̂ ∈ B, for an NOTM M̂ and an oracle set A ∈ �B

k . By supposition,

A = X
∗ \ A ∈ �B

k , and there are NOTMs M and M such that MA0 accepts A and M
A1 accepts A, both with time bounds

β0 and β1, respectively, from B and oracles A0, A1 ∈ �B
k−1. (For the rest of the proof, we assume that k ≥ 2. The case

k = 1 can analogously be treated.) By the first part of the lemma, we have A0 ⊕ A1 ∈ �B
k−1, too. Now let the NOTM M̃,

with the oracle set A0 ⊕ A1, simulate M̂A in such a way that the oracle queries are replaced by a subroutine that guesses

answers and verifies these by simulating MA0 and M
A1 , respectively. To almost every input w ∈ L, there is an accepting

M̂A-computation that only puts oracle queries y1, . . . , yl such that
∑l

i=1 |yi| ≤ β̂(|w|). Since B is regular, there is a β ∈ B

such that β0 + β1 + β̂ ≤a β . Hence, for almost all w ∈ L,
∑l

i=1 |yi| ≤ β(|w|), and by condition (vii) there is a β ′ ∈ B such

that
∑l

i=1 β(|yi|) ≤ β ′(|w|). Thus, for almost all inputsw ∈ L, there are M̃A0⊕A1 -computations acceptingw inO(β ′) steps,
and we have L ∈ NTimeA0⊕A1(B) ⊆ �B

k . �
The completeness of sets in the classes of oracle hierarchies is again understood with respect to the B-reducibilities, i.e.,

a language L is called �B
k -complete iff L ∈ �B

k and L′ ≤B L for all L′ ∈ �B
k . �

B
k -complete languages allow us to represent the

classes of the oracle hierarchy as complexity classes relativized to a special oracle and to express the collapse of OHB to �B
k

by the question whether such a special set belongs to �B
k :

Lemma 6. Let B be an o-regular set of bounds, k ∈ N+ and L be a �B
k -complete language. Then �B

k+1 = NTimeL(B), and it

holds: OHB = �B
k iff L ∈ �B

k .

The first assertion follows by Proposition 7, the second one can easily be proved by means of Lemma 5. �
Surprisingly, there are sets Vk that are �B

k -complete for a great variety of bound sets B. To show this, we employ the

universal NTime(B)-complete set V from Section 2 and its relativized modifications VA introduced in Section 3. Let

V1 = V, and

Vk+1 = VVk for all k ∈ N+ .

Proposition 8. For any o-regular set of bounds, B, and all k ∈ N+ it holds: Vk is �B
k -complete.

The proof is by induction on k. For k = 1, the assertion holds by Proposition 2. Suppose that Vk is �B
k -complete. By

Proposition 7, we have �B
k+1 = NTimeVk(B). Now Proposition 6 yields that Vk+1 = VVk is NTimeVk(B)-complete, i.e.,

�B
k+1-complete. �
We are going to apply this result to oracle hierarchies. First, a simple monotony property should be noticed. It easily

follows by induction:

Lemma 7. If B1 ≤a B2 for bound sets B1 and B2, then OHB1 ⊆ OHB2 , and, moreover, �
B1
k ⊆ �

B2
k and �

B1
k ⊆ �

B2
k for all

k ∈ N+ . �

Now we are able to show a transfer result for collapses of oracle hierarchies. This could also be proved by means of

padding, under a further natural assumption on the bound sets. Within our framework, however, it follows immediately.

Proposition 9. Let B1 ≤a B2 for o-regular bound sets B1 and B2. If OH
B1 = �

B1
k for some k ∈ N+ , then OHB2 = �

B2
k .

Indeed, by Lemma 6 and Proposition 8, OHB1 = �
B1
k implies Vk ∈ �

B1
k . Since B1 ≤a B2, by Lemma 7 it follows Vk ∈ �

B2
k ,

and this yields OHB2 = �
B2
k . �

For example, a collapse of the linear-time hierarchy or of the quasilinear-time hierarchy would imply a collapse of

the polynomial-time hierarchy. It might be still more impressive to realize that already if a lower hierarchy is completely

contained in some level of a higher oracle hierarchy, the latter collapses:

Proposition 10. Let B1 ≤a B2 for o-regular bound sets B1 and B2. If, for some k ∈ N+ ,�
B1
k+1 ⊆ �

B2
k ∪�

B2
k , thenOHB2 = �

B2
k+1.

