8,749 research outputs found

    The intuitionistic fragment of computability logic at the propositional level

    Get PDF
    This paper presents a soundness and completeness proof for propositional intuitionistic calculus with respect to the semantics of computability logic. The latter interprets formulas as interactive computational problems, formalized as games between a machine and its environment. Intuitionistic implication is understood as algorithmic reduction in the weakest possible -- and hence most natural -- sense, disjunction and conjunction as deterministic-choice combinations of problems (disjunction = machine's choice, conjunction = environment's choice), and "absurd" as a computational problem of universal strength. See http://www.cis.upenn.edu/~giorgi/cl.html for a comprehensive online source on computability logic

    Gentzen-type axiomatization for PAL

    Get PDF
    AbstractThe aim of propositional algorithmic logic (PAL) is to investigate the properties of simple nondeterministic while-program schemes on propositional level. We present finite, cut-free, Gentzen-type axiomatization of PAL. As a corollary from completeness theorem, we obtain the small-model theorem and algorithm for checking the validity of PAL formulas

    Constraint CNF: SAT and CSP Language Under One Roof

    Get PDF
    A new language, called constraint CNF, is proposed. It integrates propositional logic with constraints stemming from constraint programming. A family of algorithms is designed to solve problems expressed in constraint CNF. These algorithms build on techniques from both propositional satisfiability and constraint programming. The result is a uniform language and an algorithmic framework, which allow us to gain a deeper understanding of the relation between the solving techniques used in propositional satisfiability and in constraint programming and apply them together

    Model Checking Linear Logic Specifications

    Full text link
    The overall goal of this paper is to investigate the theoretical foundations of algorithmic verification techniques for first order linear logic specifications. The fragment of linear logic we consider in this paper is based on the linear logic programming language called LO enriched with universally quantified goal formulas. Although LO was originally introduced as a theoretical foundation for extensions of logic programming languages, it can also be viewed as a very general language to specify a wide range of infinite-state concurrent systems. Our approach is based on the relation between backward reachability and provability highlighted in our previous work on propositional LO programs. Following this line of research, we define here a general framework for the bottom-up evaluation of first order linear logic specifications. The evaluation procedure is based on an effective fixpoint operator working on a symbolic representation of infinite collections of first order linear logic formulas. The theory of well quasi-orderings can be used to provide sufficient conditions for the termination of the evaluation of non trivial fragments of first order linear logic.Comment: 53 pages, 12 figures "Under consideration for publication in Theory and Practice of Logic Programming

    Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA

    Full text link
    Modal formulae express monadic second-order properties on Kripke frames, but in many important cases these have first-order equivalents. Computing such equivalents is important for both logical and computational reasons. On the other hand, canonicity of modal formulae is important, too, because it implies frame-completeness of logics axiomatized with canonical formulae. Computing a first-order equivalent of a modal formula amounts to elimination of second-order quantifiers. Two algorithms have been developed for second-order quantifier elimination: SCAN, based on constraint resolution, and DLS, based on a logical equivalence established by Ackermann. In this paper we introduce a new algorithm, SQEMA, for computing first-order equivalents (using a modal version of Ackermann's lemma) and, moreover, for proving canonicity of modal formulae. Unlike SCAN and DLS, it works directly on modal formulae, thus avoiding Skolemization and the subsequent problem of unskolemization. We present the core algorithm and illustrate it with some examples. We then prove its correctness and the canonicity of all formulae on which the algorithm succeeds. We show that it succeeds not only on all Sahlqvist formulae, but also on the larger class of inductive formulae, introduced in our earlier papers. Thus, we develop a purely algorithmic approach to proving canonical completeness in modal logic and, in particular, establish one of the most general completeness results in modal logic so far.Comment: 26 pages, no figures, to appear in the Logical Methods in Computer Scienc
    • …
    corecore