
Theoretical Computer Science 118 (1993) 67-79
Elsevier

67

Gentzen-type axiomatization
for PAL

Igor Walukiewicz
Institute of Informaries, Warsaw University, Banacha 2, 02-097 Warszawa, Poland

Abstracr

Walukiewicz, I., Gentzen-type axiomatization for PAL, Theoretical Computer Science 118 (1993)
67-79.

The aim of propositional algorithmic logic (PAL) is to investigate the properties of simple nondeter-
ministic while-program schemes on propositional level. We present finite, cut-free, Gentzen-type
axiomatization of PAL. As a corollary from completeness theorem, we obtain the small-model
theorem and algorithm for checking the validity of PAL formulas.

1. Introduction

Propositional algorithmic logic (PAL) was constructed by Mirkowska [4] as
a propositional counterpart of algorithmic logic (AL) [7]. The aim of PAL is to
investigate the properties of simple nondeterministic while-programs built upon the
set of atomic actions on a propositional level abstracting from values of variables,
functions, etc. As opposed to PDL, there are two nondual modalities. Modality
0 means (as in PDL) “there exists successful execution” and modality q means “all
executions are successful”. With these two, we are able to construct formulas express-
ing important properties of programs, like termination, looping, partial and total
correctness.

Lifting theorem brings another reason to investigate such logic. It is a theorem
which says that tautologies of PAL become tautologies of AL after replacing program
variables by programs and propositional variables by formulas [4]. The existence of
an easy-to-implement decision procedure for PAL can help in attempts to construct
an automated prover based on AL.

Correspondence to: I. Walukiewicz, Institute of Informatics, Warsaw University, Banacha 2, 02-097
Warszawa, Poland. Email: igw@mimuw.edu.pl.

0304-3975/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82113191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

68 I. Walukiewicz

Because of the existence of strong modality q , it was not obvious whether the
small-model theorem holds or whether there exists finite axiomatization for PAL. It is
a well-known fact that PAL, like PDL with loop construct, does not enjoy the
collapsed-model property, i.e. the property which says that if a formula a is unsatisfied
in some structure then it is unsatisfied in a structure which is constructed by merging
states satisfying the same subformulas of a. The small-model theorem for PDL with
loop construct was proved by Street [8], but there still remained a question whether
the same theorem holds for PAL.

Infinite axiomatization of PAL was presented in Mirkowska [4]. Attempts to give
finite Gentzen-type axiomatization of PDL were made by Nishimura [S, 61. In this
paper we present finite, cut-free Gentzen-type axiomatization for PAL. As a corollary,
we obtain the small-model theorem and decision procedure for checking the validity
of PAL formulas.

2. Syntax and semantics

The syntax of PAL is based on two sets of symbols: V,, the set of propositional
variables, and n,, the set of atomic programs. We will use p, 4, . . . for the elements of
V, and A, B, . . . for the elements of n,.

From V, we construct the set of open formulas F,, as usual propositional formulas,
i.e. V~EF,, and if a, fieFo then a ,-t /?,a v p,l aEF.

Given sets F. and n,, the set n of programs in generated by the following
grammar:

i7 ::= n,, 1 l7;n 1 ifFOthen17else17fi 1 eithernornro

1 while F,, do I7 od.

Finally, we define the set of formulas F:

F::=F,, 1 FvF 1 FAF 1 -IF) Ol7F 1 q l7F.

We will often write o which will mean any modality, i.e. 0 or 0.
Formulas of PAL will be interpreted in the so-called Kripke structures, which have

form (S, R, p), where
l S is a nonempty set of the so-called states,
l R is a function assigning to each atomic program AEON a binary relation R(A)

on S,
l p assigns to each state s&3 the subset of V,.

Intuitively, R gives interpretation of atomic programs as actions changing states,
p determines which propositional variables are true in a given state. Mapping p is
easily extended to all members of F. in a usual propositional sense. In order to extend
relation R to all programs in J7, we will provide the notion of execution.

