3,294 research outputs found

    Robot Cybersecurity, a Review

    Get PDF
    Robots are often shipped insecure and in some cases fully unprotected. The rationale behind is threefold: first, defensive security mechanisms for robots are still in their early stages, not covering the complete threat landscape. Second, the inherent complexity of robotic systems makes their protection costly, both technically and economically. Third, vendors do not generally take responsibility in a timely manner, extending the zero-day exposure window (time until mitigation of a zero-day) to several years on average. Worse, several manufacturers keep forwarding the problem to the end-users of these machines or discarding it. In this article we review the status of robot cybersecurity considering three sources of data: 1) recent literature, 2) questionnaires performed in top robotics forums and 3) recent research results in robot cybersecurity. Building upon a decade of experience in robotics, this article reviews the current status of cybersecurity in robotics and argues about the current challenges to secure robotic systems. Ultimately, based on the empirical results collected over a period of three years performing security assessments in robots, the present text advocates for a complementary offensive approach methodology to protect robots in a feasible and timely manner

    Robot Cybersecurity, a Review

    Get PDF
    Robots are often shipped insecure and in some cases fully unprotected. The rationale behind is threefold: first, defensive security mechanisms for robots are still in their early stages, not covering the complete threat landscape. Second, the inherent complexity of robotic systems makes their protection costly, both technically and economically. Third, vendors do not generally take responsibility in a timely manner, extending the zero-day exposure window (time until mitigation of a zero-day) to several years on average. Worse, several manufacturers keep forwarding the problem to the end-users of these machines or discarding it. In this article we review the status of robot cybersecurity considering three sources of data: 1) recent literature, 2) questionnaires performed in top robotics forums and 3) recent research results in robot cybersecurity. Building upon a decade of experience in robotics, this article reviews the current status of cybersecurity in robotics and argues about the current challenges to secure robotic systems. Ultimately, based on the empirical results collected over a period of three years performing security assessments in robots, the present text advocates for a complementary offensive approach methodology to protect robots in a feasible and timely manner

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition

    Technology enablers for the implementation of Industry 4.0 to traditional manufacturing sectors: A review

    Get PDF
    The traditional manufacturing sectors (footwear, textiles and clothing, furniture and toys, among others) are based on small and medium enterprises with limited capacity on investing in modern production technologies. Although these sectors rely heavily on product customization and short manufacturing cycles, they are still not able to take full advantage of the fourth industrial revolution. Industry 4.0 surfaced to address the current challenges of shorter product life-cycles, highly customized products and stiff global competition. The new manufacturing paradigm supports the development of modular factory structures within a computerized Internet of Things environment. With Industry 4.0, rigid planning and production processes can be revolutionized. However, the computerization of manufacturing has a high degree of complexity and its implementation tends to be expensive, which goes against the reality of SMEs that power the traditional sectors. This paper reviews the main scientific-technological advances that have been developed in recent years in traditional sectors with the aim of facilitating the transition to the new industry standard.This research was supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (ERDF) under the project CloudDriver4Industry TIN2017-89266-R

    Industry 5.0 Enabled Smart Logistics: Optimization of Distribution Network in Food Industry

    Get PDF
    The fourth industrial revolution, namely Industry 4.0, has substantially impacted the supply chain and logistics operations which led to the introduction of Logistics 4.0. The incorporation of novel technologies in this context developed smart logistics; however, scholars raised the concerns about socio-economic aspects of these improvements. Industry 5.0 as a value-driven paradigm, in this regard, initiated the trinary concept of sustainability, resilience, and human-centricity to put forward the technological and conceptual developments of industry according to this framework. Given the recency of this industrial revolution, not many research works have focused on the implication of Industry 5.0 for smart logistics. Therefore, this research aims at bridging this gap by investing effort into accomplishing a thorough systematic literature review to compare the topic of smart logistics in Industry 4.0 and Industry 5.0. The results define integration and intelligence among the key features, and spot simulation and digital twin among the enabling technologies of this concept. To realize these findings, a digital model of a company’s distribution network is created, and it facilitates the possibility of performing network optimization and simulation through an integrated platform. The results show that such approach has a remarkable contribution in performing the supply chain network optimization and determining the logistics performances of the redesigned network, e.g., optimal inventory level and capacity at each facility, shipping policy in individual transportation routes, etc. This approach enables the possibility of incorporating socio-economic aspects into logistics studies, e.g., CO2 emission, which are discussed as further research directions

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Robotic Construction Simulation Platform for Light-weight Prefabricated Structures

    Get PDF

    Decision-making framework for implementing safer human-robot collaboration workstations: system dynamics modeling

    Get PDF
    Human-Robot Collaboration (HRC) systems are often implemented seeking for reducing risk of Work-related Musculoskeletal Disorders (WMSD) development and increasing productivity. The challenge is to successfully implement an industrial HRC to manage those factors, considering that non-linear behaviors of complex systems can produce counterintuitive effects. Therefore, the aim of this study was to design a decision-making framework considering the key ergonomic methods and using a computational model for simulations. It considered the main systemic influences when implementing a collaborative robot (cobot) into a production system and simulated scenarios of productivity and WMSD risk. In order to verify whether the computational model for simulating scenarios would be useful in the framework, a case study in a manual assembly workstation was conducted. The results show that both cycle time and WMSD risk depend on the Level of Collaboration (LoC). The proposed framework helps deciding which cobot to implement in a context of industrial assembly process. System dynamics were used to understand the actual behavior of all factors and to predict scenarios. Finally, the framework presented a clear roadmap for the future development of an industrial HRC system, drastically reducing risk management in decision-making.This work was supported by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n◦ 39479; Funding Reference: POCI-01-0247-FEDER-39479] and by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/202

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure
    corecore