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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Economic and ecological feasibility are the key factors for companies to engage in circular economy processes. Disassembly plays a major role 
in this environment, as it is one of the most complex and labor-intensive steps in end-of-life processing. For this reason, an automation of the 
disassembly in order to facilitate performing the necessary tasks is highly favorable. In this contribution, an agent-based robotic disassembly 
system, evolved from the innovation cluster “Recycling 4.0”, is presented. The proposed system features a novel information-driven control 
architecture, combining a superordinate, cloud-based knowledge base and comprehensive sensory perception. In pursuance to find an optimized 
utilization strategy for each part to be disassembled, various features, such as individual life-cycle data, material composition and optical rating 
are taken into account for an artificial intelligence based multi-criteria assessment in order to determine an appropriate end-of-life option for each 
of the part’s components. It is shown that the developed system is able to operate in a collaborative scenario of an electric vehicle traction-battery 
disassembly, deciding upon the level of disassembly for the end-of-life option chosen based on the available information, which is acquired 
through a system-wide interoperability standard. Being able to actively contribute to the overall knowledge base of the framework by processing 
validated product- and process-knowledge back to the knowledge base, the robotic system fosters a feasible progression towards closed-loop 
supply-chains in a circular economy and enables new market participants to engage in recycling operations. 
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1. Introduction 

Global challenges, such as climate change and the limitation 
of rare natural resources, threaten established industries and 
economies. According to the United Nations Sustainable 
Development Goals (SDGs), responsible production and 
consumption are key elements in the strategy to manage the 
necessary change [1]. In order to successfully introduce circular 
economy patterns as a solution, the sustainable feasibility of 
end-of-life (EoL) processing needs to be ensured. Disassembly 
is a key topic, both in recycling and remanufacturing processes. 
Being shaped by manual work processes and a high number of 
product variants and conditions, increasing its efficiency by 

intelligent automation concepts is desirable. In this work, a 
robotic disassembly framework is presented, capable of dealing 
with complex decisions regarding EoL-options depending on 
individual product information acquired by vision and sensory 
perception as well as a superordinate data management concept. 

Conceptualized as a cognitive, agent based system including 
the results of former research, such as Vongbunyong et al. [2] 
and Jungbluth et al. [3], the approach presented offers a new 
aspect of including the entire vertical and horizontal range of 
stakeholders in the EoL value-chain by connecting the system 
bi-directionally to a comprehensive information marketplace, 
employing a standardized information model for individually 
assigning product and process specific (lifecycle-)knowledge.  

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2019) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

 

2212-8271 © 2020 The Authors, Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer review under the responsibility of the scientific committee of the 28th CIRP Conference on Life Cycle Engineering. 

28th CIRP Conference on Life Cycle Engineering 

Fostering End-of-Life Utilization by Information-driven Robotic 
Disassembly 

 Hendrik Poschmanna*, Holger Brüggemanna, Daniel Goldmannb  
aInstitute of Production Technology, Ostfalia University of Applied Sciences, Salzdahlumer Straße 46/48, 38302 Wolfenbuettel, Germany 

bInstitute of Mineral and Waste Processing, Waste Disposal and Geomechanics, Clausthal University of Technology, Walther-Nernst-Str. 9, 38678 Clausthal-
Zellerfeld, Germany  

* Corresponding author. Tel.: +49-5331-939-45880; fax: +49-5331-939-45882. E-mail address: he.poschmann@ostfalia.de 

Abstract 

Economic and ecological feasibility are the key factors for companies to engage in circular economy processes. Disassembly plays a major role 
in this environment, as it is one of the most complex and labor-intensive steps in end-of-life processing. For this reason, an automation of the 
disassembly in order to facilitate performing the necessary tasks is highly favorable. In this contribution, an agent-based robotic disassembly 
system, evolved from the innovation cluster “Recycling 4.0”, is presented. The proposed system features a novel information-driven control 
architecture, combining a superordinate, cloud-based knowledge base and comprehensive sensory perception. In pursuance to find an optimized 
utilization strategy for each part to be disassembled, various features, such as individual life-cycle data, material composition and optical rating 
are taken into account for an artificial intelligence based multi-criteria assessment in order to determine an appropriate end-of-life option for each 
of the part’s components. It is shown that the developed system is able to operate in a collaborative scenario of an electric vehicle traction-battery 
disassembly, deciding upon the level of disassembly for the end-of-life option chosen based on the available information, which is acquired 
through a system-wide interoperability standard. Being able to actively contribute to the overall knowledge base of the framework by processing 
validated product- and process-knowledge back to the knowledge base, the robotic system fosters a feasible progression towards closed-loop 
supply-chains in a circular economy and enables new market participants to engage in recycling operations. 
 