Gentzen-type axiomatization for PAL 69

Definition 2.1. Given structure 3 = (S, R, p), we define one step of execution relation
D between configurations, i.e. pairs (state, program) as follows:

(1) (s,A) D (s’,~), where AEON and (s,s’)eR(A),
(2) (s,K;L) D (s’,K’;L) if (s,K) D (s’,K’),

(3) (s,K;L) D (s’,L) if (s,K) D (s’,~),

(4) (s, if y then K else L fi) D (s, K) if y~:p(s) and (s, L) otherwise,
(5) (s, either K or L ro) D (s, K) and (s, either K or L ro) D (s, L),
(6) (s, while y do K od) D (s, K; while y do K od) if y~p(s) and (s, E) otherwise, where

E is a special endmarker.
Execution of program K from state sO~S is a sequence of configurations (si, Li)i,r

suchthats,=s,L,=Kand(si,Li)D(si+1, Li + 1). We will call execution successful if it

is finite and its last element is of the form (s, E); state s will be called the Jinal state of
execution.

Now we are ready to formulate the notion of satisfiability of a PAL formula u in
a state s of a structure 3 (3, s i= IX):

(1) 3,skf~ iff asp, for crEFo;
(2) if c1= 0 K/3 then 3, s + u iff there exists successful execution of program K from

state s and in its final state t, 3, t + /?;
(3) if a = q K/l then 3, s + c1 iff every execution of program K is successful and in

every final state t, 3, t + p;
(4) in the case of propositional connectives, as usual.
We will say that the formula tl is 3-valid (3 + a) iff, for all states s~3,3, s +=cr.

Finally, we will say that c1 is valid (k a) iff for all structures 3,3 I= a.
The main difference between PAL and logics derived from PDL lies in the inter-

pretation of programs. In PAL, programs are interpreted as a set of possible sequences
of executions and not as a binary relation on states. This gives the possibility to
distinguish naturally infinite and unsuccessful executions. In PDL this problem was
solved by adding repeat construct [8] and observation that one can code requirement
that no execution of program is unsuccessful. PAL can be coded in p-calculus in the
same way as PDL with repeat. There is also the same as with PDL problem with
possible exponential blowup, which disappears when one uses multiple fixpoints [9].

3. Sequents and Gentzen-type calculus

In this section we will present rules of our system and prove some simple facts about
it. But first we introduce some basic notions of Gentzen-type calculi.

Sequent will be an ordered pair of finite sets of formulas. We will write a sequent as
r-+ A and call set r the predecessor of sequent and set A the successor of sequent r+ A.
We will say that a sequent T-tA is true in a state s of a structure 3 (3, s k T-r A) iff in
this state conjunction of formulas in r implies disjunction of formulas in A.

70 I. Walukiewicz

Our Gentzen-type system for PAL, GPAL, consists of the following rules:
0 Propositional

(3) a,T+A) B,r-+A r+A,a,D
avj.?,I’+A r+A,av/l

0 Program

(4)
oK(oLa),r-+A T+A, 0 K(0 La)

o(K;L)a,T+A T+A,o(K;L)a

(5)
y,oKa,T+A 1 oLa,T+A,y y,T+A,oKa 1 T-+A,oLa,y

oif y then K else L fi a,T+A r+A, o if y then K else L fi a

a,T-*A,y 1 y,oK(owhile y do K od a),T+A

o while y do K od a,T+A

(6)
T+A,y,a 1 y,T+A,oK(owhile y do K od a)

T-tA, o while y do K od a

(7)
OKa,T+A 1 OLa,T+A T+A, 0 Ku, 0 La

0 either K or L ro a, T+A T+A, 0 either K or L ro a

(8) Cl Ku, 0 La, r+ A T+A,OKa 1 T+A,O La

q eitherKor L ro a,T+A T+A, 0 either K or L ro a

l Specific (in what follows, A is an atomic program)

(9) {a: q Aa~T},/?+{a: OAaeA}

o A/?,T-+A
3

(10) {a: q Aa~T}-t{cr: OAaeA},lJ

o Ay,T+A, Cl A/3 ’

Upper sequents of rules will be called assumptions, lower will be called conclusion.
We will use the above rules in top-down fashion, i.e. given a sequent we are to prove,
we will pick a rule which could have given such a conclusion and take its assumptions
as next sequents to prove. We will call such a process an application of the rule.

