31 research outputs found

    Decorrelation: A Theory for Block Cipher Security

    Get PDF
    Pseudorandomness is a classical model for the security of block ciphers. In this paper we propose convenient tools in order to study it in connection with the Shannon Theory, the Carter-Wegman universal hash functions paradigm, and the Luby-Rackoff approach. This enables the construction of new ciphers with security proofs under specific models. We show how to ensure security against basic differential and linear cryptanalysis and even more general attacks. We propose practical construction scheme

    Decorrelation: a theory for block cipher security

    Get PDF
    Pseudorandomness is a classical model for the security of block ciphers. In this paper we propose convenient tools in order to study it in connection with the Shannon Theory, the Carter-Wegman universal hash functions paradigm, and the Luby-Rackoff approach. This enables the construction of new ciphers with security proofs under specific models. We show how to ensure security against basic differential and linear cryptanalysis and even more general attacks. We propose practical construction scheme

    International standards for stream ciphers: a progress report

    Get PDF
    The main objective of this paper is to review the current status of stream cipher standardisation. The hope is that, by doing so, the algorithms and techniques that are likely to be standardised at some point during the next year or so will be subjected to rigorous scrutiny by the crytopgraphic community

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Generic Attacks on Misty Schemes -5 rounds is not enough-

    Get PDF
    Misty schemes are classic cryptographic schemes used to construct pseudo-random permutations from 2n2n bits to 2n2n bits by using dd pseudo-random permutations from nn bits to nn bits. These dd permutations will be called the ``internal\u27\u27 permutations, and dd is the number of rounds of the Misty scheme. Misty schemes are important from a practical point of view since for example, the Kasumi algorithm based on Misty schemes has been adopted as the standard blockcipher in the third generation mobile systems. In this paper we describe the best known ``generic\u27\u27 attacks on Misty schemes, i.e. attacks when the internal permutations do not have special properties, or are randomly chosen. We describe known plaintext attacks (KPA), non-adaptive chosen plaintext attacks (CPA-1) and adaptive chosen plaintext and ciphertext attacks (CPCA-2) against these schemes. Some of these attacks were previously known, some are new. One important result of this paper is that we will show that when d=5d=5 rounds, there exist such attacks with a complexity strictly less than 22n2^{2n}. Consequently, at least 6 rounds are necessary to avoid these generic attacks on Misty schemes. When d≥6d \geq 6 we also describe some attacks on Misty generators, i.e. attacks where more than one Misty permutation is required

    Small-Box Cryptography

    Get PDF
    One of the ultimate goals of symmetric-key cryptography is to find a rigorous theoretical framework for building block ciphers from small components, such as cryptographic S-boxes, and then argue why iterating such small components for sufficiently many rounds would yield a secure construction. Unfortunately, a fundamental obstacle towards reaching this goal comes from the fact that traditional security proofs cannot get security beyond 2^{-n}, where n is the size of the corresponding component. As a result, prior provably secure approaches - which we call "big-box cryptography" - always made n larger than the security parameter, which led to several problems: (a) the design was too coarse to really explain practical constructions, as (arguably) the most interesting design choices happening when instantiating such "big-boxes" were completely abstracted out; (b) the theoretically predicted number of rounds for the security of this approach was always dramatically smaller than in reality, where the "big-box" building block could not be made as ideal as required by the proof. For example, Even-Mansour (and, more generally, key-alternating) ciphers completely ignored the substitution-permutation network (SPN) paradigm which is at the heart of most real-world implementations of such ciphers. In this work, we introduce a novel paradigm for justifying the security of existing block ciphers, which we call small-box cryptography. Unlike the "big-box" paradigm, it allows one to go much deeper inside the existing block cipher constructions, by only idealizing a small (and, hence, realistic!) building block of very small size n, such as an 8-to-32-bit S-box. It then introduces a clean and rigorous mixture of proofs and hardness conjectures which allow one to lift traditional, and seemingly meaningless, "at most 2^{-n}" security proofs for reduced-round idealized variants of the existing block ciphers, into meaningful, full-round security justifications of the actual ciphers used in the real world. We then apply our framework to the analysis of SPN ciphers (e.g, generalizations of AES), getting quite reasonable and plausible concrete hardness estimates for the resulting ciphers. We also apply our framework to the design of stream ciphers. Here, however, we focus on the simplicity of the resulting construction, for which we managed to find a direct "big-box"-style security justification, under a well studied and widely believed eXact Linear Parity with Noise (XLPN) assumption. Overall, we hope that our work will initiate many follow-up results in the area of small-box cryptography
    corecore