Indeed, �
B1
k+1 ⊆ �

B2
k ∪ �

B2
k yields Vk+1 ∈ �

B2
k ∪ �

B2
k ⊆ �

B2
k+1, hence OHB2 = �

B2
k+1 by Lemma 6. �

For example, if the polynomial-time hierarchy does not collapse, then the linear-time hierarchy cannot be contained in

any �
pol
k , and even �lin

2 ⊆ �
pol
1 ∪ �

pol
1 = NP ∪ coNP is impossible.

180 A. Hemmerling / Information and Computation 209 (2011) 173–182

5. Transfer of collapses of difference hierarchies

This section is another continuationof Section2. The results followevenmoredirectly than thoseof Section4. Inparticular,

no relativization is needed.We preferred to deal with the oracle hierarchies first, since they are older and surely of a broader

interest than the difference hierarchies which are the subject of this section. On the other hand, in some respect, now the

treatment is analogous to that of the previous section such that we can omit the elaborations of several details.

For a regular set of bounds, B, let the corresponding difference hierarchy consist of the classes DB
k , for k ∈ N+ , which are

defined by

DB
k =

⎧⎨
⎩

{(A1 \ A2) ∪ · · · ∪ (Ak−2 \ Ak−1) ∪ Ak : A1, . . . , Ak ∈ NTime(B)} if k is odd,

{(A1 \ A2) ∪ · · · ∪ (Ak−1 \ Ak) : A1, . . . , Ak ∈ NTime(B)} if k is even.

Without loss of generality, one could additionally require that A1 ⊇ A2 ⊇ · · · ⊇ Ak−1 ⊇ Ak . DH
B = ⋃

k∈N+ DB
k is exactly

the Boolean closure of NTime(B) which, due to the regularity of B, is closed under union and intersection. So DHB or the

sequence of the classes DB
k are also known as Boolean hierarchy (over NTime(B)), in particular for the case B = Bpol, where

it was first introduced, cf. [2] for further details and references.

In analogy to the construction of V , there are natural languages expected to be complete in DHB. Let 〈·, . . . , ·〉 denote the
encoding of finite sequences of words by single words which is straightforwardly defined by means of the pairing function.

Now we consider the sets

VDk = {〈w, code(M1)
t, . . . , code(Mk)

t〉 : w ∈ X
∗, |w| ≤ t ∈ N+ and M1, . . . , Mk are 2-tape NTMs

such that M2i−1 accepts w in ≤ t steps but M2i does not accept w in ≤ t steps,

for some i ∈ N+ with 2i ≤ k, or k is odd and Mk accepts w in ≤ t steps}.

If one puts

AV
i = {〈w, code(M1)

t, . . . , code(Mk)
t〉 : w ∈ X

∗, |w| ≤ t ∈ N+ and

M1, . . . , Mk are 2-tape NTMs such that Mi accepts w in ≤ t steps},

then it immediately follows

VDk =
⎧⎨
⎩

(AV
1 \ AV

2) ∪ · · · ∪ (AV
k−2 \ AV

k−1) ∪ AV
k if k is odd,

(AV
1 \ AV

2) ∪ · · · ∪ (AV
k−1 \ AV

k) if k is even.

Analogously to Lemma 3, one can show that AV
i ∈ NLin ⊆ NTime(B). Hence we have VDk ∈ DB

k for any regular bound set

B and k ∈ N+ . On the other hand, let L ∈ DB
k , i.e.,

L =
⎧⎨
⎩

(A1 \ A2) ∪ · · · ∪ (Ak−2 \ Ak−1) ∪ Ak if k is odd,

(A1 \ A2) ∪ · · · ∪ (Ak−1 \ Ak) if k is even,

for arbitrary languages Ai ∈ NTime(B) which are accepted by 2-tape NTMs Mi with time bounds βi ∈ B. Due to conditions

(ii) and (iv) of regularity, there is a time-constructible β ∈ B such that βi ≤a β for 1 ≤ i ≤ k. Then the word function

f : X
∗ −→ X

∗ defined by

f (w) = 〈w, code(M1)
β(|w|), . . . , code(Mk)

β(|w|)〉
is computable in time O(β(|w|)), and it is an m-reduction of L to VDk . So we have shown

Proposition 11. For all regular sets of bounds, B, and k ∈ N+ , the sets VDk are D
B
k-complete with respect to ≤B. �

Since these DB
k-complete sets do not depend on the regular bound sets B, we get an upward transfer of collapses of the

difference hierarchies. Of course, one has to employ the following facts which are easily shown.