Gentzen-type axiomatization for PAL 71

Definition 3.1. Sequent I’-+A will be called
unreducible iff there is no rule of GPAL applicable to T+A,
strongly unreducible iff there is no propositional or program rule applicable to

T+A,
axiom iff TnA#@,
simply refutable iff T+A is an unreducible sequent but not an axiom.

Let us look at some simple properties of GPAL which will be of some use later.

Proposition 3.2. Propositional and program rules are strong, i.e. for an arbitrary
structure 3 and state s of 3, the conclusion of a rule is true in s ifl all assumptions are
true in s.

Lemma 3.3 Specific rules are sound, i.e. for an arbitrary structure 3, ifan assumption of

a rule is D-valid then the conclusion is 3-valid. Additionally, if C-rQ is obtained from
r+ A by reducing an atomic program A with some specijk rule and if 3, s /= r+ A, then
there exists a state t such that (s, t)ER(A) and 3, t k Z+s2.

Proof. Let Z-4 be an assumption and oAj?,T+A a conclusion of rule (9). Let us
assume that, for some structure 3 = (S, R, p) and state s, 3, s + oA/?, T-t A. This
means that 3, s k a for every formula a in predecessor and 3, s + a for aE A. Hence,
3, s k oAP and there exists a state t such that (s, t)e R(A) and 3, t b/3. What is more,
for every formula 0 AaM, 3, t k a and for every 0 AaeA, A, t k a. So, finally, we
conclude that 3, t k C+sZ.

Proof for rule (10) is similar. 0

We end this section by emphasizing the fact that GPAL rules are cut-free, which can
be formulated more precisely as follows.

Definition 3.4. Fisher-Ladner closure of a formula a, FL(a) is the smallest set of
formulas such that

(1) =FUa),
(2) if /?eFL(a) and the sequent p + can be reduced to CdsZ then ZvQ c FL(u).

Proposition 3.5. For any formula a, (FL(a) I= O(1 al), where 1 a (is the number of symbols
in a. For any sequent T-A, the number of all sequents which can be obtained ji-om it by
application of GPAL rules is less than 0(2Clr*At) for some constant c.

4. Completeness

In this section we will prove the completeness theorem for GPAL. The first step will
be to define what we mean by proof in our system. Essentially we will follow the

12 I. Walukiewicz

standard definitions, with one exception that the property of being final sequent will
not only depend on the given sequent but also on its ancestors in a diagram. We could
make this definition local by putting some information about ancestors to the sequent,
but it would only make our system more obscure and hide intuitions behind it.

Definition 4.1. Proof of a sequent T+A is a pair (T, L), where T is a finite tree and
L a function assigning to each node of T a label (sequent) satisfying the following
conditions:

(1) if n, is root of T then L(Q)= T-+A;
(2) for any internal node n, labels of its sons are assumptions and label of n is

a conclusion in some rule of GPAL;
(3) node n is a leaf iff it is either a redundant node or is labeled with axiom. The

notion of redundant node is defined below.
Hence, we are left of define what a redundant node is. To explain intuitions behind

its definition, let us look at the sequent calculus for classical propositional logic. In
this system we can treat proof construction as a process of checking that there is no
valuation which does not satisfy a given sequent. For example, left-hand side rule (3)
of our system, which is also a rule of system for propositional logic, can be explained
as: a valuation which does not satisfy c1 v /I, T+A must also not satisfy tl, T+A or
fl, T+A. When we reach unreducible sequents, we know that we have checked all
possibilities and if all leafs are axioms, we know that there is no such valuation. On the
other hand, when we reach an unreducible sequent but not an axiom (called here
a simply refutable sequent), we can directly construct a counterexample valuation.

