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Abstract. Misty schemes are classic cryptographic schemes used to construct pseudo-random permu-
tations from 2n bits to 2n bits by using d pseudo-random permutations from n bits to n bits. These d
permutations will be called the “internal” permutations, and d is the number of rounds of the Misty
scheme. Misty schemes are important from a practical point of view since for example, the Kasumi
algorithm based on Misty schemes has been adopted as the standard blockcipher in the third gener-
ation mobile systems. In this paper we describe the best known “generic” attacks on Misty schemes,
i.e. attacks when the internal permutations do not have special properties, or are randomly chosen. We
describe known plaintext attacks (KPA), non-adaptive chosen plaintext attacks (CPA-1) and adaptive
chosen plaintext and ciphertext attacks (CPCA-2) against these schemes. Some of these attacks were
previously known, some are new. One important result of this paper is that we will show that when
d = 5 rounds, there exist such attacks with a complexity strictly less than 22n. Consequently, at least
6 rounds are necessary to avoid these generic attacks on Misty schemes. When d ≥ 6 we also describe
some attacks on Misty generators, i.e. attacks where more than one Misty permutation is required.

Key words: Misty permutations, pseudo-random permutations, generic attacks on encryption schemes,
Block ciphers.

1 Introduction

A secure block cipher can be seen as a specific implementation of a pseudo-random permutation.
They are generally defined by using a recursive construction process. The most studied way to
build pseudo-random permutations from previously (and generally smaller) random function (or
permutations) is the d-round Feistel construction, that we will denote ψd: f = ψd(f1, . . . , fd),
where f1, . . . , fd are functions from n bits to n bits, and f is a permutation from 2n bits to 2n bits.
However, there exist other well known constructions such as for example Massey and Lai’s scheme
used in IDEA ([5]), unbalanced Feistel schemes with expanding or contracting internal functions
([12], [13]), and the Misty construction that we will analyze in this paper. We will denote by Md,
or Md

L a Misty scheme of d rounds: f = Md(f1, . . . , fd), where f1, . . . , fd are permutations from
n bits to n bits, and f is a permutation from 2n bits to 2n bits (precise definitions will be given
in Section 2). From a practical point of view, it is interesting to study the security of these Misty



schemes since this structure is used in real life block ciphers, such as Matsui’s Misty block cipher
[6], as well as in the Kasumi variant of Misty adopted as standard block cipher for encryption and
integrity protection in third generation mobile systems ([1]). In this paper we will study “generic”
attacks on Misty schemes, i.e. attacks when the internal permutations f1, . . . , fd do not have special
properties, or are randomly chosen. In real block ciphers f1, . . . , fd are not always pseudo-random,
and therefore there are often better attacks than the “generic” ones. However, “generic attacks”
are very interesting since they point on general properties of the structure, not on specific problems
of the f1, . . . , fd. We can consider that they give a minimum number of rounds needed in these
schemes for a given wanted security: generally the security with specific f1, . . . , fd is smaller or at
best equal compared to that with random f1, . . . , fd since the attacks on random f1, . . . , fd generally
also applied to specific f1, . . . , fd. (When it is not the case, the security might appear to be based
an a very specific and maybe dangerous instantiation). A general presentation of generic attacks
on Feistel schemes ([8]) and unbalanced Feistel schemes ([12], [13]) already exist, but no similar
presentation and analysis for Misty schemes was written so far. Some specific results on Misty
schemes attacks or security have been already published ([4], [14], [15], [16], [17] ...). Sometimes the
attacks previously found are the best known attacks (it is even possible to prove in some cases that
they are the best possible attacks). However, as we will see in this paper, sometimes some new and
better attacks exist, for example with 4 or more rounds. From a theoretical point of view, analyzing
generic attacks on Misty schemes is interesting because Misty schemes have many similarities, but
also many differences compared with Feistel schemes ψd (cf [8]), unbalanced Feistel schemes with
expanding functions F dk (cf [13]) and Butterfly and Benes schemes (cf [2], [10]). For Feistel schemes
ψd, the best known generic attacks are “2 point attacks”, i.e. attacks that use correlations on
(many) pairs of messages (such as differential attacks), cf [8]. For unbalanced Feistel schemes with
expanding functions the best known generic attacks are “2 point”, “4 point”, or rectangle attacks
with 6, 8, 10, ... points (cf [13]). For Butterfly schemes, the best known generic attacks are “4
points” attacks (cf [2], [10]). Here for Misty schemes, the best known attacks will be sometimes “2
point” attacks, sometimes “4 point” attacks, and they will be based sometimes on the properties
of the first n bits of output (S) and sometimes on the Xor of the first n bits of output and the
last n bits of output (S ⊕ T ), (combined with the properties of the input [L,R]). In fact it was not
obvious before making a specific and precise analysis of Misty schemes if these schemes were more
secure or less secure than for example Feistel schemes ψd for a given number of rounds. Our final
results will be summarized in Appendix G.

2 Notation

We use the following notation

– In = {0, 1}n is the set of the 2n strings of length n.
– For a, b ∈ In, [a, b] will be the string of length 2n which is the concatenation of a and b.
– For a, b ∈ In, a⊕ b stands for the bit by bit exclusion or of a and b.
– ◦ is the composition of functions.
– The set of all functions from In to In is Fn. Thus |Fn| = 2n·2

n
.

– The set of all permutations from In to In is Bn. Thus Bn ⊂ Fn and |Bn| = (2n)!.

Let f1 be a permutation of Bn. Let L,R, S and T be elements in In. Then by definition

ML(f1)([L,R] = [S, T ]⇔ S = R and T = R⊕ f1(L)
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R R⊕ f1(L)
Fig. 1. One round of the Misty L scheme

Let f1, . . . , fd be d bijections of Bn. Then by definition:

Md
L(f1, . . . , fd) = ML(fd) ◦ . . . ◦ML(f2) ◦ML(f1)

The permutation Md
L(f1, . . . , fd) is called a “Misty L scheme with d rounds”.

Similarly there is a slightly different construction named the Misty R scheme. By definition

MR(f1)([L,R] = [S, T ]⇔ S = R⊕ f1(L) and T = f1(L)

Md
R(f1, . . . , fd) = MR(fd) ◦ . . . ◦MR(f2) ◦MR(f1)

? ?

L R

R⊕ f1(L) f1(L)
Fig. 2. One round of the Misty R scheme

The permutation Md
R(f1, . . . , fd) is called a “Misty R scheme with d rounds”.

Md
L is the “classic” Misty scheme used in cryptography. Therefore when we will call “Misty scheme”

we will refer to Md
L (and not Md

R). This paper is mainly about Md
L but we will also rapidly present

the (few) security differences between Md
R and Md

L.
Messages

In our attacks, we will denote by m the number of input/output messages that we will use. ∀i, 1 ≤
i ≤ m, we will denote by [Li, Ri] the cleartext of message i, and by [Si, Ti] the ciphertext of this
message i. Without loosing generality we can always assume that the messages [Li, Ri] are pairwise
distinct (Li = Lj and i 6= j ⇒ Ri 6= Rj)

3 Some general Properties of the ML and MR schemes

3.1 Inversion

Let f1 ∈ Bn. Let Λ(f1), or simply Λ, be the permutation of B2n such that ∀[L,R] ∈ I2n, Λ([L,R])
def
=

[f1(L), R].

Let µ be the permutation of B2n such that ∀[L,R] ∈ I2n, µ([L,R])
def
= [R,L⊕R].

We have
(
Λ(f1)

)−1 = Λ(f−1
1 ).

We have µ2([L,R]) = [L⊕R,L] and µ3([L,R]) = [L,R]. Therefore µ3 = Id, and µ−1 = µ2. We see
that {

ML = µ ◦ Λ
MR = µ−1 ◦ Λ



Therefore M−1
L (f1) = Λ(f−1) ◦ µ−1 = µ ◦MR(f−1

1 ) ◦ µ−1. Then for d rounds, we have:

M−1
L (f1, . . . , fd) = µ ◦MR(f−1

d , . . . , f−1
1 ) ◦ µ−1

This property shows that the inverse of a ML function is an MR function, after composition by µ
on the inputs and outputs. This shows that the security of ML and MR will be the same for all
attacks where the inputs and outputs have the same possibilities. For example, in KPA (known
plaintext attacks), CPCA-1 (non adaptive chosen plaintext and chosen ciphertext attacks) and
CPCA-2 (adaptive chosen plaintext and chosen ciphertext attacks) the security of generic ML

and MR schemes will be the same. In CPA-1 (non adaptive chosen plaintext attacks) and CPA-2
(adaptive chosen plaintext attacks) the security may be different. In this paper we will concentrate
the analysis on the classical Misty ML, and just give rapidly the difference in CPA for the Misty
variant MR.

