4 research outputs found

    Removing useless APs and fingerprints from WiFi indoor positioning radio maps

    Get PDF
    Maintaining consistent radio maps for WiFi fingerprinting-based indoor positioning systems is an essential step to improve the performance of the positioning engines. The radio maps consist of WiFi fingerprints collected at a predefined set of positions/places within a positioning area. Each fingerprint consists of the identification and radio signal level of the surrounding Access Points (APs). Due to the wide proliferation of WiFi networks, it is very common to observe 10 to 20 APs at a single position and more than 50 APs across a single building. However, in practical, not all of the detected APs are useful for the position estimation process. Some of them might have weak signals at certain positions or might have less significance for a positionā€™s fingerprint. Thus, those useless APs will add additional computational overheads during the position estimation, and consequently they will reduce the overall performance of the positioning engines. A similar phenomenon also occurs with some of the collected fingerprints. While it is widely accepted that the larger and more detailed the radio map is, the better is the accuracy of the positioning system, we found that some of the fingerprint samples on the radio maps do not contribute significantly to the estimation process. In this paper, we propose two methods for filtering the positioning radio maps: APs filtering and Fingerprints filtering. Then we report on the results of a set of experiments that have been done to evaluate the performance of a WiFi positioning radio map before and after applying the filtering approaches. The results show that there is possibility to simplify the radio maps of the positioning engines without significant degradation on the positioning precision and accuracy, and therefore to reduce the processing time for estimating the position of a tracked WiFi tag. This result has an important impact on increasing the number of tags a single instance of a WiFi positioning engine can handle at a time.This work was supported by the FEDER program through the COMPETE and the Portuguese Science and Technology Foundation (FCT), within the context of the AAL4ALL (COMPETE 13852) and FCOMP-01-FEDER-0124-022674 projects

    On the RBF-based positioning using WLAN signal strength fingerprints

    No full text

    Signals of Opportunity for Positioning Purposes

    Get PDF
    O ver the last years, location-based services (LBS) have become popular due to the emergence of smartphones with capabilities of positioning their userā€™s location on Earth at unprecedented speed and convenience. Behind such feat are the technological advances in global navigation satellite systems (GNSS), such as Galileo, Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS), Global Positioning Service (GPS) and Beidou. The easiness of smartphones and the improvement of positioning technology has driven LBS to be at the core of many business models. Some of these business models rely on the userā€™s location to pick him up on a car, relinquish a meal to him, oļ¬€er insights on sports performance, locate items to be picked up on a warehouse, among many others.While LBS are driving the need to continuously locate the user at higher degrees of accuracy and across any environment, be it in a city park, an urban canyon or inside a corporate oļ¬ƒce, some of these environments pose a challenge for GNSS. Indoor environments are particularly challenging for GNSS due to the attenuation and strong multipath imposed by walls and building materials. Such challenges and diļ¬ƒculties in signal acquisition have led to the development of solutions and technologies to improve positioning in indoor environments.While there are several commercial systems available to fulļ¬ll the needs of most LBS in indoor environments, most of these are not feasible to deploy at a global scale due to their infrastructure costs. Hence, several solutions have sought to build upon existing infrastructure to provide positioning information.Building upon existing infrastructure is what leads to the main topic of this thesis, the concept of signals of opportunity (SoO). A SoO is any wireless signal that can be exploited for a positioning purpose despite its initial design seeking to fulļ¬ll a diļ¬€erent purpose. A few examples of these signals are IEEE 802.11 signals, commonly known as WiFi, Bluetooth, digital video broadcasting - terrestrial (DVB-T) and many of the cellular signals, such as long-term evolution (LTE), universal mobile telecommunications system (UMTS) and global mobile system (GSM).The goal of this thesis is to address various challenges related to SoO for positioning. From the identiļ¬cation of SoO at the physical layer, how to merge them at the algorithmic level and how to put them in use for a cognitive positioning system (CPS)

    Algorithms for Positioning with Nonlinear Measurement Models and Heavy-tailed and Asymmetric Distributed Additive Noise

    Get PDF
    Determining the unknown position of a user equipment using measurements obtained from transmitters with known locations generally results in a nonlinear measurement function. The measurement errors can have a heavy-tailed and/ or skewed distribution, and the likelihood function can be multimodal.A positioning problem with a nonlinear measurement function is often solved by a nonlinear least squares (NLS) method or, when ļ¬ltering is desired, by an extended Kalman ļ¬lter (EKF). However, these methods are unable to capture multiple peaks of the likelihood function and do not address heavy-tailedness or skewness. Approximating the likelihood by a Gaussian mixture (GM) and using a GM ļ¬lter (GMF) solves the problem. The drawback is that the approximation requires a large number of components in the GM for a precise approximation, which makes it unsuitable for real-time positioning on small mobile devices.This thesis studies a generalised version of Gaussian mixtures, which is called GGM, to capture multiple peaks. It relaxes the GMā€™s restriction to non-negative component weights. The analysis shows that the GGM allows a signiļ¬cant reduction of the number of required Gaussian components when applied for approximating the measurement likelihood of a transmitter with an isotropic antenna, compared with the GM. Therefore, the GGM facilitates real-time positioning in small mobile devices. In tests for a cellular telephone network and for an ultra-wideband network the GGM and its ļ¬lter provide signiļ¬cantly better positioning accuracy than the NLS and the EKF.For positioning with nonlinear measurement models, and heavytailed and skewed distributed measurement errors, an Expectation Maximisation (EM) algorithm is studied. The EM algorithm is compared with a standard NLS algorithm in simulations and tests with realistic emulated data from a long term evolution network. The EM algorithm is more robust to measurement outliers. If the errors in training and positioning data are similar distributed, then the EM algorithm yields signiļ¬cantly better position estimates than the NLS method. The improvement in accuracy and precision comes at the cost of moderately higher computational demand and higher vulnerability to changing patterns in the error distribution (of training and positioning data). This vulnerability is caused by the fact that the skew-t distribution (used in EM) has 4 parameters while the normal distribution (used in NLS) has only 2. Hence the skew-t yields a closer ļ¬t than the normal distribution of the pattern in the training data. However, on the downside if patterns in training and positioning data vary than the skew-t ļ¬t is not necessarily a better ļ¬t than the normal ļ¬t, which weakens the EM algorithmā€™s positioning accuracy and precision. This concept of reduced generalisability due to overļ¬tting is a basic rule of machine learning.This thesis additionally shows how parameters of heavy-tailed and skewed error distributions can be ļ¬tted to training data. It furthermore gives an overview on other parametric methods for solving the positioning method, how training data is handled and summarised for them, how positioning is done by them, and how they compare with nonparametric methods. These methods are analysed by extensive tests in a wireless area network, which shows the strength and weaknesses of each method
    corecore