2,999 research outputs found

    An emerging population of BL Lacs with extreme properties: towards a class of EBL and cosmic magnetic field probes?

    Get PDF
    High energy observations of extreme BL Lac objects, such as 1ES 0229+200 or 1ES 0347-121, recently focused interest both for blazar and jet physics and for the implication on the extragalactic background light and intergalactic magnetic field estimate. However, the number of these extreme highly peaked BL Lac objects (EHBL) is still rather small. Aiming at increase their number, we selected a group of EHBL candidates starting from the BL Lac sample of Plotkin et al. (2011), considering those undetected (or only barely detected) by the Large Area Telescope onboard Fermi and characterized by a high X-ray vs. radio flux ratio. We assembled the multi-wavelength spectral energy distribution of the resulting 9 sources, profiting of publicly available archival observations performed by the Swift, Galex and Fermi satellites, confirming their nature. Through a simple one-zone synchrotron self-Compton model we estimate the expected VHE flux, finding that in the majority of cases it is within the reach of present generation of Cherenkov arrays or of the forthcoming Cherenkov Telescope Array (CTA).Comment: 12 pages, 5 figures, accepted for publication in MNRA

    Extreme BL Lacs: probes for cosmology and UHECR candidates

    Get PDF
    High-energy observations of extreme BL Lac objects, such as 1ES0229+200 or 1ES 0347-121, recently focused interest both for blazar and jet physics and for the implication on the extragalactic background light and intergalactic magnetic field estimate. Moreover, their enigmatic properties have been interpreted in a scenario in which their primary high- energy output is through a beam of high-energy hadrons. However, despite their possible important role in all these topics, the number of these extreme highly peaked BL Lac objects (EHBL) is still rather small. Aiming at increase their number, we selected a group of EHBL candidates considering those undetected (or only barely detected) by the LAT onboard Fermi and characterized by a high X-ray versus radio flux ratio. We assembled the multi-wavelength spectral energy distribution of the resulting 9 sources, using available archival data of Swift, GALEX, and Fermi satellites, confirming their nature. Through a simple one-zone synchrotron self-Compton model we estimate the expected very high energy flux, finding that in the majority of cases it is within the reach of present generation of Cherenkov arrays or of the forthcoming CTA.Comment: 6 pages, to appear in the Proceedings of the Conference "High-Energy Phenomena and Relativistic Outflows V", held in La Plata, 5-8 October 201

    Sonic Booms in Atmospheric Turbulence (SonicBAT): The Influence of Turbulence on Shaped Sonic Booms

    Get PDF
    The objectives of the Sonic Booms in Atmospheric Turbulence (SonicBAT) Program were to develop and validate, via research flight experiments under a range of realistic atmospheric conditions, one numeric turbulence model research code and one classic turbulence model research code using traditional N-wave booms in the presence of atmospheric turbulence, and to apply these models to assess the effects of turbulence on the levels of shaped sonic booms predicted from low boom aircraft designs. The SonicBAT program has successfully investigated sonic boom turbulence effects through the execution of flight experiments at two NASA centers, Armstrong Flight Research Center (AFRC) and Kennedy Space Center (KSC), collecting a comprehensive set of acoustic and atmospheric turbulence data that were used to validate the numeric and classic turbulence models developed. The validated codes were incorporated into the PCBoom sonic boom prediction software and used to estimate the effect of turbulence on the levels of shaped sonic booms associated with several low boom aircraft designs. The SonicBAT program was a four year effort that consisted of turbulence model development and refinement throughout the entire period as well as extensive flight test planning that culminated with the two research flight tests being conducted in the second and third years of the program. The SonicBAT team, led by Wyle, includes partners from the Pennsylvania State University, Lockheed Martin, Gulfstream Aerospace, Boeing, Eagle Aeronautics, Technical & Business Systems, and the Laboratory of Fluid Mechanics and Acoustics (France). A number of collaborators, including the Japan Aerospace Exploration Agency, also participated by supporting the experiments with human and equipment resources at their own expense. Three NASA centers, AFRC, Langley Research Center (LaRC), and KSC were essential to the planning and conduct of the experiments. The experiments involved precision flight of either an F-18A or F-18B executing steady, level passes at supersonic airspeeds in a turbulent atmosphere to create sonic boom signatures that had been distorted by turbulence. The flights spanned a range of atmospheric turbulence conditions at NASA Armstrong and Kennedy in order to provide a variety of conditions for code validations. The SonicBAT experiments at both sites were designed to capture simultaneous F-18A or F-18B onboard flight instrumentation data, high fidelity ground based and airborne acoustic data, surface and upper air meteorological data, and additional meteorological data from ultrasonic anemometers and SODARs to determine the local atmospheric turbulence and boundary layer height