3.2 Formulas for the ML schemes, definition of the “internal” variable Xi

1 round :
{
S = R
T = R⊕ f1(L)

We will denote X1 = R⊕ f1(L)

2 rounds :
{
S = R⊕ f1(L)
T = R⊕ f1(L)⊕ f2(R)

Alternatively :
{
S = X1

T ⊕S = f2(R)
We will denote X2 = R⊕ f1(L)⊕ f2(R) = X1 ⊕ f2(R)

3 rounds :
{
S = R⊕ f1(L)⊕ f2(R)
T = S ⊕ f3(R⊕ f1(L))

Alternatively :
{
S = X2

T ⊕S = f3(X1)
We will denote X3 = X2 ⊕ f3(X1)

4 rounds :
{
S = R⊕ f1(L)⊕ f2(R)⊕ f3(R⊕ f1(L))
T = S ⊕ f4(R⊕ f1(L)⊕ f2(R))

Alternatively :
{
S = X3

T ⊕S = f4(X2)
We will denote X4 = X3 ⊕ f4(X2)

More generally, for d rounds:
{
S = Xd−1

T ⊕S = fd(Xd−2)
where the Xi variables are defined by induction:

X−1 = L, X0 = R, and ∀k ∈ N, k ≥ 1, Xk = Xk−1 ⊕ fk(Xk−2). For message number i,
we will denote the value of Xk on this message by Xk(i), or simply Xk

i . For example, X1
i =

X1(i) = Ri ⊕ f1(Li) and X2
i = X2(i) = Ri ⊕ f1(Li) ⊕ f2(Ri). Without loosing generality we can

choose messages in the attacks such that Li = Lj ⇒ Ri 6= Rj . Then we can notice that for all
i 6= j, Li = Lj ⇒ X1

i 6= X1
j (but we can have Li = Lj and X2

i = X2
j ).

For all i 6= j, Ri = Rj ⇒ X1
i 6= X1

j andX2
i 6= X2

j (but we can have Ri = Rj and X3
i = X3

j ).
For all i 6= j, X1

i = X1
j ⇒ X2

i 6= X2
j andX3

i 6= X3
j (but we can have X1

i = X1
j and X4

i = X4
j ) etc.

3.3 A useful “4 point” property

Let [L1, R1], [L2, R2], [L3, R3], [L4, R4] be four messages such that L1 6= L2, R1 6= R2, L3 =
L1, R3 = R2, L4 = L2, R1 = R4. Therefore we have the 4 messages [L1, R1], [L2, R2], [L1, R2], [L2, R1]
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Fig. 3. The equalities in L and R for the “4 point” property

Theorem 1 For such 4 messages, we always have:

X1
1 ⊕X1

2 ⊕X1
3 ⊕X1

4 = 0
X2

1 ⊕X2
2 ⊕X2

3 ⊕X2
4 = 0

X3
1 ⊕X3

2 ⊕X3
3 ⊕X3

4 = f3(X1
1 )⊕ f3(X1

2 )⊕ f3(X1
3 )⊕ f3(X1

4 )

(We also have X4
1 ⊕X4

2 ⊕X4
3 ⊕X4

4 = X3
1 ⊕X3

2 ⊕X3
3 ⊕X3

4 ⊕ f4(X2
1 )⊕ f4(X2

2 )⊕ f4(X2
3 )⊕ f4(X2

4 ))

Proof : These properties are immediately deduced from the definition of the internal variables
X1, X2, X3, X4 and from the fact that L3 = L1, R3 = R2, L4 = L2, R4 = R1: for all i,

X1
i
def
= Ri ⊕ f1(Li)

X2
i
def
= Ri ⊕ f1(Li)⊕ f2(Ri)

X3
i
def
= X2

i ⊕ f3(X1
i )

X4
i
def
= X3

i ⊕ f4(X2
i )

�

4 Attacks on Md
L, 1 ≤ d ≤ 4

4.1 1 round

After one round, we have S = R. This gives an attack with one message. We just have to check if
S = R. With a Misty scheme, this happens with probability one and with a random permutation
with probability 1

2n .

4.2 2 rounds

After 2 rounds we have:
{
S = R⊕ f1(L)
T ⊕S = f2(R)

We will describe two attacks: one using S and one using S ⊕ T .
First attack: on S

We choose two messages [L1, R1] and [L2, R2] such that L1 = L2 and we check if S1⊕S2 = R1⊕R2.
With a Misty scheme this happens with probability one and with a random permutation with



probability 1
2n . This is a CPA-1 with m = 2 and O(1) complexity. This attack can be transformed

into a KPA with m = O(
√

2n) and O(
√

2n) complexity: if m = O(
√

2n) then by the birthday
paradox with a good probability we can find two indices i, j such that Li = Lj and then we check
if Si ⊕ Sj = Ri ⊕Rj .

Second attack: on S ⊕ T
We choose two messages [L1, R1] and [L2, R2] such that R1 = R2 and we check if S1⊕S2 = T1⊕T2.
The complexity is the same as for the first attack (m = 2 in CPA-1 and m = O(

√
2n) in KPA).

4.3 3 rounds

Here
{
S = X2 = R⊕ f1(L)⊕ f2(R)
T ⊕S = f2(X1)

First attack: 4 points on S
Here there is a CPA-1 with m = 4 messages. (This attack was already published in [15]. We give it
here for sake of completeness). We choose 4 messages [L1, R1], [L2, R2], [L3, R3], [L4, R4] such that
L3 = L1, R3 = R2, L4 = L2, R1 = R4 as in Section 3.3. Then we have seen (cf Section 3.3) that
X2

1⊕X2
2⊕X2

3⊕X2
4 , i.e. here S1⊕S2⊕S3⊕S4 = 0. With a Misty scheme this happens with probability

one and with a random permutation with probability 1
2n . Thus we have a CPA-1 with m = 4 on

M3
L. We can transform this CPA-1 into a KPA. When m ' 2n, we can get with a non negligible

probability 4 pairwise distinct indices (i, j, k, l) such that Li = Lj , Lk = Ll; Ri = Rk, Rj = Rl
(since m4

24n is not negligible if m ' 2n) and then we check if Si ⊕ Sj ⊕ Sk ⊕ Sl = 0.
Second attack (for KPA only): 2 points on S ⊕ T

In CPA-1 the previous attack is the best one. However in KPA we can succeed when m ' 2n by
other ways: we can check if there exist i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j, such that [Ti ⊕ Si =
Tj ⊕ Sj and Li = Lj ] (or such that [Ti ⊕ Si = Tj ⊕ Sj and Ri = Rj ]). This never occurs on a
M3
L (since Ti ⊕ Si = Tj ⊕ Sj ⇔ f3(X1

i ) = f3(X1
j ) ⇔ X1

i = X1
j and this implies that Li 6= Lj and

Ri 6= Rj). However this will occur with a non negligible probability for a random permutation when
m2 ≥ 22n. The KPA complexity is here in O(2n) (same KPA complexity as before).

Third attack (for KPA only): 2 points on S
Similarly, we can check if there exist i, j, i 6= j such that [Ri = Rj and Si = Sj ] (or [Li =
Lj and Si ⊕ Sj = Ri ⊕ Rj ]). This never occurs on a M3

L (since f1 and f2 are permutations and
Li = Lj ⇒ Ri 6= Rj). The KPA complexity is here in O(2n) as above.

Fourth Attack: CPCA-2 with m = 3
We give now a CPCA-2 with m = 3 messages. (This attack seems new. It is inspired from [8] and
[15].)
Message 1: we choose [L1, R1] randomly and get [S1, T1].
Message 2: we choose [S2, T2] such that T1 ⊕ S1 = T2 ⊕ S2. We obtain [L2, R2]. (Inverse query: this
is a CPCA-2). Since T ⊕ S = f3(X1) and f3 is a bijection we have T1 ⊕ S1 = T2 ⊕ S2 ⇔ X1

1 =
X1

2 ⇔ R1 ⊕ f1(L1) = R2 ⊕ f1(L2)
Message 3: We choose [L3, R3] = [L1, R2] and we get [S3, T3] (this is a direct query).
It is easy to check that S2⊕S3 = R1⊕R2 ⇔ X1

1 = X1
2 . Thus with a Misty scheme, S2⊕S3 = R1⊕R2

appear with probability one and with a probability about 1
2n with a random permutation. This gives

a CPCA-2 with m = 3 and O(1) complexity.
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Fig. 4. The equalities in the CPCA-2 attack of M3
L with m = 3

4.4 4 rounds

Here
{
S = X2 = R⊕ f1(L)⊕ f2(R)⊕ f3(R⊕ f1(L))
T ⊕S = f4(X2) = f4(R⊕ f1(L)⊕ f2(R))

First attack: CPCA-2 with m = 4 (on S ⊕ T )
Here there is a CPCA-2 with m = 4 messages. (Note: this attack was already published in [15]. We
give it here for sake of completeness).