Lemma 8. For any regular bound set B, the classes DB
k are closed under ≤B. If the language L is DB

k+1-complete with respect to

≤B, then it holds: DHB = DB
k iff DB

k+1 = DB
k iff L ∈ DB

k . �

From this, we immediately obtain an upward transfer of collapses analogously to Propositions 9 and 10.

Proposition 12. Let B1 ≤a B2 for regular sets of bounds, B1 and B2. If DH
B1 = D

B1
k or only D

B1
k+1 ⊆ D

B2
k for some k ∈ N+ , then

DHB2 = D
B2
k . �

A. Hemmerling / Information and Computation 209 (2011) 173–182 181

By [8] it is known that a collapse of the difference hierarchy over NP implies the collapse of the polynomial-time hierarchy

to its third level. This yields

Corollary 2. If the linear-time difference hierarchy collapses, i.e., DHBlin = D
Blin
k for some k ∈ N+ , or if D

Blin
k+1 ⊆ D

Bpol
k for some

k ∈ N+ , then PH ⊆ �
pol
3 . �

6. Time completeness in space classes

Weomit a detailed treatment of space classes analogously towhatwe did for time complexity classes. In particular, oracle

hierarchies over the interesting space classes collapse to their first level, since the nondeterministic space classes are closed

under complement, see [7,14]. Here we only want to point out that there is a special set VS which is complete in several

nondeterministic space classes under the related time-bounded reducibilities.

For a set of bounds, B, we consider the space complexity class

[N]Space(B) = ⋃
β∈B

[N]Space(β), where

[N]Space(β) = {L ⊆ X
∗ : L is accepted by an [N]TM Mwith spaceM(w) ≤ β(|w|) for almost all w ∈ X

∗}.
If Blin ≤a B, it suffices to consider simple [N]TMs in accepting languages from [N]Space(B), i.e., TMs with only one tape on

which the input is given and the computation has to be performed, with a space bound β ∈ B.

For example, [N]LBA = [N]Space(Blin) is the class of languages accepted by so-called [nondeterministic] linear bounded
automata, and NLBA coincides with the class of context-sensitive languages over X. NPSPACE = PSPACE = [N]Space(Bpol)
consists of the languages acceptable in polynomial space.

Our universal complete set is defined analogously to V in Section 2. Let

VS = {〈w, code(M)s〉 : w ∈ X
∗, |w| ≤ s ∈ N+ and M is a simple NTM that accepts w using ≤ s tape cells}.

Lemma 9. VS ∈ NLBA.

Given an input u ∈ X
∗, a linear space-bounded TM first checks that u = 〈w, code(M)s〉 for some w ∈ X

∗, |w| ≤ s ∈ N+ ,

and a simple NTM M. Then it simulates the work of Mon input w up to an accepting configuration, but only as long as the

related M-computation on w uses at most s cells. �

Proposition 13. For any regular bound set B, VS is NSpace(B)-complete with respect to ≤B.

By Lemma 9, VS ∈ NSpace(B) . For L ∈ NSpace(B), let M be a simple NTM accepting L on a work space ≤a β ∈ B.

Since β can supposed to be time-constructible, the reducing function, fM(w) = 〈w, code(M)β(|w|)〉, is computable in time

O(β(|w|)). �
Since, for regular B, the space classes [N]Space(B) are closed under ≤B, analogously to Proposition 3 it follows:

Proposition 14. If B1 ≤a B2 ≤a B3 for regular sets of bounds B1, B2 and B3, then

NSpace(B1) ⊆ Space(B2) implies NSpace(B3) = Space(B3). �

For example, if NLBA ⊆ Space(Bqlin), then NSpace(Bqlin) = Space(Bqlin).
A more interesting application of VS is the following:

Proposition 15. Let A ⊆ X
∗ be NLBA-complete under linear-time reducibility. Then

LinA = NLinA = NLBA.

NLBA ⊆ LinA holds, since any L ∈ NLBA can be reduced to A by a linear-time computable function. Conversely, if

L ∈ NLinA and A ∈ NLBA, then by [7,14] the complement A = X
∗ \ A belongs to NLBA, too. Now L can be accepted by a

nondeterministic linear bounded automaton that simulates the linear-time acception, but replaces each oracle query by a

subroutine that guesses an answer and confirms this by means of the acception of A and A, respectively. Hence L ∈ NLBA.

