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Low-Complexity Near-Optimum Symbol Detection
Based on Neural Enhancement of Factor Graphs

Luca Schmid and Laurent Schmalen , Senior Member, IEEE

Abstract— We consider the application of the factor graph
framework for symbol detection on linear inter-symbol inter-
ference channels. Based on the Ungerboeck observation model,
a detection algorithm with appealing complexity properties can
be derived. However, since the underlying factor graph contains
cycles, the sum-product algorithm (SPA) yields a suboptimal
algorithm. In this paper, we develop and evaluate efficient
strategies to improve the performance of the factor graph-based
symbol detection by means of neural enhancement. In particular,
we consider neural belief propagation and generalizations of the
factor nodes as an effective way to mitigate the effect of cycles
within the factor graph. By applying a generic preprocessor
to the channel output, we propose a simple technique to vary
the underlying factor graph in every SPA iteration. Using
this dynamic factor graph transition, we intend to preserve
the extrinsic nature of the SPA messages which is otherwise
impaired due to cycles. Simulation results show that the proposed
methods can massively improve the detection performance, even
approaching the maximum a posteriori performance for various
transmission scenarios, while preserving a complexity which is
linear in both the block length and the channel memory.

Index Terms— Factor graphs, neural belief propagation, sym-
bol detection, channels with memory, high-level parallelism.

I. INTRODUCTION

THE well-known task of data transmission over a chan-
nel with linear inter-symbol interference (ISI) impaired

by additive white Gaussian noise (AWGN) is considered in
this paper. ISI is ubiquitous in many wireline and wireless
communication systems where, e.g., multipath propagation is
caused by reflections and refraction of the transmit signal
in the wireless channel. Left uncompensated, ISI leads to a
distortion of the signal and causes high error rates at the
receiver [2, Chap. 9]. Detection algorithms are thus required
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at the receiver in order to recover the original transmit
signal. Optimum detection with respect to the symbol error
probability is based on maximum a posteriori (MAP) sym-
bol detection. The BCJR algorithm [3] is an efficient MAP
algorithm whose complexity is linear in the block length
but exponential in the memory of the channel and the num-
ber of bits mapped to each constellation symbol. In many
practical scenarios where channels have large memory or
where high-order constellations are used, the BCJR algorithm
becomes prohibitively complex. Therefore, the development
of computationally efficient algorithms with near-optimum
performance has become a major field of research. Classical
low-complexity equalizers like linear transversal filters and
algorithms based on decision-feedback equalization (DFE)
yield acceptable performance for a wide range of commu-
nication channels with well behaved spectral characteristics,
but perform poorly for channels with severe ISI and spec-
tral zeros [2, Sec. 9.4]. A common approach for reduced-
complexity MAP symbol detection is a simplification of the
trellis search within the BCJR algorithm [4]. Either a reduced
search on the full-complexity trellis can be performed (e.g., the
M -BCJR algorithm [5]), or the number of trellis states can be
reduced (e.g., the RS-BCJR algorithm [6]). However, these
algorithms reduce the complexity of the BCJR algorithm only
by a scalar factor and the performance-complexity tradeoff is
only satisfactory for a particular subset of ISI channels [4].
An alternative approach to reduce the detection complexity
is channel shortening [7]. Filtering the channel output with a
channel shortening filter and then applying the BCJR algo-
rithm on the shortened channel model enables a significantly
reduced detection complexity but potentially comes with a
performance-complexity tradeoff.

The advent of suboptimal iterative decoding in the context
of turbo codes and LDPC codes has led to a rediscovery of
message passing on graphical models. The powerful factor
graph framework [8] provides a universal modeling tool
for algorithms with controllable complexity. Based on the
Ungerboeck observation model [9], Colavolpe et al. employed
factor graphs and the SPA to derive a symbol detector with
substantially reduced complexity [10]. In particular, the com-
plexity is linear both in the block length and the channel
memory. The proposed algorithm is however suboptimal, since
its underlying factor graph contains cycles.

Recently, model-based deep learning has shown great poten-
tial to empower various suboptimal communication algo-
rithms [11] and overcome their limitations. In [12], the factor
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nodes of a cycle-free factor graph are replaced by deep neural
networks (DNNs) that are utilized to learn the local mappings
of the factor nodes, thereby robustifying the algorithm towards
model uncertainties. However, the algorithm still suffers from
a complexity which is comparable to the complexity of the
BCJR algorithm. Therefore, we focus on model-based deep
learning approaches which are based on the Ungerboeck obser-
vation model, in the following. To mitigate the performance
loss for cyclic factor graphs, a graph neural network (GNN),
which is structurally identical to the original graph but has
fully parametrized message updates, is proposed in [13]. The
GNN runs conjointly to the original algorithm and corrects the
SPA messages after each iteration. The authors in [14] com-
pensate the performance degradation due to cycles in the graph
by concatenating a supplemental neural network (NN)-based
factor node (FN) to the factor graph. This additional FN is
connected to all variable nodes (VNs) and is optimized in an
end-to-end manner. However, the underlying NN structure is
specifically tailored to binary transmission which substantially
limits its scope of application. Instead of replacing different
components of the factor graph by DNNs, the SPA is unfolded
to a DNN and the resulting graph is equipped with tunable
weights in [15]. This approach is known as neural belief
propagation (NBP).

This paper aims at closing the gap between optimum and
low-complexity symbol detection. We consider NBP on the
Ungerboeck-based factor graph and further generalize the
graph by introducing additional multiplicative weights within
the FNs. Optimizing all weights in an end-to-end manner leads
to considerable performance gains. Moreover, we leverage the
high sensibility of the SPA to a variation of the underlying
graph by applying an optimizable linear filter to the channel
output, which allows us to modify the observation model and
thereby the factor graph itself. By a combination of multiple
factor graph instances in parallel, as well a dynamic variation
of the graphs over the message passing iterations, we exploit
this graph diversity in order to significantly improve the overall
detection performance, and close the gap to optimum symbol
detection for a variety of channels.

The remainder of this paper is organized as follows.
In Section II, we briefly review the concept of factor graphs
and the SPA [8]. Section III formulates the fundamental prob-
lem of symbol detection on channels with linear ISI. Using
the factor graph framework, we present a suboptimal, but
low-complexity, symbol detection algorithm. This provides the
basis for Section IV, in which we propose and discuss various
generalizations and enhancements to the algorithm. Section V
examines the behavior of the proposed algorithms for different
linear ISI channels and quantifies its performance compared to
existing symbol detectors. Some concluding remarks are given
in Section VI.

A. Notation

Throughout the paper, we use bold letters for non-scalar
quantities. Upper case letters denote matrices X and Xm,n

represents the entry at row m and column n. Lower case
letters are used for column vectors x. The ith element of x is
written as xi and the stacking of a vector from multiple scalars

is denoted by [xi]ni=1 = x. ‖·‖ denotes the Euclidean norm
and (·)H is the conjugate transpose (Hermitian) operator. The
computation of the term ln

(
eδ1 + . . . + eδn

)
can be carried

out using the Jacobian logarithm [16] and is denoted by
max�

i
δi. The probability measure of a random variable (RV)

x evaluated at x is denoted by Px(x = x). If it is clear from
the context, we may use the shorter notation P (x = x) for the
sake of simplicity. The probability density function (PDF) of a
continuous RV y is denoted by py(y) or p(y). The probability
mass function (PMF) of a discrete RV x is Px(x) or P (x).
The Gaussian distribution, characterized by its mean μ and
variance σ2, is written as N (μ, σ2). The expected value of an
RV x is denoted by Ex{x} and the mutual information between
the RVs x and y is I(x; y). We use calligraphic letters to denote
a set X of cardinality |X |.