    A Memetic Analysis of a Phrase by Beethoven: Calvinian Perspectives on Similarity and Lexicon-Abstraction

    Get PDF
    This article discusses some general issues arising from the study of similarity in music, both human-conducted and computer-aided, and then progresses to a consideration of similarity relationships between patterns in a phrase by Beethoven, from the first movement of the Piano Sonata in A flat major op. 110 (1821), and various potential memetic precursors. This analysis is followed by a consideration of how the kinds of similarity identified in the Beethoven phrase might be understood in psychological/conceptual and then neurobiological terms, the latter by means of William Calvin’s Hexagonal Cloning Theory. This theory offers a mechanism for the operation of David Cope’s concept of the lexicon, conceived here as a museme allele-class. I conclude by attempting to correlate and map the various spaces within which memetic replication occurs

    A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94

    Full text link
    We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-arcsecond, or, at the distance to M94, <23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ~1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.Comment: 18 pages, 7 figure

    Faraday Conversion in Turbulent Blazar Jets

    Full text link
    Low (â‰Č1%\lesssim 1\%) levels of circular polarization (CP) detected at radio frequencies in the relativistic jets of some blazars can provide insight into the underlying nature of the jet plasma. CP can be produced through linear birefringence, in which initially linearly polarized emission produced in one region of the jet is altered by Faraday rotation as it propagates through other regions of the jet with varying magnetic field orientation. Marscher has begun a study of jets with such magnetic geometries using the Turbulent Extreme Multi-Zone (TEMZ) model, in which turbulent plasma crossing a standing shock in the jet is represented by a collection of thousands of individual plasma cells, each with distinct magnetic field orientations. Here we develop a radiative transfer scheme that allows the numerical TEMZ code to produce simulated images of the time-dependent linearly and circularly polarized intensity at different radio frequencies. In this initial study, we produce synthetic polarized emission maps that highlight the linear and circular polarization expected within the model.Comment: 17 pages, 13 figures, accepted for publication in Ap

    Pulsar Timing Constraints on the Fermi Massive Black-Hole Binary Blazar Population

    Get PDF
    Blazars are a sub-population of quasars whose jets are nearly aligned with the line-of-sight, which tend to exhibit multi-wavelength variability on a variety of timescales. Quasi-periodic variability on year-like timescales has been detected in a number of bright sources, and has been connected to the orbital motion of a putative massive black hole binary. If this were indeed the case, those blazar binaries would contribute to the nanohertz gravitational-wave stochastic background. We test the binary hypothesis for the blazar population observed by the \textit{Fermi} Gamma-Ray Space Telescope, which consists of BL Lacertae objects and flat-spectrum radio quasars. Using mock populations informed by the luminosity functions for BL Lacertae objects and flat-spectrum radio quasars with redshifts z≀2z \le 2, we calculate the expected gravitational wave background and compare it to recent pulsar timing array upper limits. The two are consistent only if a fraction â‰Č10−3\lesssim 10^{-3} of blazars hosts a binary with orbital periods <5<5 years. We therefore conclude that binarity cannot significantly explain year-like quasi-periodicity in blazars.Comment: 5 pages, 4 figures, accepted by MNRAS Letter
    • 

    corecore