© 2020 The Authors, Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer review under the responsibility of the scientific committee of the 28th CIRP Conference on Life Cycle Engineering. 

 Keywords: disassembly; robotics; recycling; circular economy; decision-making. 

 
1. Introduction 

Global challenges, such as climate change and the limitation 
of rare natural resources, threaten established industries and 
economies. According to the United Nations Sustainable 
Development Goals (SDGs), responsible production and 
consumption are key elements in the strategy to manage the 
necessary change [1]. In order to successfully introduce circular 
economy patterns as a solution, the sustainable feasibility of 
end-of-life (EoL) processing needs to be ensured. Disassembly 
is a key topic, both in recycling and remanufacturing processes. 
Being shaped by manual work processes and a high number of 
product variants and conditions, increasing its efficiency by 

intelligent automation concepts is desirable. In this work, a 
robotic disassembly framework is presented, capable of dealing 
with complex decisions regarding EoL-options depending on 
individual product information acquired by vision and sensory 
perception as well as a superordinate data management concept. 

Conceptualized as a cognitive, agent based system including 
the results of former research, such as Vongbunyong et al. [2] 
and Jungbluth et al. [3], the approach presented offers a new 
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assigning product and process specific (lifecycle-)knowledge.  
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The herein proposed use of human-robot-collaboration 
(HRC) for disassembly tasks has already been validated by 
various projects, such as [4] and [5]. Decision processes in 
disassembly aiming for sustainable decisions by integrating 
multiple criteria [6], taking quality and cost variations into 
account [7, 8] or proposing simplified direct cost-benefit 
models [9] are complemented by a novel machine learning 
model for individual in-process decisions, determining the most 
suitable EoL option based on a vast number of relevant features 
and a constant learning input from disassembly carried out 
within the framework (see 2.2). In contrast to the previous 
approaches mentioned above, this contribution proposes the use 
of a neural network instead of decision-trees or fuzzy-logic. 
Moreover, a holistic review of robotics in disassembly can be 
found in [10]. 

The structure of the paper is as follows: Section 2 describes 
the system framework in detail, presenting the main features 
and modules in specific subsections. A case study of electric 
vehicle battery disassembly from the research project 
“Recycling 4.0” is shown in section 3. Finally, a conclusion on 
the topic is given in section 4, summarizing the results of this 
research and giving impulses for future projects. 

2. System Framework 

The main goal of the system proposed is to enable 
automated disassembly processes to be economically, 
ecologically and socially viable, therefore sustainable, while 
fostering a higher utilization rate for EoL products in order to 
progress towards the concept of a circular economy. To satisfy 
this requirement, the following system framework is proposed. 

2.1. Architecture 

The architecture of the robotic disassembly system as 
displayed in Fig. 1 is built following the principle of an 
intelligent agent in order to allow adaptive behavior and target-
oriented implementation. Cognitive robotics thereby include 
the ability to reason and plan complex tasks in unknown 
environments [11]. 

Starting in a process-oriented approach, the reception of a 
disassembly request triggers the robot cognition processor 
(RCP) to request the related information model from the 
disassembly data cloud via an external information 
marketplace [12]. The system perception unit (SPU) gathers 
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visual information, such as part identification, component 
detection and a condition rating, making use of its unique 
position in the EoL process as the first physical evaluation 
opportunity of each individual part. The result of the SPU’s 
evaluation and the dataset from the external marketplace are 
combined to an aligned, object-specific knowledge model in 
the RCP. Based on this model, the decision regarding the most 
suitable EoL option is made for each component level of the 
product to be disassembled. A quantitative order and 
precedence relation thereby determine the optimized 
disassembly sequence. These steps can be applied to all levels 
of subassemblies. The disassembly operation itself is selective, 
which implies the object is not to be fully disassembled 
necessarily. In the next step, the disassembly execution unit 
(DEU) receives the target part and sequence command and 
carries out the disassembly collaboratively. Valid process 
knowledge is transferred back to the external data cloud. The 
entire process is controlled and monitored by an intuitive HMI 
capable of providing a web-based application and voice control 
for the operator to allow efficient handling and transparent 
documentation. 