3

1

L L

R

R

X2

X2

S ⊕ T

2

4

Fig. 5. The equalities in the CPCA-2 attack of M4
L with m = 4

Message 1: we choose [L1, R1] randomly and get [S1, T1].
Message 2: we choose [S2, T2] such that T1 ⊕ S1 = T2 ⊕ S2. We obtain [L2, R2]. (Inverse query: this
is a CPCA-2). Note that since T1 ⊕ S1 = T2 ⊕ S2, we have X2

1 = X2
2 (since T ⊕ S = f4(X2) and f4

is a bijection).
Messages 3 and 4: we choose [L3, R3] and [L4, R4] such that [L3, R3] = [L1, R2] and [L4, R4] =
[L2, R1] (direct queries). Then from the “4 point property” of Section 3.3 we have X2

1 ⊕X2
2 ⊕X2

3 ⊕
X2

4 = 0. Moreover since here X2
1 = X2

2 , we have: X2
3 = X2

4 , hence this gives S3 ⊕ T3 = S4 ⊕ T4.
This equality will appear with probability one on a M4

L, and with probability 1
2n on a random

permutation: this is a CPCA-2 with m = 4 and O(1) complexity.
Transformation in CPA-1

We can easily modify this CPCA-2 with m = 4 in a CPA-1 with m = O(
√

2n) like this: we first
look to find i, j, i 6= j such that Ti ⊕ Si = Tj ⊕ Sj (this will occur when m ≥ O(

√
2n), and then we

proceed as above on messages [Li, Ri], [Lj , Rj ], [Li, Rj ], [Lj , Ri].



Transformation in KPA
We need four pairwise distinct indices (i, j, k, l) such that Li = Lk, Lj = Ll, Ri = Rl, Rj = Rk and
Ti ⊕ Si = Tj ⊕ Sj . In KPA we will have this when m4 ≥ 25n, i.e. this is a KPA in m ≥ O(2

5n
4 ). As

we will see now, there exists better KPA for M4
L.

Second attack: 2 point attack on S ⊕ T with KPA complexity in 2n and CPA-1 in√
2n

This attack may be new. However since it is a simple impossible differential attack, it was not
difficult to find. We generate m messages such that ∀i, 1 ≤ i ≤ m, Ri = 0 (or Ri constant). Then
we look if there exist i, j, i 6= j such that Si ⊕ Ti = Sj ⊕ Tj . With a random permutation we will
have such collisions when m ≥ O(

√
2n) (from the birthday paradox). However on a M4

L this is
impossible since{

Si ⊕Ti = Sj ⊕ Tj
Ri = Rj

⇔
{
f4 (Ri ⊕ f1(Li)⊕ f2(Ri)) = f4(Rj ⊕ f1(Lj)⊕ f2(Rj))
Ri = Rj

⇔ Ri = Rj and Li = Lj

since f4 and f1 are permutations and this is impossible if i 6= j. This CPA-1 in O(
√

2n) can be
immediately transformed in a KPA in O(2n): we look if there are some indices i 6= j such that
Ti⊕ Si = Tj ⊕ Sj and Ri = Rj . In KPA, for a random permutation this will occur when m2 ≥ 22n,
i.e. when m ≥ 2n and with a M4

L this will never happen.
Third attack: 4 point attack on S with CPA-1 complexity in

√
2n

(Note: this attack may be new. However the previous attacks are better in CPCA-2 or in KPA, and
in CPA-1 this attack has just the same complexity as the second attack above.) We choose 2 values
for L: L1 and L2. We choose '

√
2n random values for Ri. Therefore we have here m ' 2

√
2n.

The attack proceeds as follows: we count the number N of (i, j) such that: S(L1, Ri)⊕S(L2, Ri) =
S(L1, Rj)⊕S(L2, Ri). As we will see below, this number N is about twice for a M4

L compared with
N for a random permutation. Therefore we can distinguish in O(

√
2n) messages. The complexity

of this algorithm is also in O(
√

2n): for all i, 1 ≤ i ≤
√

2n, we store the values S(L1, Ri)⊕S(L2, Ri)
and we count the collisions. We have:

S(L1, Ri)⊕ S(L2, Ri)⊕ S(L1, Rj)⊕ S(L2, Rj) =

f3(Ri ⊕ f1(L1))⊕ f3(Ri ⊕ f1(L2))⊕ f3(Rj ⊕ f1(L1))⊕ f3(Rj ⊕ f1(L2))

We see that for fixed i and j, this can occur with probability 1
2n , but also if Ri⊕f1(L1) = Rj⊕f1(L2)

and this has also probability 1
2n . Therefore the number N will be twice for a M4

L than for a random
permutation, as claimed. (Remark: in KPA the complexity will be in 2

5n
4 and the second attack is

better in KPA.)

5 Attacks on 5 rounds

Here
{
S = X4

T ⊕S = f5(X3)
We will now see that on M5

L there are CPA-1 and KPA with a complexity � 22n. Therefore to
avoid all generic attacks on Misty schemes with a complexity � 22n, at least 6 rounds are must be
used. As far as we know, this result is new and the attacks that we will present for d ≥ 5 are new.



This result gives the subtitle of this paper: -5 rounds is not enough for Misty- since usually when
we build a pseudo-random permutation from 2n bits to 2n bits we want security greater than 22n.

Remark. It can be noticed that for Feistel schemes (cf [8])the result is similar: we need at
least 6 rounds to avoid all the attacks with complexity � 22n (since there are CPA-1 on ψ5 with a
complexity in O(2n), and KPA in O(2

3n
2 )). However the attacks on ψ5 and M5

L are very different:
the attacks on ψ5 are 2 point attacks, but the attacks on M5

L are 4 point CPA-1 and KPA or
Saturation CPA-1. Moreover, from the computations that we will do in Appendix D, we can prove
that all the 2 point attacks on M5

L have a complexity greater than 22n. Therefore it is not possible
to find better 2 point attacks since they do not exist.

5.1 Four point Attacks

The attack on M5
L, CPA-1 with complexity 2n.

We choose only 2 values for L: L1 and L2. We choose ' 2n values for Ri (i.e. almost all the possible
values for Ri). Therefore we have m ' 2 · 2n messages. The attack proceeds like this: we count the
number N of (Ri, Rj) values, Ri 6= Rj such that with the 4 messages

i : [L1, Ri], j : [L1, Rj ], i′ : [L2, Ri], j′ : [L2, Rj ]

we have:
{

Si ⊕ Ti = Sj ⊕ Tj
Si′ ⊕ Ti′ = Sj′ ⊕ Tj′

(Remark: the complexity to compute N is in O(2n) since for all values Ri we compute [Si, Ti] =
M5
L[L1, Ri] and [Si′ , Ti′ ] = M5

L[L2, Ri], we store i at the address [Si⊕Ti, Si′ ⊕Ti′ ] and we count the
collisions.)
As we will see, for a M5

L, this number is about twice the number we get for a random permutation.
Since for a random permutation, we have N ' m2

22n , we will be able to distinguish the probability
to have N ≥ 1 is not negligible, i.e. when m ≥ 2n. (We can also try another [L1, L2]. However, for
each [L1, L2] the probability of success of this attack is not negligible.)
Here S ⊕ T = f5(X3) and f5 is a permutation. Therefore{

Si ⊕Ti = Sj ⊕ Tj
Si′ ⊕Ti′ = Sj′ ⊕ Tj′

⇔
{
X3
i = X3

j

X3
i′ = X3

j′

Now from the “4 point property” of Section 3.3, we know that{
X1
i ⊕X1

j ⊕X1
i′ ⊕X1

j′ = 0 (1)
X3
i ⊕X3

j ⊕X3
i′ ⊕X3

j′ = f3(X1
i )⊕ f3(X1

j )⊕ f3(X1
i′)⊕ f3(X1

j′) (2)

Notice that it is impossible to have X1
i = X1

j (since Li = Lj) and it is also impossible to have
X1
i = X1

i′ (since Ri = Ri′). However we can have X1
i = X1

j′ (with probability about 1
2n ), and if this

occurs from (1) we will also have also X1
j = X1

i′ and from (2) we will have X3
i ⊕X3

j ⊕X3
i′⊕X3

j′ = 0 (3)

We now see that for a M5
L we have two possibilities to get

{
X3
i = X3

j

X3
i′ = X3

j′
: this can occur for random

reasons when X1
i 6= X1

j′ (probability about 1
22n when Ri and Rj are fixed), or as a consequence of

X1
i = X1

j′ and X3
i = X3

j (probability also about 1
22n when Ri and Rj are fixed). This N for M5

L

is about twice as N for a random permutation, as claimed. This shows that we can distinguish



a random permutation from a M5
L in CPA-1 with m ' 2n messages and O(2n) computations, as

claimed.
Transformation in KPA

The previous attack can be transformed in KPA with complexity in O(2
3n
2 ): we will count the

number N of (i, j, i′, j′) such that 

Li = Lj
Li′ = Lj′ 6= Li
Ri = Ri′

Rj = Rj′ 6= Ri
Si ⊕Ti = Sj ⊕ Tj
Si′ ⊕Ti′ = Sj′ ⊕ Tj′

We have N ' m4

26n for a random permutation, and about N ' 2m
4

26n for a M5
L. Therefore this KPA

succeeds when m ≥ 2
3n
2 as claimed.

We have implemented these attacks and this confirms our results. Details are given in Appendix E.
Remark. In [4], H. Gilbert and M. Minier proved CPCA-2 security for M5

L when m ≤
√

2n.