Our system can be seen in a similar way, but with this complication that we are not
only dealing with valuations but also with executions of programs. That is, we have to
make sure that in our search we have looked also at any possible execution pattern.
The same way as sequents served to describe valuations, trace relations we define
below will describe execution patterns. So, when we can be sure that we have checked
all execution patterns, i.e. “What is the concept which plays the same role as axiom
but on the level of traces?” we will say that node n is redundant iff there are two
ancestors of it, ml, m2 such that they are all labeled by the same sequent (represent the
same valuation) and all execution patterns in interval (m,,n) are the same as in
(ml, mz). When such a situation occurs, everything we can do from node n we could
have done from mz; hence, there is no point of checking any further. We will also have
a notion corresponding to simply refutable sequent, which will be loop node. As we
will see, loop nodes play a crucial role in showing counterexample executions in case
a sequent is not valid.

Let us try to formalize these definitions below.

Definition 4.2. Let a pair (T, L) satisfying conditions (1) and (2) of Definition 4.1 be
given. We define the following:
- spec$c node is a node n such that a specific rule was applied to L(n).

Gentzen-type axiomatization for PAL 73

- strong interval is a part of path of T between two specific nodes not containing
a specific node.

- If L(n)= C-PI) then we will refer to C as T(n) and to Q as d(n).
- The trace relation S,,, for any node m and its descendant n, is a smallest relation

satisfying the following properties:
(1) If n is a son of m then

(a) if formula ET(~) is not reduced by the rule applied to L(m) then

(a, ~)&l,,,
(b) if formula oMp~r(n) is obtained from o I&ET(m) then (oKa,oM~)~
S

(2) I:‘6e other case, S,,,=S,,,. o S,.,,, where m’ is a son of m belonging to the

path from m to n.
- the trace of a formula a,ET(m) on a path P from m is a sequence (a,),,P such that

(%I, ~“)~S,,,.
_ Loop node is a node neT such that there exists a corresponding ancestor m,

L(m)=L(n), and S,,,=@.
- Redundant node is a node m such that there exist ancestors ml,m2 such that

L(ml)=L(M=L(n), Sm,,m2=Sm,,ll, (L(k): m,ck<n}E{L(k):kancestorofml}
and there is no loop node between ml and n.

The proofs of both soundness and completeness theorems for our system are
somehow indirect. In both cases, rather than use the notion of proof, we will use
a somewhat dual notion.

Definition 4.3. Refutation tree for a sequent T+A will be a pair (T, L), where T is
a finite tree and L a labeling of nodes of T with sequents such that

(1) the root of T is labeled with T+A,

(2) if n is an internal node then
(a) if some propositional or program left-hand side rule R is applicable to L(n)

then n has exactly one son n’ and L(n’) is one of the assumptions of rule R,

(b) if some propositional or program right-hand side rule R is applicable to
L(n) and none of the assumptions is a label of a node in this strong interval then
n has exactly one son n’ and L(n’) is this assumption,
(c) if none of the above conditions applies then there is one son for each possible
application of specific rule to L(n) labeled with the resulting assumption,

(3) if n is a leaf then either n is a loop node or L(n) is a simply refutable sequent,
(4) none of the labels is an axiom.

The duality of the concepts of proof and refutation tree is expressed in the following
lemma.

Lemma 4.4. Sequent T+A is unprovable @there exists a refutation tree for I’+A.

14 1. Walukiewicz

Proof. An essential difference between these two concepts is that there are different
rules for constructing the sons of an internal node and different conditions for a node
to be a leaf. Let us construct a more general structure 9, which in some sense will
encapsulate both the previous ones. The idea is that the sons of an internal node will
be both those which we get by applying proof rules and those from refutation tree
rules. We also allow both kinds of leafs in 9. To be more precise, structure 9 is defined
to be a finite labeled tree satisfying the following conditions:

(1) the root of T is labeled with T+A;
(2) if n is an internal node then

(a) if some propositional or program left-hand side rule R is applicable to L(n)
then, for each assumption of R, there is a son of n labeled with it,
(b) if some propositional or program right-hand side rule R is applicable to
L(n) and none of the assumptions is a label of a node in this strong interval then,
for each assumption of R, there is a son of n labeled with it,
(c) if none of the above conditions applies then there is one son for each possible
application of a specific rule to L(n) labeled with the resulting assumption;

(3) if n is a leaf then it is labeled either with an axiom or a simply refutable sequent
or it is redundant or loop node.