II. FACTOR GRAPHS AND MARGINALIZATION

The framework of factor graphs and the SPA is a flexible
tool for algorithmic modeling of efficient inference algorithms.
By representing the factorization of a composite global func-
tion of many variables in a graphical way, the computation
of various marginalizations of this function can be efficiently
implemented by a message passing algorithm. Since factor
graphs are the foundation of our work, we review the basic
concepts in this section.

Let f(X ) be a so-called “global” function which depends
on a set of variables X = {x0, x1, . . . , xn} with xi ∈ M for
i = 0, . . . , n. The marginalization of f(X ) towards a single
marginal variable xi typically requires |M|n additions which
can quickly become computationally infeasable for large n.
The complexity can be significantly reduced by means of the
distributive law if the global function is factorizable [8]. Let
us assume that f(X ) can be factorized as

f(X ) =
J∏

j=1

fj(Xj), Xj ⊂ X , (1)

where each factor fj(Xj) only depends on a subset of the
variables Xj . A factor graph represents the factorization of a
multivariate function in a graphical way [17]. The following
rules define the bijective relationship between the generic
factorization in (1) and its corresponding factor graph:

• Every factor fj(Xj) is represented by a unique vertex,
the so-called FN fj .

• Every variable x ∈ X is represented by a unique vertex,
the so-called VN x.

• An FN fj is connected to a VN x if and only if the
corresponding factor fj(Xj) is a function of x, i.e., if x ∈
Xj =: N (fj).

The notation N (fj) denotes the neighborhood of the FN and
is introduced to emphasize the fact that all variables on which
a factor depends are represented by adjacent VNs in the factor
graph. Equivalently, N (x) := {fj, j = 1, . . . , J : x ∈ N (fj)}
denotes the neighborhood of the VN x. It is worth mentioning
that the factor graph representation of a factorization is unique
with respect to the structure of the resulting graph. However,
there can be various factorizations of the same global function,
leading to disparate factor graph representations [8].
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The SPA is a message passing algorithm which computes
the marginalization f(xi) of the global function f(X ) towards
each variable xi ∈ X , respectively. It implicitly leverages the
distributive law on the factorization of f(X ). Messages are
propagated between the nodes of the factor graph along its
edges and represent interim results of the marginalization.
Let μfj→x(x) denote a message sent from FN fj along an
outgoing edge to VN x. Consequently, μx→fj (x) denotes a
message on the same edge, but sent in the opposite direction.
The message passing algorithm is based on one central mes-
sage update rule for the VNs and FNs, respectively. In the
logarithmic domain,1 the message updates are

μx→fj (x) =
∑

f ′∈N (x)\{fj}
μf ′→x(x) (2)

μfj→x(x) = max�

∼{x}

⎛
⎝ln(fj(Xj)) +

∑
x′∈N (fj)\{x}

μx′→fj (x
′)

⎞
⎠.

(3)

They define the computation of an outgoing message, given
the incoming messages on all other incident edges of a
node [8], called extrinsic messages. The local marginalization
in the FN to VN update, i.e., the Jacobian algorithm over all
extrinsic variables, is thereby denoted by the summary operator
max�∼{x}.

Based on the SPA message update rule, we can compute
marginals by propagating messages through the respective
factor graph. If the graph is tree-structured, messages travel
forward and backward through the entire graph, starting at
the leaf nodes. Based on the computed messages, the exact
marginals

f(xi) = exp

⎛
⎝ ∑

f ′∈N (xi)

μf ′→xi(xi)

⎞
⎠

can be obtained. Since the message updates are local [8] and
because the SPA makes no reference to the topology of the
graph [18], the SPA may also be applied to factor graphs
with cycles, yielding an iterative algorithm. The messages
are initialized with an unbiased state in iteration n = 0 and
are iteratively updated by following a certain schedule until
convergence or a stopping criterion is reached. In the case of
cyclic factor graphs, the superscript (n), with n = 0, . . . , N ,
indicates the iteration in which the message μ

(n)
a→b is computed.

In general, convergence of the SPA on cyclic factor graphs
is not guaranteed and the iterative algorithm only yields an
approximation

f̂(xi) := exp

⎛
⎝ ∑

f ′∈N (xi)

μ
(N)
f ′→xi

(xi)

⎞
⎠ (4)

of the exact marginal f(xi) [8]. However, many successful
applications, e.g., decoders of error-correcting codes, are based
on message passing algorithms on cyclic graphs.

1When it comes to hardware implementation, it can be advantageous to carry
out the SPA in the logarithmic domain due to less numerical instabilities and
a reduced computational complexity.

III. SYMBOL DETECTION

We consider the transmission of an information sequence
c = [ck]Kk=1 ∈ MK of a multilevel constellation M =
{mi ∈ C, i = 1, . . . , M} over a complex baseband channel,
impaired by linear interference and AWGN. The bit pattern
of length m := log2(M) which corresponds to a symbol ck

is denoted by b(ck) = [bi(ck)]mi=1. The relationship between
the independent and identically distributed (i.i.d.) information
symbols ck and the receive symbols yk can be expressed by
an equivalent discrete-time channel model [19]:

yk =
L∑

�=0

h�ck−� + wk. k = 1, . . . , K + L. (5)

For a channel with memory L, h ∈ CL+1 is the finite channel
impulse response and w ∼ CN (0, σ2I) denotes white circular
Gaussian noise. The channel is assumed to be static, which
leads to the channel impulse response h being constant over
time. The symbols ck for k < 1 and k > K are information
symbols from the same constellation M. We assume that these
boundary symbols are fully known at the receiver, as they are
either pilot symbols or information symbols from an adjacent
transmission block which was already detected and decoded.
An equivalent transmit sequence is given by č := [ck]K+L

k=1−L ∈
M(K+2L). Since the interference is linear, (5) can be described
in matrix vector notation:

y = Hč + w.

The matrix H ∈ C(K+L)×(K+2L) is a band-structured
Toeplitz matrix which represents the convolution of the trans-
mit sequence č with the channel impulse response h.