5.2 Saturation Attack

We thank the anonymous referee of Crypto 2009 for pointing out this CPA-1. For 5 rounds, we
have: S = R ⊕ f1(L) ⊕ f2(R) ⊕ f3(R ⊕ f1(L)) ⊕ f4(R ⊕ f1(L) ⊕ f2(R)). We choose 2n messages
[R,L] such that R = 0 for all messages and L takes all the possible values. Then we compute the
Xor of all resulting values S. With a Misty scheme we get 0 with probability 1 since f1, f2, f3 and
f4 are permutations. For a random permutation, we get 0 with probability 1

2n . This gives a CPA-1
with complexity O(2n). However tis attack is unstable. This means that if we replace a few points
of the function G such that S = G(L) by truly random values, the attack fails. (For more details
on stable and unstable attacks, see [11]).

6 Attacks in O(22n) on 6 rounds

6 rounds is the maximum number of rounds such that we know attacks in O(22n) computations
in order to distinguish Md

L (or Md
L generators i.e. generators of Md

L permutations) from random
permutations of B2n with an even signature. (This bound 22n is important since it is the total
number of possible inputs [L,R].)

First Attack: 2 point attack on S ⊕ T
This attack will be based on the following theorem.

Theorem 2 Let [L1, R1] and [L2, R2] be two messages such that R1 = R2 and L1 6= L2. Let p1 be
the probability that S1⊕T1 = S2⊕T2 if we have a M6

L and p2 be the probability that S1⊕T1 = S2⊕T2

if we have a random permutation. Then p1 = 1
2n−

1
23n +O( 1

24n ) and p2 = 1
2n−

1
22n +O( 1

23n ). Therefore
p1 is slightly larger than p2: p1 − p2 = 1

22n +O( 1
23n ).

Proof : For a random permutation, we have 24n − 22n possibilities for [S1, T1, S2, T2] (since S1 =
S2 ⇒ T1 6= T2), and we have 22n(2n − 1) of these solutions that satisfy S1 ⊕ T1 = S2 ⊕ T2

(since we have 22n possibilities for S1 and T1, and then 2n − 1 possibilities for S2 6= S1). So



p2 = 22n(2n−1)
24n−22n = 2n−1

22n−1
= 1

2n+1 = 1
2n −

1
22n +O( 1

23n ) as claimed.
For a M6

L, we have

S1 ⊕ T1 = S2 ⊕ T2 ⇔ f6(X4
1 ) = f6(X4

2 )
⇔ X4

1 = X4
2

⇔ R1 ⊕ f1(L1)⊕ f2(R1)⊕ f3(R1 ⊕ f1(L1))⊕ f4(R1 ⊕ f1(L1)⊕ f2(R1))
= R2 ⊕ f1(L2)⊕ f2(R2)⊕ f3(R2 ⊕ f1(L2))⊕ f4(R2 ⊕ f1(L2)⊕ f2(R2)))
⇔ f1(L1)⊕ f3(R1 ⊕ f1(L1))⊕ f4(R1 ⊕ f1(L1)⊕ f2(R1))
= f1(L2)⊕ f3(R1 ⊕ f1(L2))⊕ f4(R1 ⊕ f1(L2)⊕ f2(R1)) (1)

(since R1 = R2)
Let α be the probability that f1(L1)⊕ f3(R1 ⊕ f1(L1)) = f1(L2)⊕ f3(R1 ⊕ f1(L2)) (2). We have
α = 1

2n−1 , because L1 6= L2 and f1 is a bijection, so f1(L1) ⊕ f1(L2) 6= 0, and f3(R1 ⊕ f1(L2)) ⊕
f3(R1⊕f1(L1)) can take any value but 0 with probability 1

2n−1 (since f3 is a bijection and L1 6= L2).
When (2) occurs , (1) is impossible, since f1 and f4 are bijections and L1 6= L2. When (2) does
not occur, the probability to have (1) is exactly 1

2n−1 , since f1 and f3 are bijections. So we have
p1 = (1− α) · 1

2n−1 . This gives p1 = 2n−2
(2n−1)2

= 1
2n −

1
23n +O( 1

24n ) as claimed. �
Remark: in Appendix D, we will compute all the “h coefficient” related to deviations on “2

point” attacks. Theorem 2 can be seen as a property of the coefficient h10 with 6 rounds of Misty.
Application to the attack

We will count the number N of messages (i, j), i < j such that
{
Ri = Rj
Si ⊕Ti = Sj ⊕ Tj

In KPA, for random permutations , we will have E(N ) = m(m−1)
2·22n where m is the number of

messages. The standard deviation is σ(N ) = O(
√
E(N )) = O(m2n ). This can be proved by using

the “covariance formula”:

V (
∑
i

Xi) =
∑
i

V (Xi) +
∑
i 6=j

Cov(Xi, Xj) (#)

For a M6
L, we will have E(N ) ' m(m−1)

2·22n

(
1+ 1

2n

)
(cf Theorem 2 above). Therefore, we can distinguish

when m2

23n ≥ σ(N ), i.e. when m2

23n ≥ O(m2n ), i.e. m ≥ O(22n). The complexity of this attack is in
O(22n) in KPA (same complexity in CPA-1 and CPCA-2).
Remark. If we attack a single permutation M6

L, then m ≤ 22n since 22n is the total number of
possible messages [L,R] ∈ I2n. Then when m ' 22n, this attack has a fixed probability of success
not negligible (i.e. not near 0). If we want to increase this probability for example in order to have
a probability of success as near to 1 as wanted, we can assume that we attack M6

L generators, with
more than one permutation.

Second attack: 4 points on S ⊕ T
We describe the attack in KPA (the complexity will be the same in CPA). The attack proceeds

as follows: we count the number N of 4-uples of pairwise distinct indices (i, j, k, l) such that

(?)



Li = Lj
Lk = Ll(6= Li)
Ri = Rk
Rj = Rl(6= Ri)
Si ⊕Ti = Sk ⊕ Tk
Sj ⊕Tj = Sl ⊕ Tl



k

i

X4, R,
S ⊕ T

R, S ⊕ T

L,X2

L

X1

l

j

Fig. 6. The structure of the 4 point attack on M6
L

We will see that there is tiny deviation (in 1
2n ) of E(N ) for aM6

L compared from a truly permutation,
and we will see how to use this deviation in O(22n) complexity. For a random permutation in KPA,
we have E(N ) ' m4

26n with a standard deviation σ(N ) = O(
√
E(N )) = O(m

2

23n ).
Remark. The proof that the standard deviation is here again in the square root of the mean value
can be obtained from the covariance formula (#). We give here just the main idea of the proof.
Essentially, this comes from the fact that the terms of Covi 6=j(Xi, Xj) will have a small contribution
in the computation of V (

∑
iXi) since the variables will be near independent. This is because when

we have a structure of 4 messages (i, j, k, l) that satisfy (?) it is little help to find now more easily
another (i′, j′, k′, l′) that satisfy (?) because l is fixed when (i, j, k) are fixed (from Ll = Lk and
Rl = Rj). So, if we remove one point, for example j, we have to remove another point for example
l. Now from i, j, with 2 equations (1 in R, 1 in S⊕T ), we need to find another j, l with 4 equations
(1 in R, 2 in L, 1 in S ⊕ T ). It is therefore as easy to start again from a new i, j, k, l than to keep i
and j. (m

4

46n is larger than m2

24n since here m ≥ 2n).
For a M6

L we have S ⊕ T = f6(X4) and f6 is a bijection. So{
Si ⊕Ti = Sk ⊕ Tk
Sj ⊕Tj = Sl ⊕ Tl

⇔
{
X4
i = X4

k

X4
j = X4

l

Now from the “4 point property” of Section 3.3, we know that if Li = Lj , Lk = Ll, Ri = Rk, Rj =
Rl, we will have:
X1
i ⊕X1

j ⊕X1
k ⊕X1

l = 0
X2
i ⊕X2

j ⊕X2
k ⊕X2

l = 0
X4
i ⊕X4

j ⊕X4
k ⊕X4

l = f3(X1
i )⊕ f3(X1

j )⊕ f3(X1
k)⊕ f3(X1

l )⊕ f4(X2
i )⊕ f4(X2

j )⊕ f4(X2
k)⊕ f4(X2

l )
So (?) is also implied by

(??)



Li = Lj
Lk = Ll(6= Li)
Ri = Rk
Rj = Rl(6= Ri)
X1
i = X1

l

X2
i = X2

j

X4
i = X4

k

Figure 6 illustrates (?) and (??). So (?) can appear when (??) is not satisfied with about the
same probability as before, or when (??) is satisfied. We see that for a M6

L there will be about



m4

27n more solutions satisfying (?) than for a random permutation. Then, the attack will succeed if
m4

27n ≥ σ(N ) = O(m
2

23n ), i.e. when m ≥ O(22n) as claimed. (This is the same complexity as the first
attack).