It follows easily from Lemma 3.5 that such a structure exists for any sequent T-t A.
Given such a diagram 9, we proceed as follows:
- we mark every axiom or redundant node by 1 and other leaves by 0;
- for any internal node to which a strong rule was applied, we label it with 1 iff all

sons are labeled with l’s; otherwise, it is labeled by 0;
_ specific node is labeled by 1 iff there exists a son labeled by 1; otherwise, it is labeled

by 0.
It is easy to see that if the root of 9 is labeled with 1 then we can find a proof

diagram in 9; otherwise, we can find a refutation tree in 9. To make this proof
complete, we have to show the following lemma.

Lemma 4.5. Zf there exists a refutation tree then there exists a refutation tree without
redundant nodes and, dually, ifthere exists a proof then there exists a proof without loop
nodes.

Proof. Suppose that there exists a refutation tree and there is a redundant node n
on a path P of this tree, i.e. there are two ancestors of n, m, cmz, such that

Un)=Uw)=Um2), Sm,,mn2=Sm,,n and {L(k): m2<kcn} E {L(k): k<mi}. Then,
as the name suggests some of this path is redundant, namely, we are able to connect
the father of rn2 directly to n. Because of the last condition imposed on a set of labels, if
some node was loop node then we can assume that the node corresponding to it is
above m,. From the condition imposed on traces, we know that, after such a cut,
nodes which were loop nodes remain to be so. Hence, after this operation, what is left
is still a refutation tree.

Proof of the second part of the lemma is analogous.

Gentzen-type axiomatization for PAL 15

The above lemma makes it possible to formulate the soundness and completeness
properties using the notion of refutation tree rather than proof. First, let us try it on
the soundness theorem.

Lemma 4.6. For any sequent T+A, ifk T+A then there exists a refutation tree for
l-+A.

Proof. For this proof, we introduce a little more general concept than that of
execution of a program.

Definition4.7. Ifa=oK,(...(o KJ?)...)andfl is not of the form o Ly then realization
of program in formula a from state s (ReZ(a, s)) is the shortest successful execution of
program K1; ...; K, from state s.

From the assumption + r+ A it follows that there exists a structure 3 = (S, R, p)
and state s0 such that 3, so + T+A. We will construct a refutation tree % for T-A,
assigning to each node n of it state s, of 3 such that 3, s, F L(n). With the root no of !R,
we associate a state s,,=so. For any internal node of % with associated state s., we
proceed in the following way:
- If we are to apply some strong rule R to L(n) then from Proposition 3.2 it follows

that one of the assumptions of R, say C-Q, is unsatisfiable in state s,. Hence, we
can take as a label of the only son of n, m sequent C+sZ and set s, = s,. This strategy
is fine for all cases except when we are to reduce a formula of the form 0 either K or
L ro a in the predecessor of the sequent. In this case, if both the obtained
assumptions are unsatisfiable, we choose the assumption with 0 Ka if
Rel(0 Ka,s,) is shorter than Rel(0 La,s,) and another assumption otherwise.

- if we are to apply strong rules then from Lemma 3.3 it follows that, for every
possible assumption Z+sZ, there exists a state t such that (s,,, t)ER(A) for an
appropriate program A and 3, t +Z+Q. Of course, we can take t as a state
associated with a son of n labeled by C-4, but again we face the problem of
nondeterminism. Only in one case, when we reduce a fomula of the form
0 AaET(n), does it matter what state we choose. In this case we choose state t to be
the one which is next in Rel(0 Aa, s,).
Structure % constructed in such a way clearly satisfies all conditions imposed on

a refutation, except for the one which requires % to be finite. Our % may have infinite
paths, but the following lemma will show that we can cut !R to a refutation tree.

Lemma 4.8. For every node n, formula aer(n) and path P from node n, every trace of
a is jinite.