2.1.1. Robot Cognition Processor (RCP) 
Being the main control module of the robotic disassembly 

system, the RCP is responsible for system-level information 
management, iterative decision-making and coordinating 
information requests and contributions, both to and from the 
different modules and the external database, as displayed in 
Fig. 2. Receiving a disassembly request, the RCP acquires the 
visual information from the SPU and aligns them with the 
digital model from the superordinate knowledge base in the 
OPC address space. This single attributed dataframe per object 
represents the available lifecycle data as well as a current 
(optical) status and integrity rating of the part. Based on this 
dataset, the core process of the RCP is to make a decision upon 
the EoL-utilization option compliant to economic, ecological 
and social objectives. In order to make these decisions, the 
following assumptions have to be made: 

i) An initial decision about the overall feasibility of 
the highest assembly-group of the core part (e.g. 
the car itself) has been made. 

ii) The required information could be supplied by the 
disassembly database and purchased without 
affecting the overall business case negatively. 

iii) As the machine learning strategy applied relies on 
a certain amount of training data as an initial input 
before operation phase, this data must be provided 
in the form of historic data or generic samples. 

Taking these assumptions into account, a machine learning 
sub-process of stepwise classification of eligibility for either 

a) disassembly for reuse or remanufacturing (retaining the 
components functional integrity for resale) 

b) disassembly for improved material recycling or 
c) disposal (highest feasible level of disassembly reached) 

is taking place. If the system is not able to make a decision, a 
manual teaching and decision input is possible by the operator. 
The product model hierarchy of the OPC UA server provides 
precedence information, thus allowing the RCP to consider 
precedence relation. Based on these relations and the decision 

outcome, a product individual disassembly sequence and level 
is determined and gets forwarded to the DEU. 

A decision upon the EoL-option is made for each component 
level and each subassembly level stepwise and individually. 
The decision process thereby considers all dimensions of 
sustainability by taking economic, environmental and social 
factors into account. The individual dataset contains 
information, such as the core price, material prices and 
composition, component resale prices, market demand and 
historic process costs for economic aspects, production date, 
condition (optical and diagnosed, e.g. state of health), hazmat 
and, if available, LCA factors for environmental aspects as well 

Fig. 2. RCP working principle 
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as a social assessment factor, based on raw materials critical to 
the supply-chain and a predicted economic value added for 
future treatments, such as remanufacturing. However, in 
contrast to fully deterministic approaches, such as [13], the 
proposed decision system will not necessarily fulfill feasibility 
criteria in all relevant categories. Due to the working principle 
of the machine learning approach, certain features may be 
weighted stronger than others and without hard constraints this 
may lead to an infeasible category (e.g. economic) in favor of 
another (e.g. environmental). 

2.1.2. System Perception Unit (SPU) 
All external perception of the robotic disassembly system is 

carried out by the SPU. It consists of two different camera 
systems, connected to an edge-computing device, representing 
a modular and efficient approach to an integrated robot-vision 
solution. 

The main module is a stereovision system consisting of 
Sony IMX577 sensors with a maximum resolution of 
4056x3040 pixels, connected via 4 lanes of CSI-2 interface (10 
Gbit/s in total) each. The high resolution is required, as the 
camera system is supposed to perform over a wide field of 
view, capturing the entire disassembly object and still be able 
to reliably detect and differentiate small objects (less than 32² 
pixels), such as different types of screws. The task of this 
system is the identification and localization as well a quality 
rating for the components and connectors (see Fig. 3, A). To 
implement these functions, the TensorFlow object detection 
API is used, in which Faster RCNN with an Inception ResNet 
V2 structure is employed [14]. The detection model is trained 
in a supervised training process on a set of 500 labelled images 
per specific object, also using data augmentation to extend the 
amount of different images. The rating functionality should be 
able to determine the visual condition of the part. In a first step 
of realization of this feature, a rust detection is implemented, 
using a set of 3500 available pictures for training. The negative 
status rating is given if the bounding box of the rust detector 
overlaps with a detected object by 40% or more. In an 
evaluation of the SPU’s detection and localization 
functionality, an accuracy of 73.71% for TX30_M6x12 screws 
as the smallest objects in the scene is ascertained, while the 
localization precision is 0.86 mm on mean average with a 
standard deviation of 2.48 mm. However, the high deviation 
and precision scattering is depending heavily on the position, 
increasing progressively towards the edges of the image. 