�
By means of Corollary 1, from Proposition 15 it follows:

Corollary 3. If the language A isNLBA-complete under linear-time reducibility, thenNTimeA(B) = TimeA(B) for any regular set
of bounds B. �

182 A. Hemmerling / Information and Computation 209 (2011) 173–182

Usually, as oracle sets A with PA = NPA, one takes PSPACE-complete languages A. Corollary 3 shows that our VS ∈ NLBA

can also be used to this purpose.

We conclude with an application concerning the tape-number hierarchy of deterministic linear-time TMs. By [3], “it

is plausible that a k + 1-tape deterministic linear time Turing machine can accept sets not accepted by any k-tape such

machine”. The following proposition shows that this assertion does not relativize.

Proposition 16. Let A beNLBA-complete under linear-time reducibility. Then there is a number k0 ∈ N such that every language

L ∈ LinA can be accepted by a linear time-bounded deterministic k0-tape OTM with the oracle A.

By Proposition 6, VA is NLinA-complete. Thus, for any L ∈ LinA we have L ≤Blin
VA, and the proof of Proposition 6 shows

that the reducingword function fM can be computed by a deterministic TMM0 without anywork tape, i.e., with an input tape

and an output tape only. Since NLinA = LinA, VA can be accepted in linear time by some MA
1, where M1 is a deterministic kA-

tape OTM, with some number kA of work tapes. Hence, the composition of M0 and M1 leads to a deterministic (kA +1)-tape
OTM that accepts L in linear time with respect to the oracle set A. So k0 = kA + 1 fulfills the assertion. �

For A = VS, we get a still sharper result: If L ∈ LinVS = NLinVS = NLBA, then L ≤Blin
VS via a function fM : w �→

〈w, code(M)c·|w|〉, cf. the proof of Proposition 13. In order to decide L relatively to VS in linear time, let a deterministic OTM,

on the inputw ∈ X
∗, put here fM(w) on the oracle tape and halt with the oracle answer. To do this, no further work tape is

needed. Thus, L is accepted by a linear time-bounded deterministic 0-tape OTM with oracle VS.

Acknowledgment

The example of the o-regular set of superpolynomial bounds, Bspol, has been noticed by an anonymous referee.

References

[1] R. Book, S. Greibach, Quasirealtime languages, Math. Systems Theory 4 (1970) 87–111.

[2] J.-Y. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sawelson, K.Wagner, G.Wechsung, The Boolean hierarchy I: structural properties, SIAM J. Comput.
17 (1988) 1232–1252.

[3] S. Cook, P. Nguyen, Logical Foundations of Proof Complexity, Cambridge University Press, 2010.
[4] D.-Z. Du, K.-I. Ko, Theory of Computational Complexity, Wiley-Interscience, New York, 2000.

[5] A. Durand, M. More, Non-erasing, counting and majority over the linear time hierarchy, Inform. Comput. 174 (2002) 132–142.

[6] L. Fortnow, The role of relativization in complexity theory, Bull. EATCS 52 (1994) 229–244.
[7] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (1988) 935–938.

[8] J. Kadin, The polynomial time hierarchy collapses if the Boolean hierarchy collapses, SIAM J. Comput. 17 (1988) 1263–1282.
[9] A.V. Naik, K.W. Regan, D. Sivakumar, On quasilinear-time complexity theory, Theoret. Comput. Sci. 148 (1995) 325–349.

[10] W. Paul, N. Pippenger, E. Szemerèdi,W.T. Trotter, Ondeterminismversus nondeterminismand related problems, in: Proc. of the 24th FOCS, 1983, pp. 429–438.
[11] C.P. Schnorr, Satisfiability is quasilinear complete in NQL, J. ACM 25 (1978) 136–145.

[12] L. Stockmeyer, A. Mayer, Word problems requiring exponential time, in: Proc. of the 5th STOC, 1973, pp. 1–9.

[13] L. Stockmeyer, The polynomial time hierarchy, Theoret. Comput. Sci. 3 (1977) 1–22.
[14] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Acta Inform. 26 (1988) 279–284.

[15] G. Wechsung, Vorlesungen zur Komplexitätstheorie, B.G. Teubner, Stuttgart, 2000.
[16] C. Wrathall, Rudimentary predicates and relative computation, SIAM J. Comput. 7 (1978) 194–209.

	Observations on complete sets between linear time and polynomial time
	Introduction and overview
	Basic notions and facts
	A complete set and simple transfer results
	Relativization and o-regularity
	Complete sets in oracle hierarchies
	Transfer of collapses of difference hierarchies
	Time completeness in space classes
	References