Proof. First let us observe that if o K/kT(n) and (OK/?, oM~~)ES,,,,~, for iel, is
a part of a trace of formula o KP then it is finite. Indeed, looking at the corresponding
sequences (Smi, Mi)ier, it is easy to see that it constitutes a part of an execution of

76 I. Walukiewicz

a program K from state s,. Hence, we are done if o E 0. When o E 0, one more
observation that we need is that this distinguished execution is a part of the shortest
execution of successive programs in 0 KP from s,; hence, since s, I= 0 Kjl, it must be
finite. With this observation, we prove the lemma by induction on the structure of a.
- In case of propositional variables or boolean connectives, from definition of trace
relation it follows that the occurrence of such a formula is traced as long as it is not
reduced. Hence, it is contained in one strong interval. Suppose that such an interval is
infinite; then it follows immediately that there must exist a formula of the form o while

y do K od a in the predecessor of some sequent which is reduced infinitely often. But,
from what was stated above, this is impossible.
- If a= 0 KBcT(n) then let us assume conversely that the trace of a from node n is
infinite. By induction hypothesis, every trace of formula j? is finite; hence, infinite trace
must have occurred because of infinite reductions of program K. That means that
there must be an infinite sequence of formulas 0 MiB, ill, such that

(O KB~ O MiBk&,m,v which contradicts our first observation.
- If a = q K/?EL(n) then the proof is as above.

Let us now take any infinite path P of ‘R It follows easily from Proposition 3.5 that
there are only finitely many different sequents which can occur as a label in ‘R Hence,
there must be a sequent r-+ A which occurs infinitely many times on P. From Lemma
4.8 it follows that there must be two occurrences of T-A, m and n, such that S,,,=&
hence, n is a loop node and we can cut path P at this point. 0

Now we will turn to the completeness of GPAL system. Our goal will be to show
that, given a refutation tree for T+A, we can construct a structure in which it is
unsatisfiable.

Definition 4.9. Given a refutation tree ‘ill = (T, L), we define a canonical structure
3 = (S, R, p) in the following way:
l S = (SE T: s a specific node).
l (s, ~)ER(A) iff there exists a son of s, I, such that L(r) is obtained by reducing
program A and r is either in the same strong interval as t or in the same strong interval
as a leaf n whose corresponding node m is in the same strong interval as t.
0 PEP(S) iff PET(S).

We will show that the root of refutation tree % is unsatisfied in the root of
a canonical structure built in the way described above.

Lemma 4.10. If a sequent T-A has a refutation tree ‘93 = (T, L) then it is unsatisjed in
the canonical structure 3 = (S, R, p) built from !R.

Proof. First of all, let us introduce a new definition which will be very helpful in this
proof. In what follows we will write T*(i) to denote the set U (T(s): s in the same
strong interval as i} and A *(i) for U { A() s : s in the same strong interval as i}.

Gentzen-type axiomatization for PAL II

Definition 4.11. Let us take a state s of 3 and a formula O&ET*(~) (o KueA*(s)).

A traced execution of program K from s will be such an execution (si, Mi)i,I of K from
s that every formula oMia~T*(Si) (0 MiUEA*(si), respectively).

The usefulness of this notion is shown by the following lemma.

Lemma 4.12. For a state s of 3 and formula o KuE~*(s), any traced execution of
program K is successful and in its jnal state t formula aET*(t).

Proof. Suppose, conversely, that there exists an infinite traced execution of K. Then,
since 3 is finite, there must exist a state s such that it occurs at least twice in this
execution. What is more, there must exist a loop node n of tree !R such that node
m corresponding to n is in the same strong interval as s and s appeared at least twice in
the execution. Then, because this execution was a traced one, we obtain that S,,, #8,
contradicting the definition of a loop node. 0

Lemma 4.10 follows from the next lemma.

Lemma 4.13. If ccET*(s) then 3,s+a and if aed* then 3,sk CL

Proof. Proof will proceed by induction on formula CC
- If u~T*(s) is a propositional variable then it is easy to observe that Go; hence,
from definition of p, 3, s + ~1.
- Other cases with propositional connectives and dual one for CIE A*(s) follow
immediately from the form of rules.
- If 0 KaeT*(s) then it follows easily from the definition of a canonical structure
and form of the rules that every execution of program K from state s is traced. Then
3, s b 0 Ku follows from Lemma 4.12 and the induction hypothesis.
- If 0 KczT*(s) then we observe that there exists a traced execution of K from s.
Then, as in case above, we obtain that 3, s + 0 Ku.