We study the problem of symbol detection, i.e., the esti-
mation of the information symbols ck, k = 1, . . . , K from a
sequence y, observed at the receiver. In the context of Bayesian
inference, we are interested in the a posteriori probability
(APP) distribution

P (c|y) ∝ p(y|c)P (c),

where proportionality ∝ denotes two terms only differing in
a factor independent of c. The APP can be factored into the
likelihood

p(y|c) =
1

(πσ2)K
exp

(
−‖y − Hc‖2

σ2

)
(6)

and the a priori probability P (c), using Bayes’ theorem [20,
Chap. 2]. The symbol-wise APPs are obtained by computing
the marginals

P (ck = c|y) =
∑

c∈MK

ck=c

P (c = c|y), k = 1, . . . , K, (7)

on which symbol detection can be based. In case of hard
decision, the symbol-wise MAP detection

ĉk = argmax
c∈M

P (ck = c|y), k = 1, . . . , K

yields the minimum probability of error for each symbol
decision, respectively [2, Sec. 9.3].
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A. Factor Graph Modeling

The computation of the symbol-wise APPs P (ck = c|y)
in (7) requires K marginalizations which we can efficiently
compute by employing the factor graph framework. To model
a factor graph, we need to find an appropriate factorization
of the APP distribution P (c|y). The likelihood in (6) can be
expressed as [10]

p(y|c) ∝ exp
(

2Re{cHHHy}−cHHHHc

σ2

)
.

We substitute

G := HHH, x := HHy (8)

and interpret x as an alternative observation at the receiver.
This is commonly known as the Ungerboeck observation
model [9]. By using

cHx =
K∑

k=1

xkc�
k

cHGc =
K∑

k=1

Gk,k|ck|2 −
K∑

k=1

K∑
�=1
� �=k

Re{Gk,�c�c
�
k},

the likelihood function can be factorized as

p(y|c) ∝
K∏

k=1

⎡
⎢⎣Fk(ck)

K∏
�=1
� �=k

Jk,�(ck, c�)

⎤
⎥⎦

with the factors

Fk(ck) := exp
(

1
σ2

Re
{

2 xkc�
k − Gk,k|ck|2

})
(9)

Jk,�(ck, c�) = exp
(
− 1

σ2
Re{Gk,�c�c

�
k}
)

. (10)

The factors Jk,�(ck, c�) and J�,k(c�, ck) depend on the same
variables and can thus be condensed to one factor

Ik,�(ck, c�) := Jk,�(ck, c�)J�,k(c�, ck), k > � (11)

= J2
k,�(ck, c�), (12)

where (12) exploits the Hermitian symmetry of G. The
factor Ik,�(ck, c�) is symmetric with respect to k and �, i.e.,
Ik,�(ck, c�) = I�,k(c�, ck). The a priori distribution

P (c) =
K∏

k=1

P (ck)

can be factorized due to the statistical independence of the
information symbols. In summary, the APP can be expressed
in the factorization

P (c|y) ∝
K∏

k=1

P (ck)
K∏

k=1

[
Fk(ck)

∏
�<k

Ik,�(ck, c�)

]
, (13)

which is represented by a factor graph in Fig. 1. Applying
the SPA on this factor graph to develop a symbol detection
algorithm was first proposed by Colavolpe et al. in [10].
We will refer to this algorithm as UFG (Ungerboeck-based
factor graph symbol detector) in the following. We initialize

Fig. 1. Factor graph representation of (13) for L = 2.

all messages with μ0(ck) := − ln(M) and perform N SPA
iterations on the graph. We apply a flooding schedule, i.e., one
iteration comprises the simultaneous update of all messages
from VNs to FNs in a first step, followed by the update of mes-
sages propagating in the opposite direction in a second step.
The soft output P̂ (ck|y) is finally obtained by applying (4)
to all VNs.

The complexity of factor graph-based algorithms can be
estimated by considering the number of FNs and their node
degree, since the FN update rule (3) is computationally more
demanding than the operation (2) at the VNs [21]. The UFG
symbol detector is based on a factor graph with maximum FN
degree of 2 of the Ik,� nodes. Therefore, the algorithm has
a computational complexity which only grows linearly with
the channel memory L. This makes the UFG algorithm an
attractive low-complexity alternative to the well established
BCJR algorithm which has an exponentially growing com-
plexity with L.

Although the factorization (13) is exact, the UFG algorithm
only yields an approximation for the symbol-wise APPs due
to cycles within the underlying factor graph. It is thus a
suboptimal algorithm. By agglomerating variable nodes, the
cycles within the factor graph can be eliminated. This leads
to a forward-backward algorithm described in [22], yielding
the exact marginalization P (ck|y), on which optimum MAP
detection can be carried out. However, the appealing complex-
ity properties of the cyclic factor graph vanish if clustering is
applied: the SPA algorithm on the clustered factor graph has a
complexity similar to the BCJR algorithm [22], which grows
exponentially in both channel memory L and number of bits
per symbol m.

IV. NEURAL ENHANCEMENT OF FACTOR GRAPH-BASED

SYMBOL DETECTION

Driven by the appealing complexity properties of the UFG
algorithm, we urge to compensate for its suboptimality by
neurally enhancing both the factor graph and the SPA. In par-
ticular, we consider NBP and an optimization of the FNs
in Sec. IV-A. We further propose a dynamic factor graph
transition in Sec. IV-B, specifically tailored to this partic-
ular problem. Based thereupon, we present a novel symbol
detection algorithm, which is formally defined in Sec. IV-C.
Section IV-D details the parameter optimization and introduces
the bitwise mutual information (BMI) as an objective function
for optimization and evaluation.
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Fig. 2. Unrolled SPA on the factor graph of Fig. 1: each layer corresponds
to one iteration of the SPA.

A. Neural Belief Propagation and FN Enhancement

Applying the SPA to cyclic factor graphs yields an iterative
algorithm. By the use of deep unfolding, first introduced
in [23], an iterative algorithm can be converted into a DNN.
If a flooding schedule is applied to the factor graph in Fig. 1,
a single iteration of the SPA consists of propagating messages
from VNs to FNs and back. Unfolding the N iterations of the
SPA on the factor graph is thus natural since each iteration is
already (factor) graph-based. The resulting unrolled network
comprises N layers and is shown in Fig. 2. Messages are
propagated through the DNN in a feed-forward fashion. For
the sake of simplicity, we introduce a shorter notation for the
messages in the DNN:

μ
(n)
k,j (ck) := μ

(n)
ck→Ik,k+j

(ck)

ν
(n)
k,j (ck) := μ

(n)
Ik,k+j→ck

(ck).

Due to the inherent band structure of G, the network
is not fully connected and the index j is limited to
j ∈ J := {−L, . . . ,−1, 1, . . . , L}. VNs and FNs accept
incoming messages from the previous layer and apply the
SPA message update rule. The resulting outgoing messages
are forwarded downstream to the next layer. As a consequence,
each transmitted message in every iteration has its individually
assigned edge. By accordingly weighting each message/edge,
we attempt to mitigate the effects of short cycles and improve
the detection performance compared to the UFG algorithm.
Optimizing the weights towards a loss function by the use of
established deep learning techniques is known as NBP, first
introduced in the context of belief propagation (BP) on Tanner
graphs for decoding of linear block codes [15].

We limit the set of weights to the edges between VNs ck and
FNs Ik,�. The FNs Pk and Fk have degree 1. Incident edges
are thus not included in the cycles of the factor graph and are
consequently not weighted. In consistency with the message
notation, the message μ

(n)
k,j (ck) is multiplied by the weight

w
(n)
v,k,j . Vice versa, messages from FNs to VNs ν

(n)
k,j (ck) are

weighted by w
(n)
f,k,j . We further generalize the FNs of the UFG

algorithm by the application of multiplicative weights κ
(n)
i,k

and λ
(n)
k,� within the FN computation, in order to increase the

parameter optimization space further. The generalized factors,
given in the logarithmic domain, are

F̃
(n)
k (ck) :=

κ
(n)
1,k

σ2
Re
{

κ
(n)
2,k2 xkc∗k − κ

(n)
3,kGk,k|ck|2

}
Ĩ
(n)
k,� (ck, c�) := λ

(n)
k,�

(
J̃k,�(ck, c�) + J̃�,k(c�, ck)

)
J̃k,�(ck, c�) := ln(Jk,�(ck, c�)) = − 1

σ2
Re{Gk,�c�c

�
k}.

