67 research outputs found

    On the Performance under Hard and Soft Bitwise Mismatched-Decoding

    Get PDF
    We investigated a suitable auxiliary channel setting and the gap between Q-factors with hard and soft demapping. The system margin definition should be reconsidered for systems employing complex coded modulation with soft forward error correction

    On the Performance under Hard and Soft Bitwise Mismatched-Decoding

    Get PDF
    We investigated a suitable auxiliary channel setting and the gap between Q-factors with hard and soft demapping. The system margin definition should be reconsidered for systems employing complex coded modulation with soft forward error correction.Comment: 3 pages, 4 figure

    Post-FEC BER Benchmarking for Bit-Interleaved Coded Modulation with Probabilistic Shaping

    Get PDF
    Accurate performance benchmarking after forward error correction (FEC) decoding is essential for system design in optical fiber communications. Generalized mutual information (GMI) has been shown to be successful at benchmarking the bit-error rate (BER) after FEC decoding (post-FEC BER) for systems with soft-decision (SD) FEC without probabilistic shaping (PS). However, GMI is not relevant to benchmark post-FEC BER for systems with SD-FEC and PS. For such systems, normalized GMI (NGMI), asymmetric information (ASI), and achievable FEC rate have been proposed instead. They are good at benchmarking post-FEC BER or to give an FEC limit in bit-interleaved coded modulation (BICM) with PS, but their relation has not been clearly explained so far. In this paper, we define generalized L-values under mismatched decoding, which are connected to the GMI and ASI. We then show that NGMI, ASI, and achievable FEC rate are theoretically equal under matched decoding but not under mismatched decoding. We also examine BER before FEC decoding (pre-FEC BER) and ASI over Gaussian and nonlinear fiber-optic channels with approximately matched decoding. ASI always shows better correlation with post-FEC BER than pre-FEC BER for BICM with PS. On the other hand, post-FEC BER can differ at a given ASI when we change the bit mapping, which describes how each bit in a codeword is assigned to a bit tributary.Comment: 14 pages, 8 figure

    Performance Metrics for Systems with Soft-Decision FEC and Probabilistic Shaping

    Full text link
    High-throughput optical communication systems utilize binary soft-decision forward error correction (SD-FEC) with bit interleaving over the bit channels. The generalized mutual information (GMI) is an achievable information rate (AIR) in such systems and is known to be a good predictor of the bit error rate after SD-FEC decoding (post-FEC BER) for uniform signaling. However, for probabilistically shaped (nonuniform) signaling, we find that the normalized AIR, defined as the AIR divided by the signal entropy, is less correlated with the post-FEC BER. We show that the information quantity based on the distribution of the single bit signal, and its asymmetric loglikelihood ratio, are better predictors of the post-FEC BER. In simulations over the Gaussian channel, we find that the prediction accuracy, quantified as the peak-to-peak deviation of the post-FEC BER within a set of different modulation formats and distributions, can be improved more than 10 times compared with the normalized AIR.Comment: 4 pages, 3 figure

    Performance Monitoring for Live Systems with Soft FEC and Multilevel Modulation

    Get PDF
    Performance monitoring is an essential function for margin measurements in live systems. Historically, system budgets have been described by the Q-factor converted from the bit error rate (BER) under binary modulation and direct detection. The introduction of hard-decision forward error correction (FEC) did not change this. In recent years technologies have changed significantly to comprise coherent detection, multilevel modulation and soft FEC. In such advanced systems, different metrics such as (nomalized) generalized mutual information (GMI/NGMI) and asymmetric information (ASI) are regarded as being more reliable. On the other hand, Q budgets are still useful because pre-FEC BER monitoring is established in industry for live system monitoring. The pre-FEC BER is easily estimated from available information of the number of flipped bits in the FEC decoding, which does not require knowledge of the transmitted bits that are unknown in live systems. Therefore, the use of metrics like GMI/NGMI/ASI for performance monitoring has not been possible in live systems. However, in this work we propose a blind soft-performance estimation method. Based on a histogram of log-likelihood-values without the knowledge of the transmitted bits, we show how the ASI can be estimated. We examined the proposed method experimentally for 16 and 64-ary quadrature amplitude modulation (QAM) and probabilistically shaped 16, 64, and 256-QAM in recirculating loop experiments. We see a relative error of 3.6%, which corresponds to around 0.5 dB signal-to-noise ratio difference for binary modulation, in the regime where the ASI is larger than the assumed FEC threshold. For this proposed method, the digital signal processing circuitry requires only a minimal additional function of storing the L-value histograms before the soft-decision FEC decoder.Comment: 9 pages, 9 figure

    Performance monitoring for live systems with soft FEC

    Get PDF

    Low-Complexity Near-Optimum Symbol Detection Based on Neural Enhancement of Factor Graphs

    Get PDF
    We consider the application of the factor graph framework for symbol detection on linear inter-symbol interference channels. Based on the Ungerboeck observation model, a detection algorithm with appealing complexity properties can be derived. However, since the underlying factor graph contains cycles, the sum-product algorithm (SPA) yields a suboptimal algorithm. In this paper, we develop and evaluate efficient strategies to improve the performance of the factor graph-based symbol detection by means of neural enhancement. In particular, we consider neural belief propagation and generalizations of the factor nodes as an effective way to mitigate the effect of cycles within the factor graph. By applying a generic preprocessor to the channel output, we propose a simple technique to vary the underlying factor graph in every SPA iteration. Using this dynamic factor graph transition, we intend to preserve the extrinsic nature of the SPA messages which is otherwise impaired due to cycles. Simulation results show that the proposed methods can massively improve the detection performance, even approaching the maximum a posteriori performance for various transmission scenarios, while preserving a complexity which is linear in both the block length and the channel memory.Comment: revised version. arXiv admin note: text overlap with arXiv:2203.0333

    Bit-Interleaved Coded Modulation

    Get PDF
    • …
    corecore