Third Attack
This attack was also suggested by the anonymous referee of Crypto 2009. Here we count the total
number of pairs ([L1, R1]; [L2, R2]) such that

(#)
{
R1 = R2

S1 ⊕T1 = S2 ⊕ T2

and we check if this number is even. We now show that this is always the case with a Misty scheme.
More precisely, we prove that we we have a pair satisfying (#), we can construct another pair which
also satisfies the same conditions. We proceed as follows. Suppose that we have ([L1, R1]; [L2, R2])
verifying (#). After 2 rounds, the input [L1, R1] produces [X1

1 , X
2
1 ] and the input [L2, R2] produces

[X1
2 , X

2
2 ]. Moreover we have the following relations:

X1
1 = R1 ⊕ f1(L1) X1

2 = R2 ⊕ f1(L2)
X2

1 = X1
1 ⊕ f2(R1) X2

2 = X1
2 ⊕ f2(R2)

Since f2 is a permutation we have R1 = R2 ⇔ X1
1 ⊕X1

2 ⊕X2
1 ⊕X2

2 = 0. Let [L′, R′] be the message
which gives [X1

2 , X
2
1 ] after 2 rounds. Similarly, [L′′, R′′] is the message which gives [X1

1 , X
2
2 ] after

2 rounds. After 6 rounds, the output corresponding to the input [L′, R′] is denoted by [S′, T ′] and
the output corresponding to the input [L′′, R′′] is denoted by [S′′, T ′′]. Since R′ = f−1

2 (X1
2 ⊕X2

1 ),
R′′ = f−1

2 (X1
1 ⊕X2

2 ) and X1
1 ⊕X1

2 ⊕X2
1 ⊕X2

2 = 0, we obtain R′ = R′′. Since R1 = R2, we have:
S1 ⊕ T1 = S2 ⊕ T2 ⇔ f1(L1)⊕ f3(X1

1 )⊕ f4(X2
1 ) = f1(L2)⊕ f3(X1

2 )⊕ f4(X2
2 ).

In order to have S′ ⊕ T ′ = S′′ ⊕ T ′′, we have to show that f1(L′) ⊕ f3(X1
2 ) ⊕ f4(X2

1 ) = f1(L′′) ⊕
f3(X1

1 )⊕ f4(X2
2 ). But since f1(L′) = R2 ⊕ f1(L2)⊕ R′, f1(L′′) = R1 ⊕ f1(L1)⊕ R′′, R1 = R3 and

R′ = R′′, this is equivalent to show S1 ⊕ T1 = S2 ⊕ T2. Therefore ([L′, R′]; [L′′, R′′]) satisfy (#).
This proves that with a Misty schemes, the number such pairs is always even. This gives an attack
with complexity O(22n). However this attack is unstable.

7 Conclusion

Our final results have been summarized in Appendix G. These results were not obvious before
making specific and precise analysis of Misty schemes, since for Misty schemes we have efficient 2
point and 4 point attacks (as previously noticed), and since it was not obvious that the h coefficient
used in the attacks decrease in about 1

2n each time we add two more rounds for Md
L as for ψd. If we

compare our final results for Md
L with the best known generic attacks on classical Feistel schemes ψd

(cf Table 2 of Appendix F and Table 3 of Appendix G), we see that the final complexities are often
similar, with however often a change of one round , sometimes in one direction, and sometimes in
the other direction. For example, M3 is less secure than ψ3 in CPA-1, and M4 is less secure than
ψ4 in CPCA-2, but the best known attacks on M7 are less efficient than for ψ7 generators.

There are still many open problem on generic Misty schemes. For example, there are many gaps
between the proof of security in O(

√
2n) (birthday bound) obtained in [4], [14], [16], [17] and the

best known attacks. For a security less than or equal to 2n, generalizations of what was done on
ψk (cf [9], [7]) are probably possible, but for a security strictly greater than 2n no real techniques
of proofs are known (information bound).
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Appendices

A Attacks for 7 rounds and more than 7 rounds

The attacks that we have seen for 6 rounds can be extended for d ≥ 7 rounds in order to distinguish
Md
L generators from random permutations of B2n generators. When d ≥ 7 the complexity of the

best known attacks are strictly greater than 22n and we will use µ permutations of the generator
with µ > 1.

2 point Attacks when d is even, d ≥ 8

Theorem 3 Let [L1, R1] and [L2, R2] be two messages such that R1 = R2 and L1 6= L2. Let p1 be
the probability that S1⊕ T1 = S2⊕ T2 if we have a Md

L, d even, d ≥ 6 and p2 be the probability that
S1 ⊕ T1 = S2 ⊕ T2 if we have a random permutation. Then

p1 − p2 =
(−1)

d
2
+1

(2n)
d
2
−2

+O
( 1

(2n)
d
2
−1

)
Proof: This can be easily proved directly by induction (it is just a generalization of what we did
for Theorem 2), or by using the ε10 values that we compute in Appendix D. �

Application for the attack
We will count the number N of messages i, j, i < j that belong to the same permutation and such

that
{
Ri = Rj
Si ⊕Ti = Sj ⊕ Tj

In KPA, for µ random permutations with m messages per permutation we have: E(N ) = µm(m−1)
2·22n

and the standard deviation is σ(N ) = O(m
√
µ

2n ). (The fact that σ(N ) =
√
E(N ) can easily be

proved from the “covariance formula” (#)) of Section 6. For a Md
L, d even, d ≥ 6, we will have

E(N ) ' µm(m−1)
2·22n

(
1 + (−1)

d
2 +1

(2n)
d
2−2

)
(cf Theorem 3 above). Therefore we can distinguish when

µm2

2n
d
2

≥ σ(N ) = 0(
m
√
µ

2n
)

i.e.
√
µm ≥ 2n( d

2
−1), or µm2 ≥ 2n(d−2). With m ' 22n, this gives µ ≥ 2n(d−6) and a complexity

µ · 22n = 2n(d−4). Conclusion: when d is even and d ≥ 6, we can distinguish Md
L generators from

truly random permutation generators of B2n with a complexity in O(2n(d−4)).
2 point attack when d is odd, d ≥ 7

When d increases, the security of Md
L can only increase, since we have the composition of permu-

tations with independent secret values f1, . . . , fd. Since Md+1
L can be attacked in O(2n(d+1−4)) =

O(2n(d−3)) from the result above, when d is odd the security of Md
L generators is at maximum in

O(2n(d−3)). This value O(2n(d−3)) can be achieved by computing the number N of messages i, j,

i < j that belong to the same permutation and such that
{
Ri = Rj
Si ⊕Ti = Sj ⊕ Tj

(this is the same attack as for d even, but with complexity O(2n(d−3)) instead of O(2n(d−4))) This 2
point attack on S ⊕ T is based on the coefficient ε10 that we will compute in Appendix D. When d



is odd, another attack, with the same complexity O(2n(d−3)) is obtained by computing the number

N of messages i, j, i < j that belong to the same permutation and such that
{
Li = Lj
Si ⊕Ti = Sj ⊕ Tj

This 2 point attack on S ⊕ T is based on the coefficient ε11 that we will compute in Appendix D.
The complexity of these attacks O(2n(d−3)) can easily be proved by induction (this is a simple gen-
eralization of the 2 point attack given for 6 rounds), or by using the evaluation for the coefficients
ε10 and ε11 that we compute in Appendix D.

4 point attack when d ≥ 7
The 4 point attacks given for d = 6 can be generalized to attack Md

L generators for d ≥ 7. For d = 6
and d = 7 this will just give the same complexity as 2 points attacks. For d ≥ 8 the complexity
will be worse. In fact, when d ≥ 6 the best known 4 point attacks have complexity in O(2(2d−10)n)
and this is worse than the complexity O(2(d−4)n) for d even or O(2(d−3)n) for d odd of 2 point
attacks when d ≥ 8. (We do not give much details for these 4 point attacks when d ≥ 7 since the
complexities are equal or worse than for 2 points attacks).



B Signature of Misty schemes

Theorem 4 When n ≥ 2, Misty schemes Md
L and Md

R always have an even signature.

Proof : We have seen at Section 3.1 that:

M1
L = µ ◦ Λ and M1

R = µ−1 ◦ Λ,

with
∀[L,R] ∈ I2n, Λ[L,R] def= [f1(L), R]

∀[L,R] ∈ I2n, µ[L,R] def= [R,L⊕R].

Let us denote by τ the permutation of B2n such that

∀[L,R] ∈ I2n, τ([L,R]) = [L⊕R,R],

and by σ the permutation of B2n such that

∀[L,R] ∈ I2n, σ([L,R]) = [R,L].

Then, µ = σ ◦ τ , and τ2 = Id.
Signature of σ
All the cycles of σ have 1 or 2 elements since σ ◦ σ = Id. We have 2n cycles with one element

since σ([L,R]) = [L,R] if and only if L = R (and a cycle with one element has an even signature).
Thus we have 22n−2n

2 cycles with two elements. When n ≥ 2, this number is even. Therefore, σ has
an even signature if n ≥ 2.

Signature of τ
Similarly, all the cycles of τ have one or two elements since τ ◦ τ = Id.
We have 2n cycles with one element since this is the number of [L,R] such that L = L⊕R, i.e.

such that R = 0.
So we have 22n−2n

2 cycles with two elements and this is even if n ≥ 2. Therefore τ has even
signature if n ≥ 2.

Signature of µ
Since µ = σ ◦ τ , from the results on σ and τ we see that µ has an even signature if n ≥ 2.
Signature of Λ
Let k be the number of cycles of the permutation f1 with an even number of elements. Then

signature(f1) = (−1)k. The number of cycles of Λ with an even number of elements is exactly
2n · k, since we have 2n possible values for R.

Then signature(Λ) = (−1)2
nk, thus the signature of Λ is always even, ∀n ≥ 1.