One central motivation to introduce the (trainable) weights
λ

(n)
k,� and κ

(n)
1,k is to artificially attenuate the 1/σ2 term inside

the FNs. By adopting a value of 1/σ2 in the factor graph
smaller than the actual one, the overconfidence of the SPA
messages can be reduced, by describing the channel as if it
added more noise than it actually does [10]. In summary, the
set of parameters for the generalized algorithm is

PNBP :=
{
w

(n)
v,k,j , w

(n)
f,k,j , κ

(n)
i,k , λ

(n)
k,� , n = 1, . . . , N,

j ∈ J , i = 1, 2, 3, k = 1, . . . , K
}

and contains |PNBP| = NK(5L + 3) real-valued elements.
Note that we define all parameters of PNBP to be independent
of ck. For instance, we constrain the weights w

(n)
v,k,j and

w
(n)
f,k,j to be scalars although the SPA messages μ

(n)
k,j (ck) and

ν
(n)
k,j (ck) are M -dimensional vectors. This limitation signifi-

cantly reduces the total number of parameters which need to
be optimized. The UFG algorithm is a special instance of the
proposed generalization and is obtained by the parametrization
PNBP = P1 := {1, . . . , 1}. By optimizing PNBP, the perfor-
mance of the resulting algorithm can thus not be inferior to
the UFG algorithm, but might yield a performance gain [15].

Note that our approach of directly enhancing the UFG algo-
rithm by generalizing its underlying graph and weighting the
SPA messages is conceptually different from neural augmenta-
tion techniques such as GNNs [13]. Neural augmentation does
not modify the model-based algorithm directly but instead
utilizes an external DNN to correct the SPA messages of the
original algorithm in each iteration [11].

B. Dynamic Factor Graph Transition

One key principle of the SPA is the extrinsic information
rule. By computing an outgoing message only based on
incoming messages of extrinsic edges, the SPA ensures that
only “new information” is propagated through the graph. The
extrinsic concept is violated in a cyclic factor graph, where
messages propagate within a loop repetitively and intrinsic
information is mistaken for extrinsic information by the nodes
involved in the cycle. This violation is inevitable if a sufficient
number of iterations is performed on a cyclic factor graph.

In Sec. IV-A, we have introduced a generalization of the
FNs as well as NBP in order to mitigate the performance
degradation due to the cycles. However, inherent cycles
still exist in the unfolded architecture of the NBP and the
proposed methods might not be able to fully compensate
for their existence. Consequently, we propose an additional
strategy to reduce the effect of cycles in a more intrinsic way.
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By dynamically modifying the underlying factor graph on
which the message passing is iteratively performed, messages
do not repeatedly arrive at one and the same factor node
because either the graph structure and/or the FNs therein
have changed. In specific, we propose to periodically change
the factor graph’s underlying observation model by the
application of a linear filter. The channel output y is therefore
preprocessed by a finite impulse response (FIR) filter and
the result x = P y is then used as a new observation for the
inference task. P is a band-structured convolutional Toeplitz
matrix based on the generic impulse response p ∈ CLp+1 of
the FIR preprocessing filter.

The factorization in (13) represents the APP and is thus
optimal in the context of Bayesian inference. In order to
maintain this optimality, the output of the preprocessor x must
be a sufficient statistic for the estimation of c [24]. Only in this
case, the data processing inequality holds with equality [25,
Sec. 2.8] and the original observation y is irrelevant for the
MAP detection, if x is available [10]. In fact, the original UFG
algorithm implicitly uses a preprocessor in (8) by applying a
matched filter P = HH to the channel output y. Based on
this Ungerboeck observation model, inference is carried out
using the new observation x = HHy. In order to generate
a multitude of different factor graphs, we generalize the
observation model

x̃ := Py, G̃ := PH .

Note that varying G̃ directly affects the underlying factor
graph in (9) and (10). The matrix G̃ is in general not Hermitian
symmetric. Consequently, the simplification in (12) is not valid
and the factor Ik,� is defined by (11). This, however, does not
change the structure of the underlying factor graph but only
of the FNs therein. By using different preprocessors, we gain
distinct factor graph instances. We can leverage multiple factor
graph instances in two dimensions:

• Dynamic factor graph transition: Instantiate S different
factor graphs, so-called stages. Perform N ′ SPA iterations
on one stage s, before proceeding to the next stage s+1.

• Parallelism: In each stage, apply B distinct factor graph
instances in parallel. Combine the B results after each
stage s to improve the quality of the APP estimation.

Based on this idea, we propose the novel symbol detection
algorithm GAP (graph alteration by preprocessing). Figure 3
summarizes the information flow of the GAP algorithm.
Each of the S · B factor graph instances uses its individual
preprocessor P (s,b), s = 1, . . . , S, b = 1, . . . , B and thus its
individual observation model x(s,b) = P (s,b)y. The B factor
graphs of a stage s work independently and in parallel. Each
factor graph performs N ′ SPA iterations, based on x(s,b).
To merge the B individual results P̂s,b(ck|y), we combine
the logarithmic APP distributions of the symbol detectors by
addition, followed by a normalization:

ln
(
P̂s(ck|y)

)
=

B∑
b=1

ln
(
P̂s,b(ck|y)

)

−max�

m∈M

(
B∑

b=1

ln
(
P̂s,b(ck = m|y)

))
. (14)

Fig. 3. Hierarchical structure of the GAP algorithm with B branches and
S stages for a channel with memory L = 2. The GAP algorithm accepts
statistical a priori information P (ck) about the information symbols ck as
well as the channel observation y. It returns an estimation of the symbol-
wise APP distributions P̂S(ck|y).

The idea of using multiple parallel processors of varying
behavior in order to increase overall performance was already
proposed in the context of channel decoding on Tanner graphs,
e.g., in [26]. Our method, however, differs in the way of how
to combine the information of the parallel branches. Instead of
selecting the most reliable output of all branches or uniformly
averaging over the probabilities, both proposed in [26], our
approach in (14) inherently weights the prioritization of the
individual results based on the parametrization PNBP.

The combined result P̂s(ck|y) is passed to the subsequent
stage, by setting the FNs P

(n)
k of the factor graphs in stage

s + 1 and branch b to

P
(n)
k = exp

(
w

(n)
p,s,b · ln

(
P̂s(ck|y)

))
, n = 1, . . . , N ′.