The second module of the SPU is mainly used for safety 
applications in HRC operations. An Intel Realsense D435i 

depth camera with an inertial measurement unit incorporated is 
used for this task, equipped with a 1280x720 pixel active 
infrared stereo-vision sensor as well as an RGB sensor, being 
connected with a USB 3.1 Gen. 1 connection (5 Gbit/s). This 
module is mounted on the tool of the robot and used for 
workspace surveillance. To realize a safe and efficient collision 
avoidance, the Detectron2 object detection algorithm [15] is 
used for human key point detection (see Fig. 3, B). If a key 
point comes close to the path of the robot, the application is 
paused until the workspace is clear of any human obstacle. 

2.1.3. Disassembly Execution Unit (DEU) and Human 
Machine Interface (HMI) 

The DEU and the HMI are the two system units in direct 
contact with the disassembly operators. As the disassembly 
process itself is collaborative and not fully automated in this 
approach, they both contribute equally to a successful 
execution of the disassembly task. 

The DEU consists of a robot arm (KUKA LBR iiwa 14) and 
a tool module. The robot receives the target part operation 
coordinates (e.g. for unscrewing) and sequence from the RCP 
via the OPC UA protocol. In addition, the tool control is 
implemented modularly on an ESP8266 microcontroller using 
the MQTT-protocol for direct start/stop commands by the robot 
program via a wireless network connection. The advantage of 
this principle is that it can be applied to various different tools 
in distinct disassembly settings. The case study presented in 
section 3 uses an unscrewing tool similar to [13], various other 
concepts, such as a multi-purpose disassembly tool [16] may 
be used with the same method as well. After a successful 
operation, process parameters, such as the required amount of 
time and therefore the validated information about the 
operation cost, are transferred back to the external disassembly 
database, being stored in the allocated OPC UA model. 

The HMI is made up of a web-based application and an 
Amazon Alexa voice control module as an interaction frontend 
while an MQTT server and OPC UA client for information 
retrieval provide the backend. The operator can interact directly 
with the system by touch-control via the web interface or give 
the same commands via voice-control for hands-free operation. 
The interface is designed according to DIN EN ISO 9241 for 
ergonomic usability and follows a process-oriented approach in 
which the operator is guided by the system but still has the 
opportunity to change individual decisions made and also 
comment or document product-related flaws not detected by 
the system or process-related errors. The HMI host device is 
connected to a local network to ensure security requirements. 

2.2. Communication 

The system’s communication is divided into two different 
machine-to-machine protocols for the front-end and back-end 
system. The platform independent interoperability standard 
OPC UA (Open Platform Communications Unified 
Architecture, see IEC 62541) [17] is selected for product 
specific information transfer by creating OPC UA models for 
each component representing the entire product structure and 
relation as well as assigning relevant lifecycle information, 

A B

Fig. 3. A) Detection of small objects (screws) B) Human key point workspace 
surveillance 
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such as production date and material composition, in a 
semantic description. This information can be edited in the 
process and transferred bi-directionally. The control frontend 
is realized by the use of MQTT (Message Queuing Telemetry 
Transport), a lightweight open publisher-subscriber protocol 
enabling effective control with a focus on reliability and 
minimum network bandwidth usage. This distribution of task 
specific protocols represents the process requirements and the 
strengths of each communication standard while maintaining 
optimal performance on limited system resources [18]. 

