14 research outputs found

    On the Proximity of Markets with Integral Equilibria

    Full text link
    We study Fisher markets that admit equilibria wherein each good is integrally assigned to some agent. While strong existence and computational guarantees are known for equilibria of Fisher markets with additive valuations, such equilibria, in general, assign goods fractionally to agents. Hence, Fisher markets are not directly applicable in the context of indivisible goods. In this work we show that one can always bypass this hurdle and, up to a bounded change in agents' budgets, obtain markets that admit an integral equilibrium. We refer to such markets as pure markets and show that, for any given Fisher market (with additive valuations), one can efficiently compute a "near-by," pure market with an accompanying integral equilibrium. Our work on pure markets leads to novel algorithmic results for fair division of indivisible goods. Prior work in discrete fair division has shown that, under additive valuations, there always exist allocations that simultaneously achieve the seemingly incompatible properties of fairness and efficiency; here fairness refers to envy-freeness up to one good (EF1) and efficiency corresponds to Pareto efficiency. However, polynomial-time algorithms are not known for finding such allocations. Considering relaxations of proportionality and EF1, respectively, as our notions of fairness, we show that fair and Pareto efficient allocations can be computed in strongly polynomial time.Comment: 17 page

    Fair and Efficient Allocations under Subadditive Valuations

    Get PDF
    We study the problem of allocating a set of indivisible goods among agents with subadditive valuations in a fair and efficient manner. Envy-Freeness up to any good (EFX) is the most compelling notion of fairness in the context of indivisible goods. Although the existence of EFX is not known beyond the simple case of two agents with subadditive valuations, some good approximations of EFX are known to exist, namely 12\tfrac{1}{2}-EFX allocation and EFX allocations with bounded charity. Nash welfare (the geometric mean of agents' valuations) is one of the most commonly used measures of efficiency. In case of additive valuations, an allocation that maximizes Nash welfare also satisfies fairness properties like Envy-Free up to one good (EF1). Although there is substantial work on approximating Nash welfare when agents have additive valuations, very little is known when agents have subadditive valuations. In this paper, we design a polynomial-time algorithm that outputs an allocation that satisfies either of the two approximations of EFX as well as achieves an O(n)\mathcal{O}(n) approximation to the Nash welfare. Our result also improves the current best-known approximation of O(nlogn)\mathcal{O}(n \log n) and O(m)\mathcal{O}(m) to Nash welfare when agents have submodular and subadditive valuations, respectively. Furthermore, our technique also gives an O(n)\mathcal{O}(n) approximation to a family of welfare measures, pp-mean of valuations for p(,1]p\in (-\infty, 1], thereby also matching asymptotically the current best known approximation ratio for special cases like p=p =-\infty while also retaining the fairness properties

    Computing Welfare-Maximizing Fair Allocations of Indivisible Goods

    Full text link
    We study the computational complexity of computing allocations that are both fair and maximize the utilitarian social welfare, i.e., the sum of agents' utilities. We focus on two tractable fairness concepts: envy-freeness up to one item (EF1) and proportionality up to one item (PROP1). In particular, we consider the following two computational problems: (1) Among the utilitarian-maximal allocations, decide whether there exists one that is also fair according to either EF1 or PROP1; (2) among the fair allocations, compute one that maximizes the utilitarian welfare. We show that both problems are strongly NP-hard when the number of agents is variable, and remain NP-hard for a fixed number of agents greater than two. For the special case of two agents, we find that problem (1) is polynomial-time solvable, while problem (2) remains NP-hard. Finally, with a fixed number of agents, we design pseudopolynomial-time algorithms for both problems

    Efficient Fair Division with Minimal Sharing

    Full text link
    A collection of objects, some of which are good and some are bad, is to be divided fairly among agents with different tastes, modeled by additive utility-functions. If the objects cannot be shared, so that each of them must be entirely allocated to a single agent, then a fair division may not exist. What is the smallest number of objects that must be shared between two or more agents in order to attain a fair and efficient division? We focus on Pareto-optimal, envy-free and/or proportional allocations. We show that, for a generic instance of the problem -- all instances except of a zero-measure set of degenerate problems -- a fair Pareto-optimal division with the smallest possible number of shared objects can be found in polynomial time, assuming that the number of agents is fixed. The problem becomes computationally hard for degenerate instances, where agents' valuations are aligned for many objects.Comment: Add experiments with Spliddit.org dat

    Algorithms for Competitive Division of Chores

    Full text link
    We study the problem of allocating divisible bads (chores) among multiple agents with additive utilities, when money transfers are not allowed. The competitive rule is known to be the best mechanism for goods with additive utilities and was recently extended to chores by Bogomolnaia et al (2017). For both goods and chores, the rule produces Pareto optimal and envy-free allocations. In the case of goods, the outcome of the competitive rule can be easily computed. Competitive allocations solve the Eisenberg-Gale convex program; hence the outcome is unique and can be approximately found by standard gradient methods. An exact algorithm that runs in polynomial time in the number of agents and goods was given by Orlin. In the case of chores, the competitive rule does not solve any convex optimization problem; instead, competitive allocations correspond to local minima, local maxima, and saddle points of the Nash Social Welfare on the Pareto frontier of the set of feasible utilities. The rule becomes multivalued and none of the standard methods can be applied to compute its outcome. In this paper, we show that all the outcomes of the competitive rule for chores can be computed in strongly polynomial time if either the number of agents or the number of chores is fixed. The approach is based on a combination of three ideas: all consumption graphs of Pareto optimal allocations can be listed in polynomial time; for a given consumption graph, a candidate for a competitive allocation can be constructed via explicit formula; and a given allocation can be checked for being competitive using a maximum flow computation as in Devanur et al (2002). Our algorithm immediately gives an approximately-fair allocation of indivisible chores by the rounding technique of Barman and Krishnamurthy (2018).Comment: 38 pages, 4 figure
    corecore