Signature of M1
L and M1

R

Since M1
L = µ ◦ Λ and M1

R = µ−1 ◦ Λ, from the results on µ and Λ, we see that M1
L and M1

R

have an even signature if n ≥ 2.
Signature of Md

L and Md
R

Since Md
L is a composition of d permutations M1

L, we see that Misty schemes Md
L with any

number d of rounds have always an even signature when n ≥ 2. (Similarly for Md
R). �

Theorem 5 Let f be a permutation of B2n. Then by using O(22n) computations on the 22n in-
put/output values of f , we can compute a signature of f .



Proof : Just compute all the cycles ci of f , f =
∏α
i=1 ci and use the formula:

signature(f) =
α∏
i=1

(−1)length(ci)+1.

�

Theorem 6 Let G be a Misty generator. Then it is possible to distinguish G from a generator of
truly random permutations of B2n after O(22n) computations on O(22n) input/output values.

Proof : This is a direct consequence of the Theorems 4 and 5. �
Remark: In table 3 of Appendix G we present the results to distinguish Md

L from random permuta-
tions with an even signature, since for random permutations with an odd signature, the complexity
is in O(22n) if we have access to exactly all the 22n possible inputs and corresponding outputs.
(If only two inputs/outputs are missing the signature cannot be computed. If only one is missing,
it is not really missing: since we have a permutation, its output is the only output value not yet
obtained).



C Brute force attacks on generic Misty schemes

A possible attack is the exhaustive search on the d round internal permutations f1, . . . , fd from Bn
that have been used in th Misty construction.

We have | Bn |d= (2n)!d ' (2n·2
n
e−2n
√

2π2n)d (Stirling Formula). This value is between 2n·2
n·d

and 2(n−2)·2n·d. If we have access to m input/output pairs [L,R], [S, T ], we will divide the number
of possible f1, . . . , fd by about 2nm. Therefore, we will find the solution (f1, . . . , fd) when nm is
greater or equal to about n · 2n · d, i.e. when m is greater or equal to about 2n · d.

We see that for a fixed number of rounds d, when m ≥ O(2n) we will be able to distinguish Md
L

generators from truly random permutation generators if we have unbounded computing power but
are limited to m input/output queries. We say that O(2n) is the information bound.
Remark: Exhaustive search has a complexity between 2n·2

n·d and 2(n−2)·2n·d. In a version ”in the
middle” of this attack, it will be the square root of this complexity i.e. about 2

n·2n·d
2 , which is still

completely impracticable.



D Computation of the ”h coefficients”

All the attacks that we have presented in this paper can be (and has been) explained directly,
without the results of this appendix D. In this Appendix D, we will prove that no better “2
point attacks” can exist. For this, we will proceed in a systematic analysis of all the probability
deviation in the inputs/outputs from Md

L compared with truly random permutation of B2n when
we analyze only two messages [L1, R1] → [S1, T1] and [L2, R2] → [S2, T2] (with [L1, R1] 6= [L2, R2]
and [S1, T1] 6= [S2, T2]). We can find like this all the best ”two point attacks”, i.e. attacks that can
use a large number m of messages but that only use correlations on pairs of these messages (such
as differential attack for instance). We will denote by H(L1, R1, L2, R2), or simply H, the number
of internal permutations (f1, . . . , fd) such that:{

Md
L(f1, . . . , fd)([L1, R1]) = [S1, T1]

Md
L(f1, . . . , fd)([L2, R2]) = [S2, T2]

The mean value for H is |Bn|d
22n(22n−1)

since we have 22n(22n − 1) values for (S1, T1, S2, T2) such
that [S1, T1] 6= [S2, T2].

– We will denote h = H·24n

|Bn|k .

– We will denote by
◦
1 the mean value of h:

◦
1= 1

1− 1
22n

= 22n

22n−1
.

– We will denote ε = h−
◦
1.

The aim of this Appendix D is to evaluate the different values H, or equivalently the different
values h or ε.

D.1 One round

For M1
L, we have: {

S = R
T = R⊕ f1(L)

Let (C) be the following conditions:

(C)


S1 = R1

S2 = R2

L1 = L2 ⇐⇒ T1 ⊕R1 = T2 ⊕R2

When (C) is not satisfied, H = 0. When (C) is satisfied, H = |Bn|
2n(2n−1) , if L1 6= L2, and H = |Bn|

2n ,
if L1 = L2.

D.2 More rounds

For two rounds or more, we will distinguish between these 13 cases (we can check that all possibilities
correspond to exactly one of these cases, since [L1, R1] 6= [L2, R2] and [S1, T1] 6= [S2, T2]).



1 : L1 6= L2, R1 6= R2, S1 6= S2, R1 ⊕R2 6= S1 ⊕ S2, S1 ⊕ S2 6= T1 ⊕ T2

2 : L1 6= L2, R1 = R2, S1 6= S2, (then R1 ⊕R2 6= S1 ⊕ S2), S1 ⊕ S2 6= T1 ⊕ T2

3 : L1 = L2, R1 6= R2, S1 6= S2, R1 ⊕R2 6= S1 ⊕ S2, S1 ⊕ S2 6= T1 ⊕ T2

4 : L1 6= L2, R1 6= R2, S1 6= S2, R1 ⊕R2 = S1 ⊕ S2, S1 ⊕ S2 6= T1 ⊕ T2

5 : L1 = L2, R1 6= R2, S1 6= S2, R1 ⊕R2 = S1 ⊕ S2, S1 ⊕ S2 6= T1 ⊕ T2

6 : L1 6= L2, R1 6= R2, S1 = S2, (then R1 ⊕R2 6= S1 ⊕ S2)S1 ⊕ S2 6= T1 ⊕ T2

7 : L1 6= L2, R1 = R2, S1 = S2, (then R1 ⊕R2 = S1 ⊕ S2), S1 ⊕ S2 6= T1 ⊕ T2

8 : L1 = L2, R1 6= R2, S1 = S2, (then R1 ⊕R2 6= S1 ⊕ S2)S1 ⊕ S2 6= T1 ⊕ T2

9 : L1 6= L2, R1 6= R2, S1 6= S2, R1 ⊕R2 6= S1 ⊕ S2, S1 ⊕ S2 = T1 ⊕ T2

10 : L1 6= L2, R1 = R2, S1 6= S2, R1 ⊕R2 6= S1 ⊕ S2, S1 ⊕ S2 = T1 ⊕ T2

11 : L1 = L2, R1 6= R2, S1 6= S2, R1 ⊕R2 6= S1 ⊕ S2, S1 ⊕ S2 = T1 ⊕ T2

12 : L1 6= L2, R1 6= R2, S1 6= S2, R1 ⊕R2 = S1 ⊕ S2, S1 ⊕ S2 = T1 ⊕ T2

13 : L1 = L2, R1 6= R2, S1 6= S2, R1 ⊕R2 = S1 ⊕ S2, S1 ⊕ S2 = T1 ⊕ T2

We will denote by hdi , 1 ≤ i ≤ 13, or more simply by hi when d is clearly fixed, the value of h
in case i. (Similarly,εdi , or εi denotes the value of ε in case i).

2 rounds For 2 rounds, we have {
S = R⊕ f1(L)
T ⊕ S = f2(R).

We can easily compute the hi values and the εi = hi−
◦
1 values. We get for 2 rounds:

h1 = 22n

(2n−1)2
; ε1 = 2·22n

(2n−1)2(2n+1)
' 2

2n

h2 = 0 ; ε2 = −
◦
1= −22n

(2n−1)(2n+1) ' −1

h3 = 0 ; ε3 = −
◦
1' −1

h4 = 0 ; ε4 = −
◦
1' −1

h5 = 22n

2n−1 ; ε5 = 23n

(2n−1)(2n+1) ' 2n

h6 = 22n

(2n−1)2
; ε6 = 2·22n

(2n−1)2(2n+1)
' 2

2n

h7 = 0 ; ε7 = −
◦
1' −1

h8 = 0 ; ε8 = −
◦
1' −1

h9 = 0 ; ε9 = −
◦
1' −1

h10 = 22n

2n−1 ; ε10 = 23n

(2n−1)(2n+1) ' 2n

h11 = 0 ; ε11 = −
◦
1' −1

h12 = 0 ; ε12 = −
◦
1' −1

h13 = 0 ; ε13 = −
◦
1' −1

Induction Using the fact that Md+1
L is the composition of a Md

L, and our values of H for M1
L, we

get induction formulas on the hi coefficients (for d ≥ 2).



To simplify the notations, we will denote hdi by hi and hd+1
i by h′i. With these notations, the

induction formulas are:

(D1)


h′1 = 1

2n−1 [(2n − 3)h1 + h2 + h4]
h′2 = 1

2n−1 [(2n − 2)h3 + h5]
h′3 = h1

h′4 = 1
2n−1 [(2n − 2)h1 + h2]

h′5 = h4

(D2)


h′6 = 1

2n−1 [(2n − 2)h6 + h7]
h′7 = h8

h′8 = h6

(D3)


h′9 = 1

2n−1 [(2n − 3)h9 + h10 + h12]
h′10 = 1

2n−1 [(2n − 2)h11 + h13]
h′11 = h9

h′12 = 1
2n−1 [(2n − 2)h9 + h10]

h′13 = h12

From these equations we can compute all the hdi values, for any d ≥ 2 by induction from the
previous values. We will continue the evaluation in order to see how small the ε values are.