3. Case Study 

To validate the concept in a real disassembly scenario, a case 
study of electric vehicle battery disassembly is conceptualized. 
As a disassembly object, the battery module of a 2013 
Volkswagen e-Up is chosen. The entire system is realized in a 
demonstrator disassembly cell for the step of module 
disassembly in an HRC scenario (see Fig. 4). For the initial 
training of the RCP decision module, 1200 samples of generic 
batteries (composition according to [19]) with complete 
datasets are used. The aim of the concept validation is to show 
a full functionality in terms of horizontal and vertical 
communication by enabling the system to decide about EoL 
utilization strategies for the individual modules of the battery 
and also process the generated information back to the external 
storage database. 

The analysis of the demonstrator system shows the outcome 
depicted as a UML sequence diagram in Fig. 5. All 
communication systems, both the OPC UA as well as the 
MQTT protocol, are able to establish the relevant connections. 
The disassembly request for the target module is entered into 
the HMI and the command is eventually transmitted to the 
RCP. In a full scale facility, this step could also be automated. 
Hence, the RCP requests the OPC UA model to be provided 
with the dataset concerned form the data cloud. 
Simultaneously, a request for the visual information is sent to 
the SPU. Thus, the perception module captures an image of the 
electric vehicle battery and transmits the relevant positions of 
the screws for the first module to be disassembled as well as 
the visual condition factor to the RCP. Consequently, the 
decision process takes place at the first hierarchy level of the 
battery, derived from the digital product model. The EoL-
utilization option is decided upon and in cases of an option 
including disassembly, the concrete command is composed as 
a sequence representation including the available information 
for the chosen components as well as precedence feasibility 
data. However, this step is only performed for the first level of 
parts in our case scenario and will be refined for subsections of 
the battery in future research. The DEU, namely the robot, 
receives the task coordinates from the RCP and moves to the 
desired position, using the internal planning algorithm while 
taking the boundaries of the disassembly cell and the 
workspace surveillance data from the SPU’s wrist camera into 
account. As a next step, the four corner screws of the target 
module are removed by the robot, while the command for the 
tool module is sent from the robot controller after a successful 
sensitive approach maneuver. As a final step of the disassembly 
case, the operator receives a notification on the HMI that the 
robot operation was successful and the module can be taken out 
manually. The operator may also work on other parts of the 
battery simultaneously during the robot operation, as the 
workspace surveillance provides the required safety functions 
to prevent collisions. Optical rating influence could not be 
validated in reality yet, as the number of disassembly objects is 
too small to proof relevance. However, the generic validation 
dataset for the RCP contained optical ratings as well and 
correlation to the EoL decision is traceable there. 
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Fig. 4. Case study scenario on electric vehicle battery disassembly 
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All process monitoring data, such as the overall disassembly 
time, are assigned to the digital model as valid process 
information and transferred back to the disassembly database. 
The human intervention option can be triggered via the HMI in 
case of a problem regarding the process or previously 
unnoticed product damage. The information entered has to be 
selected from pre-classified categories in order to allow an 
integration into the calculation of the actual component status. 

4. Conclusion 

Disassembly is a major challenge in lifecycle operations. In 
this paper, a cognitive robotic system is presented which is 
capable of integrating individual product lifecycle data to 
decide upon the actual degree of disassembly in regard to the 
most suitable EoL utilization option. The system is composed 
in a modular, agent-based structure which is adaptable and 
scalable for multiple applications throughout production and 
retro-production systems while employing efficient edge 
computing technology and Industry 4.0 interoperability 
standards, such as OPC UA and MQTT. 

A case study on the disassembly of electric vehicle traction 
batteries shows that the system proposal is fully functional in 
terms of information transfer and task fulfillment of the specific 
modules for cognition, perception, execution and operation in 
a realistic HRC case scenario. As a next step, a quantitative 
evaluation and comparison to manual work will be carried out. 
On top of that, a benchmark of different models on a common 
reference object would be a sensible addition. 

However, from the first experiments, there are still 
potentials for improvement in terms of cycle-time and an 
evaluation of the principle in a continuous disassembly facility. 
Furthermore, the decision process as a key factor for the 
establishment of suitable utilization strategies can be linked to 
a superordinate system taking the entire circular economy 
processes into account as described in a framework idea in [20]. 

In conclusion, the application of modern robotic approaches 
in the realm of circular economy can foster EoL-utilization by 
creating feasible processing scenarios due to a holistic 
information management concept in order to make recycling 
and product-oriented lifecycle management more attractive to 
all possible participants in circular economy models. 
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