The parameters w
(n)
p,s,b are introduced to control the depen-

dency between adjacent stages. Note that P̂s(ck|y) is
only an (imprecise) approximation of the symbol-wise
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Algorithm 1 GFG

Data: y, Pe(ck), Pp, PNBP, P , N
1 Preprocessing x̃ = P y

2 Initialize messages ν
(0)
k,j (ck) = − ln(M)

3 for n = 1, . . . , N do

4 μ
(n)
k,j (ck) =w

(n)
v,k,j

(
ξ
(n)
k (ck) +

∑
j′∈J\j

ν
(n−1)
k,j′ (ck)

)

5 ν
(n)
k,j (ck) =w

(n)
f,k,j max�

ck+j

(
Ĩ
(n)
k,k+j(ck) + μ

(n)
k+j,−j(ck)

)
6 Compute symbol-wise APP estimates

P̂ (ck|y) = exp

(
ξ
(N+1)
k (ck) +

∑
j′∈J

ν
(N)
k,j′ (ck)

)

Result: P̂ (ck|y), k = 1, . . . , K

APP distributions P (ck|y). Finding a more precise approxi-
mation is the objective of the subsequent stages, respectively.
Therefore, the weights w

(n)
p,s,b can dampen the influence of

P̂s(ck|y), e.g., in the final iterations n ∈ N ′. We summarize
the introduced parameters for each stage s and branch b in

P(s,b)
p :=

{
w

(n)
p,s,b, n = 1, . . . , N ′

}
.

Within a specific factor graph instance with fixed s and b,
we use the shorter notation w

(n)
p .

C. Algorithm and Complexity

We formalize the discussed methods for the neural enhance-
ment of factor graph-based symbol detection. Algorithm 1
defines the GFG (generalized factor graph-based detection)
algorithm which generalizes the UFG algorithm by NBP,
neurally enhanced FNs as well as a generalized observation
model. The GFG algorithm is parametrized by PNBP, Pp and
the preprocessor P ∈ C(K+2L,K+L), which is assumed to be a
band-structured Toeplitz matrix and describes the convolution
with an FIR filter p ∈ CLp+1. The algorithm accepts the
channel output y ∈ C

K+L as well as extrinsic information
Pe(ck) of the information symbols ck, e.g., statistical a priori
knowledge Pe(ck) = P (ck). The preprocessor is applied to the
channel observation and all messages from FNs Ik,�(ck, c�) to
VNs ck are initialized to the same value. According to the SPA,
messages of degree 1 FNs do not receive extrinsic information
and are consequently not updated. The messages from the FNs
F̃k(ck) and Pk(ck) to the VNs ck can thus be computed in
advance and are summarized in

ξ
(n)
k (ck) := w(n)

p · ln(Pe(ck)) + F̃
(n)
k (ck).

Subsequently, messages are passed iteratively between FNs
and VNs based on the SPA. The message update in line 5
is simplified due to the degree 2 nature of the FNs Ĩk,�. The
symbol-wise APP estimates P̂ (ck|y) are computed by a final
marginalization for k = 1, . . . , K and are the result of the GFG
algorithm.

Based on the dynamic factor graph transition discussed in
Sec. IV-B, we formally define the novel symbol detection
algorithm GAP. The GAP algorithm is a hierarchical detection

Algorithm 2 GAP (S, B, N ′)
Data: y, P (ck), PGAP

1 Initialize extrinsic information P̂0 = P (ck)
2 for s = 1, . . . , S do
3 for b = 1, . . . , B do
4 P̂b,s(ck) =

GFGb,s

(
y, P̂s−1(ck),P(s,b)

p ,P(s,b)
NBP , P (s,b), N ′

)
5 Merge APP estimates P̂b,s(ck) of all branches

b = 1, . . . B into P̂s(ck) according to (14).
Result: Symbol-wise APP estimates

P̂ (ck|y) = P̂S(ck), k = 1, . . . , K

algorithm, structured in S stages and B branches as illustrated
in Fig. 3. Each of the B · S units can be seen as an individual
GFG symbol detector which is characterized by a unique
parametrization P(s,b)

NBP , P(s,b)
p and an individual preprocessor

P (s,b) ∈ C(K+2L,K+L). The GAP algorithm is defined in
Algorithm 2. It accepts the channel output y, statistical a priori
knowledge P (ck) about the information symbols as well as the
parametrization

PGAP :=
S⋃

s=1

B⋃
b=1

P(s,b)
NBP ∪ P(s,b)

p ∪
{
P (s,b)

}
,

where P(s,b)
NBP denotes the set PNBP for each individual GFG

unit in stage s and branch b. The parameter set contains
|PGAP| = SB(|PNBP|+ N + 2(Lp + 1)) real-valued elements.
Note that all GFG units in one stage are fed by the same
extrinsic information Pe(ck) and only differ in their individual
parametrization and preprocessor.

Concerning the computational complexity, the GAP algo-
rithm shares the appealing properties of the UFG algorithm.
Due to a constant node degree 2 of the FNs Ĩk,�(ck), the
complexity grows linearly with the channel memory L, and
quadratically with the size M of the constellation alpha-
bet M. Depending on the number of branches and stages, the
GAP algorithm has an order of complexity O(SBN ′KLM2).
In transmission scenarios over channels with large memory
L or high-order constellations, the GAP algorithm becomes
a low-complexity alternative to the BCJR algorithm which
has an asymptotic complexity of O(KML+1). For a detailed
complexity comparison, Table I reports the number of real
additions (ADD), real multiplications (MULT) and max� oper-
ations for the algorithms UFG, GAP as well as for the BCJR
algorithm. One-time operations for initialization that are inde-
pendent of the channel observation as well as boundary effects
are neglected. Table II evaluates the complexity for a selection
of specific transmission scenarios with a given channel mem-
ory L and constellation size M . The complexity parameter X
is defined to be the total number of operations, comprising
real additions, multiplications and max� operations that are
required to estimate the APP of one symbol ck. Note that the
given parametrizations for (S, B, N ′) are of examplary nature
and need to be specifically adapted to different channels in
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TABLE I

NUMBER OF OPERATIONS PER INFORMATION SYMBOL FOR DIFFERENT SYMBOL DETECTORS OPERATING IN THE LOGARITHMIC DOMAIN

TABLE II

COMPLEXITY PARAMETER X FOR N = 10 AND DIFFERENT

CONFIGURATIONS OF THE CONSTELLATION SIZE M AND
THE CHANNEL MEMORY L

practice. See Sec. V for realistic parametrizations on some
specific channels.

D. Parameter Optimization

The parameters in PGAP are jointly optimized towards an
objective function in an end-to-end manner. Since the GAP
algorithm embodies a NN, we rely on a rich pool of advanced
optimization and training methods developed for feed-forward
neural networks in the last years. For training, we use the
Adam algorithm [27]; a stochastic gradient descent optimizer.
The gradient can be computed using backpropagation [28],
which is a standard method for NNs. All weights P(s,b)

NBP and
P(s,b)

p are initialized with 1.0. The initial impulse responses p

of the preprocessors P (s,b) are independently sampled from a
standard normal distribution.