We have, for all S1, T1, S2, T2,∑
L1,R1,L2,R2

H(L,R, S, T ) =| Bn |d (D4)

since each output comes from exactly one input. Similarly, for all L1, R1, L2, R2,∑
S1,T1,S2,T2

H(L,R, S, T ) =| Bn |d (D5)

since each input gives exactly one output.
With h = H·24n

|Bn|d we obtain:

For all S, T :
∑
L,R

h(L,R, S, T ) = 24n (D6)

For all L,R:
∑
S,T

h(L,R, S, T ) = 24n (D7)

When we specify S, T , (D6) gives 3 equations on the hi values:

– When S1 6= S2 and S1 ⊕ S2 6= T1 ⊕ T2:

(2n − 1)(2n − 2)h1 + (2n − 1)h2 + (2n − 2)h3 + (2n − 1)h4 + h5 = 22n (D8)

– When S1 = S2 and S1 ⊕ S2 6= T1 ⊕ T2:

(2n − 1)h6 + h7 + h8 =
22n

2n − 1
(D9)

– When S1 ⊕ S2 = T1 ⊕ T2 and S1 6= S2:

(2n − 1)(2n − 2)h9 + (2n − 1)h10 + (2n − 2)h11 + (2n − 1)h12 + h13 = 22n (D10)



Similarly, when we specify values L,R, (D7) gives 3 equations on the hi values:

– When L1 6= L2 and R1 6= R2:

(2n − 1)(2n − 2)h1 + (2n − 1)h4 + (2n − 1)h6 + (2n − 2)h9 + h12 = 22n (D11)

– When L1 = L2 and R1 6= R2:

(2n − 1)(2n − 2)h3 + (2n − 1)h5 + (2n − 1)h8 + (2n − 2)h11 + h13 = 22n (D12)

– When R1 = R2 and L1 6= L2:

(2n − 1)h2 + h7 + h10 =
22n

2n − 1
(D13)

Indices 1,2,3,4,5
From (D1) and (D8), and by using the εi variables instead of the hi variables, εi = hi−

◦
1, we get:

(E1)


ε′1 = (2n−3)ε1

2n−1 + ε2
2n−1 + ε4

2n−1

ε′2 = (−2n + 2)ε1 − ε2 − ε4
ε′4 = (2n−2)ε1

2n−1 + ε2
2n−1

(E2)
{
ε′3 = ε1
ε′5 = ε4

From these equations, we can compute all the εi values by induction, but we want more: we
want to evaluate how fast the εi values decrease.

We have: ε′1 − ε′4 = −(ε1−ε4)
2n−1 . Therefore, by induction:

(ε1 − ε4) =
(−1)k · 22n

(2n − 1)k
(E3)

Moreover, if we denote ε′′i = εd+2
i , ε′i = εd+1

i , εi = εdi , we have:

(E4)


ε′′1 = −ε1−2ε′1+ε′4

2n−1

ε′′2 = ε1 + ε′1 + ε′4
ε′′4 = −ε1−ε′1

2n−1

(E5)
{
ε′3 = ε1
ε′5 = ε4

These equations show that the εi values decrease by a factor of about 2n every 2 rounds (for
the indices 1, 2, 3, 4, 5).

Indices 6,7,8
From (D2) and (D9), and by using the εi variables instead of the hi variables, εi = hi−

◦
1,

(E6)
{
ε′6 = −ε6−ε8

2n−1

ε′8 = ε6
(E7) ε′7 = ε8

These equations show that ε6, ε7, ε8 will decrease by a factor about 2n each time we add two rounds.



Indices 9,10,11,12,13
From (D3) and (D10), and by using the εi variables instead of the hi variables (εi = hi−

◦
1), we

get:

(E8)


ε′9 = 2n−3

2n−1ε9 + ε10
2n−1 + ε12

2n−1

ε′10 = (−2n + 2)ε9 − ε10 − ε12

ε′12 = 2n−2
2n−1ε9 + ε10

2n−1

(E9)
{
ε′11 = ε9
ε13 = ε12

Moreover by induction from (E8) and the initial values for 2 rounds, we get ε9 = ε12 (thus
h9 = h12).

Thus we have:

(E10)
{
ε′9 = 2n−2

2n−1ε9 + ε10
2n−1

ε′10 = (−2n + 1)ε9 − ε10 = ε11

(E11)


ε′11 = ε9
ε′13 = ε9
ε12 = ε9

If we denote ε′′i = εd+2
i , we have:

ε′′10 =
−ε10 − ε′10

2n − 1
= ε9 (E12)

These equations (E11), (E12), show that ε9, ε10, ε11, ε12, ε13 will decrease by a factor 2n every
two rounds.

Example of values
We present here all the values εi for 3 rounds and 4 rounds. With the formulas above, we can

compute all the values εi and evaluate εi for any round.

3 rounds
ε1 = −4·22n

(2n−1)3(2n+1)
' −4

22n

ε2 = 2·22n

(2n−1)2(2n+1)
' 2

2n

ε3 = 2·22n

(2n−1)2(2n+1)
' 2

2n

ε4 = 22n(2n−3)
(2n−1)3(2n+1)

' 1
2n

ε5 = −
◦
1= −22n

(2n−1)(2n+1) ' −1

ε6 = 22n(2n−3)
(2n−1)3(2n+1)

' 1
2n

ε7 = −
◦
1= −22n

(2n+1)(2n−1) ' −1

ε8 = 2·22n

(2n−1)2(2n+1)
' 2

2n

ε9 = 2·22n

(2n−1)2(2n+1)
' 2

2n

ε10 = −
◦
1= −22n

(2n−1)(2n+1) ' −1

ε11 = −
◦
1 ' −1

ε12 = 2·22n

(2n−1)2(2n+1)
' 2

2n

ε13 = −
◦
1 ' −1



4 rounds

ε1 = −22n(2n−7)
(2n−1)4(2n+1)

' −1
22n

ε2 = 22n(2n−3)
(2n−1)3(2n+1)

' 1
2n

ε3 = −4·22n

(2n−1)3(2n+1)
' −4

22n

ε4 = −2·22n(2n−3)
(2n−1)4(2n+1)

' −2
22n

ε5 = 22n(2n−3)
(2n−1)3(2n+1)

' 1
2n

ε6 = −22n(3·2n−5)
(2n−1)4(2n+1)

' −3
22n

ε7 = 2·22n

(2n+1)(2n−1)2
' 2

2n

ε8 = 22n(2n−3)
(2n−1)3(2n+1)

' 1
2n

ε9 = 22n(2n−3)
(2n−1)3(2n+1)

' 1
2n

ε10 = −
◦
1 ' −1

ε11 = 2·22n

(2n−1)2(2n+1)
' 2

2n

ε12 = ε9 ' 2
2n

ε13 = ε11 ' 2
2n

Expression as power of complex numbers
It is also possible to formulate all the εi by using these two complex numbers β and λ:

λ = 1
2(2n−1)(−1 + i

√
4 · 2n − 5)

β = 22n

(2n−1)(2n+1)(2
n + i(2n−2)√

4·2n−5
).

λ, λ and −1
2n−1 are the 3 eigenvalues that occur in the induction relation among the variables,

and we have | λ |= 1√
2n−1

, and λ2(2n − 1) + λ+ 1 = 0.
Let Re(z) be the real value of a complex number z. Then, after d rounds, we have:

εd1 = (−1)d·22n

(2n−1)d+1 +Re(β · λd+2)
εd2 = Re(λdβ) = εd9
εd3 = (−1)d+1·22n

(2n−1)d
+Re(β · λd+1) = εd−1

1

εd4 = (−1)d+1·22n(2n−2)
(2n−1)d+1 +Re(β · λd+2) = εd1 + (−1)d+1·22n

(2n−1)d

εd5 = (−1)d·22n(2n−2)
(2n−1)d

+Re(β · λd+1) = εd−1
4

εd5 = (−1)d·22n(2n−2)
(2n−1)d

+Re(β · λd+1) = εd−1
4

εd6 = Re(λd+1β) = εd+1
9

εd7 = Re(λd−1β)) = εd−1
9

εd8 = Re(λdβ) = εd9
εd9 = Re(λdβ)
εd10 = Re(λd−2β) = εd−2

9

εd11 = Re(λd−1β) = εd−1
9

εd12 = Re(λdβ) = εd9
εd13 = Re(λd−1β) = εd−1

9



These expressions can be checked with:

λβ = 22n

(2n−1)(2n+1)(−1 + i√
4·2n−5

(2 · 2n − 1))

λ2β = 22n

(2n−1)(2n+1)(−1− 3i√
4·2n−5

)

λ3β = 2·22n

(2n−1)2(2n+1)
(1 + i(−2n+2)√

4·2n−5
)

λ4β = 22n

(2n−1)3(2n+1)
(2n − 3 + i(5·2n−7)√

4·2n−5
)

. . .