- If 0 KUEA *(s) then we show that there exists a traced execution of K from s. If it is
successful then in its final state t, BE A *(t), but from the induction hypothesis 3, s + cr;
hence, 3, s + 0 Ku.

- If 0 KmA*(s) then we observe that every execution of K from state s is traced.
Hence, in the final state of every successful execution formula PEA *(t).

From Lemma 4.13 it follows immediately that in state s, which belongs to the same
strong interval as the root of %, the label of the root T-tA is unsatisfied. 0

Summarizing the results of Lemmas 4.5 and 4.7, we obtain the following theorem.

Theorem 4.14 (Soundness and completeness). For any sequent r+ A, r-* A is valid if
r+ A is provable.

78 I. Waiukiewicz

5. Algorithm

Having proved the completeness theorem, we can use Lemma 4.4 to get an
algorithm for checking the validity of PAL sequents. It can be described simply as:

given a sequent, construct a structure 3 as described in Lemma 4.4.

Note that this algorithm always stops because, by Lemma 3.5, the degree of every
node as well as the length of every path is bounded. This procedure gives as the result
either a proof of the validity or a refutation tree which can be transformed to
a counterexample structure using the construction from Definition 4.9.

It is easily seen that the complexity of the above algorithm is the same as the size of
a constructed structure. The degree of each node in the structure is bounded by
the number of different formulas which a sequent can contain, and, hence, by
FL(T+d) = O(n). Because we are not expanding further than redundant node, we get
an upper bound on the path length. Namely, each sequent can occur on one path no
more times than there are different trace relations. Since there are O(n) formulas
which can occur in construction, there are at most O(2”) different sequents and 8(2”*)
trace relations. Hence, the length of the path is bound by O(2’“‘) and the whole
structure by O(n2’“‘) for some constant c. This leads to the following theorem.

Theorem 5.1 (Small model). For every not-valid PAL formula a, there exists a model
3 such that 3 + a and the size of 3 is less than O(n2’“‘), where n = (a(.

6. Conclusions

We have presented a Gentzen-type system for propositional algorithmic logic and
proved its completeness. Basing on this system, we have obtained decision procedure
which outputs either a proof or a counterexample structure. Finally, we have obtained
the small-model theorem which assures that, for every not-valid sequent I’+A, there
exists a counterexample model of size bounded by a double exponential function of
size of T+A.

Acknowledgment

I thank Prof. Graiyna Mirkowska for inspiration, patience and very valuable help.

References

[l] B. Chlebus, On the decidability of propositional algorithmic logic, 2. Math. Logik 28 (1982) 247-261.
[2] M.J. Fisher and R.E. Ladner, Propositional dynamic logic of regular programs, .I. Comput. System Sci.

18 (1979) 194-211.

Gentzen-type axiomatization for PAL 19

[3] D. Harel, Dynamic Logic, Handbook of Philosophical Logic, Vol. 11 (1984) pp. 197-604.
[4] G. Mirkowska, PAL -propositional algorithmic logic, Fund. Inform. 4 (1981) 675-760. Also in Lecture

Notes in Computer Science Vol. 125 (1981) 23-101.
[S] H. Nishimura, Sequential method in propositional dynamic logic, Acta Infirm. 2 (1979) 377-400.
[6] H. Nishimura, Semantical analysis of constructive PDL, Publ. Res. Inst. Math. Sci. (Kyoto Univ.)

(1981).
[7] A. Salwicki, Formalized algorithmic languages, Bull. Acad. Polon Sci. Ser Sci. Math. Astron. Phys. 18

(1970) 227-232.
[8] R.S. Street, Propositional dynamic logic of looping and converse is elementary decidable, Inform. and

Control 54 (1982) 121-141.
[9] M. Vardi and P. Wolper, Automata theoretic techniques for modal logics of programs, in: Proc. 16th

ACM Symp. on the Theory of Computing (ACM, 1984) 445-446.