We optimize the parametrization towards a maximum
achievable rate between the channel input and the detec-
tor output. Many practical transmission systems use
bit-interleaved coded modulation (BICM), which decouples
the symbol detection from a binary soft-decision forward error
correction (FEC) [29]. In BICM, the symbol detector soft
output P̂ (ck|y) is converted by a bit-metric decoder (BMD)
to binary soft information

P̂ (bi(ck) = b|y) =
∑

c∈M(b)
i

P̂ (ck = c|y), b ∈ {0, 1}

with M(b)
i := {c ∈ M : bi(c) = b}. The resulting bit-wise

APPs are typically expressed in log-likelihood ratios (LLRs)

Lk,i(y, α) := α ln

(
P̂ (bi(ck) = 0|y)
P̂ (bi(ck) = 1|y)

)
, α ∈ R>0.

If the LLR is based on suboptimal detection, i.e.,
if P̂ (bi = b|y) is not the true APP, the scaling factor α
corrects a potential LLR mismatch [30, Chap. 7]. After inter-
leaving, the LLRs are fed to a bit-wise soft-decision FEC.
By interpreting the BMD as a mismatched detector, the BMI is
an achievable information rate for BICM [29]. The calculation

of the BMI, detailed in [31], considers the BMD by assuming
m parallel sub-channels transmitting on a binary basis instead
of one symbol-based channel. Assuming i.i.d. transmit bits, the
BMI2 is defined as the sum of mutual informations I(bi; y)
of m unconditional bit-wise channel transmissions:

BMI :=
m∑

i=1

I(bi(ck); y)

=
m∑

i=1

Ebi,y

{
log2

(
Pbi(ck)|y(bi|y)
Pbi

(bi(ck))

)}
.

By a sample mean estimation over D labeled data batches
D := {(c(d), y(d))i : c(d) ∈ MK , y(d) = Hc(d) + wi, i =
1, . . . , D} and by assuming uniformly distributed information
bits, a feasible approximation

BMI ≈ log2(M)

− 1
DK

m∑
i=1

K−1∑
k=0

∑
(c(d),y(d))∈D

× log2

(
exp
(
−(−1)bk,i(c

(d)
k )Lk,i(y, α)

)
+ 1
)

(15)

can be found [31]. The BMI can be used to evaluate the soft
decision performance of soft-input soft-output (SISO) symbol
detectors in numerical simulations. For suboptimal detectors,
the optimum α which maximizes the BMI can be determined
in an efficient way, e.g., by the Golden section search [33]. For
gradient descent optimization, we employ the metric in (15)
with α = 1 as an objective function.

For the optimization of the GAP algorithm with multiple
stages S > 1, we can increase the gradient update of
the backpropagation by using multiloss terms [34]. Hence,
we suggest the term

BMImulti := log2(M) − 1
SDK

S∑
s=1

m∑
i=1

K−1∑
k=0

∑
(c(d),y(d))∈D

× log2

(
exp
(
−(−1)bk,i(c

(d)
k )L

(s)
k,i(y, α)

)
+ 1
)

(16)

as the average BMI between the transmitted bits and the LLRs
obtained from the APP estimates after each stage s, which we
denote with L

(s)
k,i(y, α). Using the multiloss term in (16) for

the optimization of the GAP algorithm improves learning of
the earlier stages [34]. Note that we use the default loss (15)
unless explicitly stated differently.

2Note that the BMI is often called generalized mutual information (GMI) in
literature. GMI, however, is a more general concept and defines a lower bound
of the mismatched capacity. For the special case of a mismatched decoder due
to bit-metric decoding, the GMI is equivalent to the BMI [32].
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TABLE III

CHARACTERIZATION OF LINEAR ISI REFERENCE CHANNELS

Fig. 4. BER over Eb/N0 of the UFG algorithm for a BPSK transmission
over different linear ISI channels.

The parameters S, B, N ′ and Lp define the general dimen-
sionality of the model and are not part of the optimization
process described in this section. These so called hyperpara-
meters define the overall behavior and complexity of the GAP
algorithm and can be either chosen by hand, or optimized in
a so-called hyperparameter tuning, as elaborated in [35].

V. NUMERICAL RESULTS

We evaluate the considered symbol detectors towards their
detection performance. In all simulations, the information
symbols are sampled independently and uniformly from
the constellation alphabet M. If not mentioned otherwise,
all iterative algorithms perform N = 10 iterations and the
trainable parameters are optimized for Eb/N0 = 10 dB.
The source code for the parameter optimization and
evaluation of the GAP algorithm is available online [36].
The symbol-wise MAP detector, implemented by the BCJR
algorithm [3], as well as a linear minimum mean squared error
(LMMSE) equalizer [2, Sec. 9.4] with filter order 30 serve as
references. For the latter, we transform the soft LMMSE filter
output ck,LMMSE to APPs P̂ (ck|y) by applying a Gaussian
approximation to the estimation error ek := |ck,LMMSE−ck| ∼
N (

0, σ̂2
LMMSE

)
and estimating the error variance σ̂2

LMMSE
based on the hard decisions argmax

m∈M
|ck,LMMSE − m|.

We consider a block length of K = 500 symbols and the
transmission over three standard ISI channel models [2,
Sec. 9.4], which are characterized in Table III.

We analyze the detection performance of the original UFG
algorithm on all three reference channels. Note that with
the parametrization S = B = 1, P (1,1) = HH, P(1,1)

p = P1

and P(1,1)
NBP = P1, the GAP algorithm instantiates the UFG

Fig. 5. Hard-decision performance of the GFG algorithm with P = HH and
different constraints on PNBP for a 16-QAM transmission over the channel CA.
The BCJR algorithm is applied on a shortened channel with an impulse
response of length 4 for complexity reasons.

algorithm. Figure 4 shows the hard-decision performance of
the UFG algorithm in terms of the bit error rate (BER) over
Eb/N0 for binary phase-shift keying (BPSK). The perfor-
mance gap to MAP detection is highly channel specific. While
the UFG algorithm operates close to optimality for the channel
CA, its detection capabilities for the channels CB and CC

are quite poor. Notably, the BER does not decrease for an
increasing Eb/N0.

A. Neural Belief Propagation and FN Enhancement

We evaluate the effects of NBP and the neural enhance-
ment of the FNs for the factor graph-based symbol detec-
tion on channel CA. Since the original UFG algorithm
already approaches optimum detection performance for BPSK,
we consider a 16-quadrature amplitude modulation (QAM)
transmission with Gray labeling.3 Figure 5 reports the BER
performance over Eb/N0. The UFG algorithm outperforms
the LMMSE equalizer in the low Eb/N0 regime but runs
into an error floor. Applying NBP and neurally enhancing
the FNs of the UFG symbol detector, i.e., optimizing the
parameters PNBP at Eb/N0 = 14 dB for the GFG algorithm
with P = HH mitigates this behavior and generalizes well
over the complete Eb/N0 range. To distinguish between the
performance gain due to the weighting of the SPA messages,
and the generalization of the FNs, we partly constrain the
space of the gradient descent optimization over PNBP. First,
we fix κ

(n)
i,k = λ

(n)
k,� = 1, thereby disabling the FN general-

ization. The remaining free parameters are jointly optimized
towards the BMI which yields a performance improvement.
Second, we disable the message weighting by setting w

(n)
v,k,j =

w
(n)
f,k,j = 1 and only optimize the remaining parameters within

the FNs. Although the dimensionality of the optimization
space is about 4 times smaller for the latter case compared to
NBP, the performance gain is significantly larger. However,

3We expect Gray labeling to be optimal w.r.t. the BER and BMI performance
of the proposed detection algorithms.