Examples of applications
Let us try to attack M6

L with ε10. First we have to evaluate ε10 for 6 rounds. From (E12) we
know that ε610 = ε49. Thus, ε610 = 22n(2n−3)

(2n−1)3(2n+1)
' 1

2n . (Another possibility is to use the formula
ε610 = Re(λ4β) ' 1

2n ).
Case 10 is when R1 = R2 and S1⊕S2 = T1⊕T2. ε610 ' 1

2n means that instead of having in KPA
of the order of m2

22n messages in this case 10, we will have about m2

22n (1 + 1
2n ) such messages.

Here again, the standard deviation is about the square root of the mean value in two points
attacks (this can be proved from the covariance formula # seen in Section 6), hence here σ = O(m2n ),
and we will distinguish when m2

22n · 1
2n ≥

m
2n , i.e. when m ≥ O(22n). This is exactly the two point

attacks described in Section 6.
Remark: from the value ε610 we can also easily recompute the probabilities p1 and p2 of Section 6.

p2 = 22n(2n−1)
24n

◦
1, since we have 22n(2n − 1) values (S1, T1, S2, T2) such that S1 ⊕ S2 = T1 ⊕ T2.

This gives p2 = 1
2n+1 .

Similarly, p1 = 22n(2n−1)
24n (

◦
1 +ε10), gives p1 = 2n−2

(2n−1)2
.



E Experimental results

We have implemented our new 4-point attack on 5-round L-schemes described in section 5. For
each test we ran, we generated some messages (i, j, k, l) and then checked the number of collisions
Si ⊕ Ti = Sj ⊕ Tj and Sk ⊕ Tk = Sl ⊕ Tl obtained, for all 4-tuples verifying Li = Lj , Lk = Ll,
Ri = Rk, Rj = Rl.

The length of the messages considered in this implementation was 32 bits (n = 16). To simulate
random permutations, we used Feistel schemes with a number of rounds between 20 and 50.

Table 1 below gives the number of collisions of type Si⊕ Ti = Sj ⊕ Tj and Sk ⊕ Tk = Sl⊕ Tl we
obtained for 4-tuples of messages (i, j, k, l) after different steps:

– Step 1 : At step 1, 3 · 2n messages have been evaluated (messages [L,R], with L = a, b, c,
a, b, c three different values, and R taking all possible value). After this step, 3 · 2n(2n−1)

2 4-
tuples (i, j, k, l) have been considered, and for every such tuple, a test Si ⊕ Ti = Sj ⊕ Tj and
Sk ⊕ Tk = Sl ⊕ Tl has been done.

– Step 2 : At step 2, 4 · 2n messages have been evaluated (messages [L,R], with L = a, b, c, d,
a, b, c, d four different values, and R taking all possible value). After this step, 6 · 2n(2n−1)

2 4-
tuples (i, j, k, l) have been considered, and for every such tuple, a test Si ⊕ Ti = Sj ⊕ Tj and
Sk ⊕ Tk = Sl ⊕ Tl has been done.

– Step 3 : At step 3, 5 · 2n messages have been evaluated (messages [L,R], with L = a, b, c, d, e,
a, b, c, d, e five different values and R taking all possible value). After this step, 10 · 2n(2n−1)

2
4-tuples (i, j, k, l) have been considered, and for every such tuple, a test Si ⊕ Ti = Sj ⊕ Tj and
Sk ⊕ Tk = Sl ⊕ Tl has been done.



Table 1. Average of the number of collisions of type Si⊕Ti = Sj ⊕Tj and Sk ⊕Tk = Sl⊕Tl obtained in both cases,
after different steps

Average
of the number of collisions

Si ⊕ Ti = Sj ⊕ Tj
and Sk ⊕ Tk = Sl ⊕ Tl

obtained in the case of a
ML scheme

Average
of the number of collisions

Si ⊕ Ti = Sj ⊕ Tj
and Sk ⊕ Tk = Sl ⊕ Tl

obtained in the case of a
random permutation

Step 1
3 · 2n messages

3·2n(2n−1)
2

tuples (i, j, k, l)tested

1 0.23

Step 2
4 · 2n messages

6·2n(2n−1)
2

tuples (i, j, k, l)tested

1.6 0.84

Step 3
5 · 2n messages

12·2n(2n−1)
2

tuples (i, j, k, l)tested

3.15 1.3

As claimed at Section 5, we obtained two times more collisions in the case of a L scheme than
in the case of a random permutation. Therefore, We are able to distinguish most of the 5 round L
schemes from a random permutation with O(2n) messages.



F Comparison between Misty and Feistel Schemes

In order to compare our results of Table 3 in Appendix G with the known results on classical Feistel
schemes ψd, we present in Table 2 the results for ψd (cf [8]). Let us recall here the definition of the
(classical, i.e. balanced) Feistel schemes. Let f1 ∈ Fn (f1 is not necessary a permutation unlike for
Misty). By definition

ψ(f1)([L,R] = [S, T ]⇔ S = R and T = L⊕ f1(R)

Let f1, . . . , fd be d bijections of Fn. Then by definition:

ψ(f1, . . . , fd) = ψ(fd) ◦ . . . ◦ ψ(f2) ◦ ψ(f1)

The permutation ψk(f1, . . . , fk) is called a “Feistel scheme with k rounds.”

Table 2. Minimum number A of computations needed to distinguish a Feistel generator ψd from random permutations
with even signature of B2n. This Table 2 (Feistel) is given here in order to compare it with Table 3.

KPA CPA-1 CPCA-2

ψ1 1 1 1

ψ2
√

2n 2 2

ψ3
√

2n
√

2n 3

ψ4 2n
√

2n
√

2n

ψ5 23n/2 2n 2n

ψ6 22n 22n 22n

ψ7 23n 23n 23n

ψ8 24n 24n 24n

ψd, d ≥ 6 2(d−4)n 2(d−4)n 2(d−4)n

All the values of Table 2 (Feistel schemes) can be obtained by using only 2 point attacks: 4 point
attacks achieve sometimes the same complexity, but are never better in Feistel schemes, unlike in
Misty schemes.



G Summary of the best known generic attacks on Misty schemes

We will use the following notation.

– A point on the left upside corner
•
A means that the value A can be obtained with a “4 point

attack” (i.e. an attack that use correlation on inputs [L,R] and output [S, T ] of 4 messages)
from the expression of the S value (in L and R). We use the same notation for “3 point CPCA-2
attack” on M3

L.

– A point on the right upside corner
•

A means that the value A can be obtained with a “4

point attack” from the expression S ⊕ T (in L and R).

– A point on the left downside corner A
•

means that the value A can be obtained with a “2

point attack” (i.e. correlation on pairs of messages) from the expression of the S value (in L
and R), or by a “‘1 point attack” from the expression of S (for one round M1

L).

– A point on the right downside corner A
•

means that the value A can be obtained with a “2

point attack” from the expression of the S ⊕ T (in L and R).
– The double line between 5 and 6 rounds indicates that for more than 6 rounds, the best known

values are greater than 22n.
– “New” means that the results is, as far as we know, new.

With these notations, the best known attacks on Misty schemes Md
L are given in Table 3.

In Table 3 we did not mention CPA-2 and CPCA-1 since the best known results for these attacks
are the same as for CPA-1.
• For Misty R schemes, Md

R, the values A will be the same, except for 3 rounds in CPA-1, where
the best known attack is in A =

√
2n for M3

R (instead of A = 4 for M3
L).

• If we are looking not for the number of computations A, but for adversaries with unlimited
computing power limited by m oracle queries, the best known attacks are given in Table 4. The
bound O(2n) is here the “information bound”: with unbounded computing power and m ≥ 2n we
can always distinguish (cf Appendix C).



Table 3. Minimum number A of computations needed to distinguish a Misty generatorMd
L from random permutations

with an even signature of B2n. For simplicity we denote 2α for O(2α).

KPA CPA-1 CPCA-2

M1
L 1

•
1
•

1
•

M2
L

√
2n

• •
2
• •

2
• •

M3
L

•
2n

• •

•
4

•
3

New

M4
L 2n

New •

• •√
2n

New •

•
4

M5
L

•
23n/2

New

•
2n

New

•
2n

New

M6
L

•
22n

New •

•
22n

New •

•
22n

New •

M7
L

•
24n

•New •

•
24n

•New •

•
24n

•New •

M8
L 24n

New •
24n

New •
24n

New •

M9
L 26n

•New •
26n

•New •
26n

•New •

M10
L 26n

New •
26n

New •
26n

New •

Md
L, d odd, d ≥ 9 2(d−3)n

•New •
2(d−3)n

•New •
2(d−3)n

•New •

Md
L, d even, d ≥ 8 2(d−4)n

New •
2(d−4)n

New •
2(d−4)n

New •

Table 4. Minimum number m of queries to distinguish Md
L from a random permutation of B2n. For simplicity we

denote 2α for O(2α).

KPA CPA-1 CPCA-2

M1
L 1 1 1

M2
L

√
2n 2 2

M3
L 2n 4 3

M4
L 2n

√
2n 4

M5
L 2n 2n 2n

M6
L 2n 2n 2n

M6
L, d ≥ 6 2n 2n 2n


