303 research outputs found

    On the Performance of NOMA with Hybrid ARQ

    Full text link
    In this paper, we investigate the outage performance of hybrid automatic repeat request with chase combining (HARQ-CC) assisted downlink non-orthogonal multiple access (NOMA) systems. A closed-form expression of the individual outage probability and the diversity gain are obtained firstly. Based on the developed analytical outage probability, a tradeoff between the minimum number of retransmissions and the transmit power allocation coefficient is then provided for a given target rate. The provided simulation results demonstrate the accuracy of the developed analytical results. Moreover, it is shown that NOMA combined with the HARQ-CC can achieve a significant advantage when only average channel state information is known at the transmitter. Particularly, the performance of the user with less transmit power in NOMA systems can be efficiently improved by utilizing HARQ-CC

    Performance of NOMA systems with HARQ-CC in finite blocklength

    Get PDF
    Abstract. With the advent of new use-cases requiring high reliability and low-latency, transmission with finite blocklength becomes inevitable to reduce latency. In contrast to classical information-theoretic principles, the use of finite blocklength results in a non-negligible decoder error probability. Hybrid automatic repeat request (HARQ) procedures are used to improve the accuracy in decoding by exploiting time-diversity at the expense of increased latency. Thus, achieving high reliability and low-latency are Pareto-optimal, which calls for a trade-off between the two. Concurrently, non-orthogonal multiple access (NOMA) has gained widespread attention in research due to the ability to outperform its counterpart, orthogonal multiple access (OMA) in terms of spectral efficiency and user fairness. This thesis investigates the performance of a two-user downlink NOMA system using HARQ with chase combining (HARQ-CC) in finite blocklength unifying the three enablers. First, an analytical framework is developed by deriving closed-form approximations for the individual average block error rate (BLER) of the near and the far user. Based upon that, the performance of NOMA is discussed in comparison to OMA, which draws the conclusion that NOMA outperforms OMA in terms of user fairness. Further, asymptotic expressions for average BLER are derived, which are used to devise an algorithm to determine such minimum blocklength and power allocation coefficients for NOMA that satisfies reliability targets for the users. NOMA has a lower blocklength in high transmit signal-to-noise ratio (SNR) conditions, leading to lower latency than OMA when reliability requirements in terms of BLER for the two users are in the order of 10^(-5)

    Achievable Diversity Order of HARQ-Aided Downlink NOMA Systems

    Full text link
    The combination between non-orthogonal multiple access (NOMA) and hybrid automatic repeat request (HARQ) is capable of realizing ultra-reliability, high throughput and many concurrent connections particularly for emerging communication systems. This paper focuses on characterizing the asymptotic scaling law of the outage probability of HARQ-aided NOMA systems with respect to the transmit power, i.e., diversity order. The analysis of diversity order is carried out for three basic types of HARQ-aided downlink NOMA systems, including Type I HARQ, HARQ with chase combining (HARQ-CC) and HARQ with incremental redundancy (HARQ-IR). The diversity orders of three HARQ-aided downlink NOMA systems are derived in closed-form, where an integration domain partition trick is developed to obtain the bounds of the outage probability specially for HARQ-CC and HARQ-IR-aided NOMA systems. The analytical results show that the diversity order is a decreasing step function of transmission rate, and full time diversity can only be achieved under a sufficiently low transmission rate. It is also revealed that HARQ-IR-aided NOMA systems have the largest diversity order, followed by HARQ-CC-aided and then Type I HARQ-aided NOMA systems. Additionally, the users' diversity orders follow a descending order according to their respective average channel gains. Furthermore, we expand discussions on the cases of power-efficient transmissions and imperfect channel state information (CSI). Monte Carlo simulations finally confirm our analysis

    Physical layer security for NOMA: requirements, merits, challenges, and recommendations

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as one of the most significant enabling technologies for future wireless systems due to its eminent spectral efficiency, its ability to provide an additional degree of freedom for ultra reliable low latency communications (URLLC), and grant free random access. Meanwhile, physical layer security (PLS) has got much attention for future wireless communication systems due to its capability to efficiently complement the cryptography-based algorithms for enhancing overall security of the communication system. In this article, security design requirements for downlink power domain NOMA and solutions provided by PLS to fulfil these requirements are discussed. The merits and challenges which were encountered while employing PLS to NOMA are identified. Finally, future recommendations and prospective so lutions are also presented.No sponso
    • …
    corecore