SCHMID AND SCHMALEN: LOW-COMPLEXITY NEAR-OPTIMUM SYMBOL DETECTION BASED ON NEURAL ENHANCEMENT 7571

Fig. 6. BMI and BER over Eb/N0 for different instances of the GFG algorithm on the channel CB with BPSK signaling.

the best performance is obtained by the combination of both
methods and yields a significant performance gain compared
to the UFG algorithm as well as the LMMSE equalizer.
Due to the constellation order M = 16 and a relatively large
memory L = 10 of the channel CA, MAP detection becomes
computationally infeasible. In order to nevertheless make a
comparison of the proposed algorithm, we filter the received
signal y with a channel shortening filter and then apply the
BCJR algorithm on the shortened channel model. Follow-
ing [7], we can derive an FIR channel shortening filter of order
25 which reduces the impulse response length of the channel
from 11 (L = 10) to 4 (L = 3). The detection performance
of the BCJR algorithm on the shortened model is reported in
Fig. 5. It clearly outperforms the LMMSE equalizer which can
be seen as MAP detection on a channel model shortened to
length 1 [7]. For high Eb/N0 > 12 dB, the shortened BCJR
algorithm also performs better than the conventional UFG
detector, however, it cannot reach the low BERs of the neurally
enhanced GFG algorithm in the considered Eb/N0 range. Note
that the complexity of the BCJR algorithm on the shortened
channel is still more than ten times higher compared to the
proposed GFG detector (complexity parameters X = 851968
and X = 68825).

B. Preprocessing

We examine the sensibility of the factor graph-based GFG
algorithm to the observation model. Therefore, we consider
symbol detection on the channel CB with BPSK signaling in
more depth. To allow a fair comparison of different observa-
tion models, we initially disable NBP and the FN generaliza-
tion for the GFG algorithm by setting PNBP = P1. We compare
the Ungerboeck observation model with P = HH, which is
employed by the UFG algorithm, to a generic preprocessing
filter P 7 of length Lp = 7. The results are given in Fig. 6.
Optimizing the preprocessor P �

7 with respect to the BMI, the
symbol detector approaches a BMI of 0.9 bit/channel use at

Eb/N0 = 10 dB which is a gain of over 0.5 bit/channel use
compared to the detection based on the Ungerboeck model.

Enabling NBP and the FN enhancement significantly
improves the performance for both considered observation
models. For the detector based on the Ungerboeck model, the
BER is thereby reduced by a factor of more than 100 for
Eb/N0 = 12 dB. A near-optimum symbol detector is obtained
on the channel CB by combining the generalized preprocessing
with NBP and the FN generalization and jointly optimizing
all parameters PNBP ∪ {P 7}. Note that the GFG algorithm is
a specialization of the GAP algorithm with S = B = 1, i.e.,
we do not perform a dynamic factor graph transition but only
change the observation model once. An analysis of P 7 as
well of the optimized parameter set PNBP turned out to be not
very insightful. Most of the weights approximately follow a
Gaussian distribution with mean and variance altering over the
iterations n = 1, . . . , 10. Especially for κ

(n)
1,k , it is interesting

to observe that its mean is notably smaller than 1.0 (varying
from 0.5 to 0.9) for most of the iterations. This supports
our hypothesis, discussed in Sec. IV-A, according to which
the weights κ

(n)
1,k can attenuate the 1/σ2 term inside the FNs

of the factor graph, thereby dampening the overconfidence
of the SPA messages which would otherwise lead to high
approximation errors and impairments in the convergence
behavior. Only in the last iteration n = 10, the weights κ

(n)
1,k

are amplified with an average κ
(10)
1,k of 3.1.

To evaluate the convergence behavior of the considered
algorithms, Fig. 7 illustrates the evolution of the BER over
the SPA iterations n for the channel CB at Eb/N0 = 10 dB.
We can observe a non-convergent behavior for the UFG
algorithm. The BER keeps oscillating between two points at
BER = 0.17 and BER = 0.2 for n > 4. We can identify this
lack of convergence as a major reason for the poor overall
performance of the UFG algorithm. Modifying the observation
model with the preprocessor P = P �

7 fixes this issue and leads
to a monotone BER convergence for the GFG detector with



7572 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 11, NOVEMBER 2022

Fig. 7. BER over the iterations n of the GFG algorithm on the channel CB
at Eb/N0 = 10 dB and BPSK signaling.

PNBP = P1. Applying NBP as well as the FN optimization
to the GFG algorithm leads to a very interesting behavior: for
both observation models, P = HH and P = P �

7, the BER
first decreases over the iterations, then it climbs again to a
local maximum before it reaches its global minimum in the
final iteration n = 10.

The impressive results of Fig. 6 raise the question of how
universal the learned solutions are towards variations of the
channel. Therefore, we evaluate the instances of the GFG
algorithm which were specifically trained on the channel CB at
Eb/N0 = 10 dB (see Fig. 6) on the alternative channel C̃B :=
(0.59, 0.76, 0.28)T. The channel C̃B was generated by adding
independent and N (0, 0.1)-distributed samples to the taps of
the impulse response hCB of the channel CB and normalizing
the result with respect to the channel energy. Figure 8 com-
pares the results to an instance of the GFG algorithm which
was specifically optimized for the alternative channel C̃B. Note
that all GFG instances still have perfect channel knowledge
and only their parametrization is optimized for a “mismatched”
channel. We can observe that the neurally enhanced detector
GFG with P = HH generalizes very well. Although being
trained on the channel CB, the performance degradation is
relatively small compared to the GFG instance which was
directly trained on the channel C̃B. In contrast, the GFG
algorithm with the optimized preprocessor P = P �

7 does not
generalize at all. This makes sense, because the factor nodes
are entirely based on the mismatched preprocessor P �

7 and do
not consider the true channel at all. To fix this, we impose
the special structure P = P̃HH on the preprocessor and only
optimize P̃ for the channel CB while HH is a matched filter
based on the actual channel state information. Evaluating the
optimized detector on the alternative channel C̃B shows that
the GFG algorithm also performs well on channels which
(slightly) differ from the channel for which the algorithm was
optimized, under the condition that the detector has access to
perfect channel state information and if the discussed structure
of the preprocessor is used.

Fig. 8. BER performance of the GFG algorithm for a BPSK transmission on
the channel C̃B. The parameters of the various GFG instances were optimized
for different channels.

