16,971 research outputs found

    Strong Turing Degrees for Additive BSS RAM's

    Full text link
    For the additive real BSS machines using only constants 0 and 1 and order tests we consider the corresponding Turing reducibility and characterize some semi-decidable decision problems over the reals. In order to refine, step-by-step, a linear hierarchy of Turing degrees with respect to this model, we define several halting problems for classes of additive machines with different abilities and construct further suitable decision problems. In the construction we use methods of the classical recursion theory as well as techniques for proving bounds resulting from algebraic properties. In this way we extend a known hierarchy of problems below the halting problem for the additive machines using only equality tests and we present a further subhierarchy of semi-decidable problems between the halting problems for the additive machines using only equality tests and using order tests, respectively

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200

    Martin's conjecture, arithmetic equivalence, and countable Borel equivalence relations

    Get PDF
    There is a fascinating interplay and overlap between recursion theory and descriptive set theory. A particularly beautiful source of such interaction has been Martin's conjecture on Turing invariant functions. This longstanding open problem in recursion theory has connected to many problems in descriptive set theory, particularly in the theory of countable Borel equivalence relations. In this paper, we shall give an overview of some work that has been done on Martin's conjecture, and applications that it has had in descriptive set theory. We will present a long unpublished result of Slaman and Steel that arithmetic equivalence is a universal countable Borel equivalence relation. This theorem has interesting corollaries for the theory of universal countable Borel equivalence relations in general. We end with some open problems, and directions for future research.Comment: Corrected typo

    Uniform Diagonalization Theorem for Complexity Classes of Promise Problems including Randomized and Quantum Classes

    Full text link
    Diagonalization in the spirit of Cantor's diagonal arguments is a widely used tool in theoretical computer sciences to obtain structural results about computational problems and complexity classes by indirect proofs. The Uniform Diagonalization Theorem allows the construction of problems outside complexity classes while still being reducible to a specific decision problem. This paper provides a generalization of the Uniform Diagonalization Theorem by extending it to promise problems and the complexity classes they form, e.g. randomized and quantum complexity classes. The theorem requires from the underlying computing model not only the decidability of its acceptance and rejection behaviour but also of its promise-contradicting indifferent behaviour - a property that we will introduce as "total decidability" of promise problems. Implications of the Uniform Diagonalization Theorem are mainly of two kinds: 1. Existence of intermediate problems (e.g. between BQP and QMA) - also known as Ladner's Theorem - and 2. Undecidability if a problem of a complexity class is contained in a subclass (e.g. membership of a QMA-problem in BQP). Like the original Uniform Diagonalization Theorem the extension applies besides BQP and QMA to a large variety of complexity class pairs, including combinations from deterministic, randomized and quantum classes.Comment: 15 page

    AND and/or OR: Uniform Polynomial-Size Circuits

    Get PDF
    We investigate the complexity of uniform OR circuits and AND circuits of polynomial-size and depth. As their name suggests, OR circuits have OR gates as their computation gates, as well as the usual input, output and constant (0/1) gates. As is the norm for Boolean circuits, our circuits have multiple sink gates, which implies that an OR circuit computes an OR function on some subset of its input variables. Determining that subset amounts to solving a number of reachability questions on a polynomial-size directed graph (which input gates are connected to the output gate?), taken from a very sparse set of graphs. However, it is not obvious whether or not this (restricted) reachability problem can be solved, by say, uniform AC^0 circuits (constant depth, polynomial-size, AND, OR, NOT gates). This is one reason why characterizing the power of these simple-looking circuits in terms of uniform classes turns out to be intriguing. Another is that the model itself seems particularly natural and worthy of study. Our goal is the systematic characterization of uniform polynomial-size OR circuits, and AND circuits, in terms of known uniform machine-based complexity classes. In particular, we consider the languages reducible to such uniform families of OR circuits, and AND circuits, under a variety of reduction types. We give upper and lower bounds on the computational power of these language classes. We find that these complexity classes are closely related to tallyNL, the set of unary languages within NL, and to sets reducible to tallyNL. Specifically, for a variety of types of reductions (many-one, conjunctive truth table, disjunctive truth table, truth table, Turing) we give characterizations of languages reducible to OR circuit classes in terms of languages reducible to tallyNL classes. Then, some of these OR classes are shown to coincide, and some are proven to be distinct. We give analogous results for AND circuits. Finally, for many of our OR circuit classes, and analogous AND circuit classes, we prove whether or not the two classes coincide, although we leave one such inclusion open.Comment: In Proceedings MCU 2013, arXiv:1309.104
    corecore