C. Dynamic Factor Graph Transition

Figure 9 evaluates the performance of different symbol
detection algorithms for the channel CC and BPSK signaling.
Applying an extended preprocessor of length Lp = 9 with
optimized filter taps P = P �

9 to the GFG algorithm can
improve the detection performance compared to the UFG
algorithm. However, without the application of NBP and the
neural FN enhancement (PNBP = P1), the factor graph-based
symbol detection does not outperform the LMMSE equal-
izer but has an approximately constant BMI offset of about
0.13 bit/channel use. The application of NBP and the neural
FN enhancement can further improve the GFG algorithm
for both the Ungerboeck model P = HH and the enhanced
preprocessing P = P �

9, but a significant gap to MAP perfor-
mance remains. We close this gap to optimal symbol detection
by the GAP algorithm. Applying a dynamic factor graph
transition with S = 5 stages and B = 2 parallel branches
drastically improves the detection performance. Based on
the motivation for the dynamic factor graph transition in
Sec. IV-B, it might seem optimal to constantly alter the factor
nodes after each iteration, i.e., to set N ′ = 1. In this case,
however, we experienced that the convergence of the messages
is impaired due to the (too) fast variation of the factor
nodes. For the channels which are considered in this work,
we found an empirical sweet spot for N ′ = 4. To evaluate
on the effectiveness of the dynamic factor graph transition
and the effect of parallel branches, we compare the perfor-
mance of the GAP algorithm with (S, B, N ′) = (5, 1, 4) (i.e.,
no parallelism B = 1 and S = 5 stages) to the performance
of an alternative parametrization with only one stage S = 1
but B = 5 parallel branches. Note that both instances of the
GAP algorithm employ the same number of GFG elements
which leads to a comparable complexity. The performance
evaluation in Fig. 9 reveals the effectiveness of the dynamic
factor graph transition: the GAP algorithm with multiple
serial stages shows a notably superior performance compared
to the GAP algorithm with (only) parallel branches over
the entire Eb/N0 range 0 − 12 dB considered. However,
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Fig. 9. Performance of different symbol detectors for a BPSK transmission over the channel CC. All B · S = 8 embedded GFG units of the GAP algorithm
have an individual preprocessor of length Lp = 9.

the conjunction of both effects, the dynamic factor graph
transition (S = 5) and the parallelism (B = 2), leads to the
best overall performance. For the latter parametrization, the
overall computational complexity is approximately quadrupled
compared to the parametrization (S, B, N ′) = (1, 1, 10) which
instantiates a single GFG element.

We investigate the behavior of the GAP algorithm with
(S, B, N ′) = (5, 2, 4) and Lp = 9 in more depth to gain
insights into the effectiveness of the dynamic factor graph
transition. Therefore, we analyze the performance after each
stage s by approximating the BMI based on the interim APP
estimates P̂s(ck|y). The results are reported in Fig. 10 (orange
bars) and shows a monotonic increase of the BMI over s.
To compare the contribution of both branches, we additionally
determine the BMI for each branch and iteration individually,
based on P̂s,b(ck|y). Intermediate BMI estimates for n < N ′

are obtained by an early termination of the iterative message
passing in Algorithm 1 and are denoted by P̂

(n)
s,b (ck|y).

Figure 10 shows the results for branch b = 1 on the left (red
bars) and for branch b = 2 on the right (blue bars). The BMI
evolution of the single GFG units over the iterations n is
highly non-monotonic. Moreover, the two branches have a
very distinct behavior. Especially after the stages s = 2 and
s = 5, the GFG output P̂s,1(ck|y) = P̂

(N ′)
s,1 (ck|y) of branch

b = 1 has a BMI close to zero. However, the combination
of both branches, i.e., the combination of P̂s,1(ck|y) and
P̂s,2(ck|y) to P̂s(ck|y) (orange bars), still yields an improved
BMI compared to the BMI of one branch P̂s,2(ck|y). This
non-intuitive behavior is caused by the optimization process,
which is carried out in an end-to-end manner.

Finally, we evaluate the GAP algorithm with
(S, B, N ′) = (5, 2, 4) for a 16-QAM constellation over
the channels CB and CC. The simulation results for the
channel CB are reported in Fig. 11. Relevant for practical
applications of a 16-QAM signaling is the Eb/N0 range

Fig. 10. Convergence behavior of the GAP algorithm with
(S, B, N ′) = (5, 2, 4) and Lp = 9 for a BPSK transmission over the channel
CC. The convergence is analyzed w.r.t. the BMI over the S = 5 stages
(orange bars) as well as regarding the N ′ = 4 iterations within each stage,
separately for both B = 2 branches (red and blue bars).

around 10 − 16 dB, where the MAP detector approaches the
upper BMI bound of 4 bit/channel use. Optimizing PGAP

with Lp = 7 for Eb/N0 = 14 dB in an end-to-end manner
yields a BMI of 3.58 bit/channel use. The performance can
be further improved to a BMI of 3.81 bit/channel use for
Eb/N0 = 14 dB by employing the multiloss term (16) for the
optimization process. The GAP detector outperforms the GFG
algorithm by 0.95 bit/channel use and the LMMSE equalizer
by 1.75 bit/channel use, thereby closing the gap to optimum
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Fig. 11. BMI versus Eb/N0 of different symbol detectors for a 16-QAM
transmission over the channel CB. The GAP algorithm is parametrized
with (S, B, N ′) = (5, 2, 4). The GFG and the GAP algorithm both apply
preprocessors of length Lp = 7.

Fig. 12. BMI over Eb/N0 of the GAP algorithm with (S, B, N ′) = (5, 2, 4)
and Lp = 9 for a 16-QAM transmission over the channel CC, optimized for
different ranges of Eb/N0.

performance. However, both algorithms do not generalize
well, especially for the low Eb/N0 regime. To reduce
overfitting to a specific Eb/N0, we can vary the Eb/N0 while
optimizing PGAP. For instance, sampling the Eb/N0 from a
uniform distribution in the range 7 − 16 dB during training
consequently results in an improved average performance
of the GAP algorithm in this Eb/N0 range. Additionally,
the detection performance also significantly improves for
Eb/N0 < 7 dB, even though this Eb/N0 range was not
sampled during the optimization. The generalized training
leads to a minor BMI degradation of 0.11 bit/channel use
for Eb/N0 = 14 dB, compared to the optimization at a fixed
Eb/N0 = 14 dB. The training range of the Eb/N0 should thus

match the region of operation of the detector as accurately
as possible. Further increasing the number of stages S,
branches B, iterations N ′ or the filter order Lp has not shown
any significant performance gain. The BMI performance
of the GAP algorithm for the channel CC and 16-QAM
is reported in Fig. 12. We evaluate three different GAP
instances, which were all optimized w.r.t. the BMI multiloss
term (16), but differ in the range from which the Eb/N0 was
uniformly sampled during the training. The BMI performance
of the GAP detector behaves qualitatively similar to the
results on channel CB. Trained for a specific Eb/N0, e.g.,
Eb/N0 = 18 dB, the GAP algorithm outperforms the LMMSE
equalizer about 1.1 bit/channel use in terms of the BMI.

VI. CONCLUSION

We studied the application and neural enhancement of factor
graph-based symbol detectors on AWGN channels with linear
ISI. We proposed simple but effective generalizations of the
factor graph, as well as NBP as an enhanced message passing
algorithm in order to mitigate the effect of cycles in the graphs.
The methods are only marginally increasing the detection com-
plexity compared to the UFG algorithm. We further proposed
the novel symbol detection algorithm GAP which comprises
both NBP as well as a dynamic transition of the underly-
ing factor graph. The algorithm delivers an attractive and
highly scalable tradeoff between performance and complexity.
Our methods showed a significant performance improvement
of the factor graph-based symbol detector, closing the gap
to optimum detection performance in various transmission
scenarios. Especially for high-order constellations and static
channels with large memory, the proposed GAP algorithm is
a promising low-complexity alternative to the BCJR algorithm.
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