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ABSTRACT

With the advent of new use-cases requiring high reliability and low-latency,
transmission with finite blocklength becomes inevitable to reduce latency.
In contrast to classical information-theoretic principles, the use of finite
blocklength results in a non-negligible decoder error probability. Hybrid
automatic repeat request (HARQ) procedures are used to improve the
accuracy in decoding by exploiting time-diversity at the expense of increased
latency. Thus, achieving high reliability and low-latency are Pareto-optimal,
which calls for a trade-off between the two. Concurrently, non-orthogonal
multiple access (NOMA) has gained widespread attention in research due to
the ability to outperform its counterpart, orthogonal multiple access (OMA)
in terms of spectral efficiency and user fairness.
This thesis investigates the performance of a two-user downlink NOMA

system using HARQ with chase combining (HARQ-CC) in finite blocklength
unifying the three enablers. First, an analytical framework is developed
by deriving closed-form approximations for the individual average block
error rate (BLER) of the near and the far user. Based upon that, the
performance of NOMA is discussed in comparison to OMA, which draws
the conclusion that NOMA outperforms OMA in terms of user fairness.
Further, asymptotic expressions for average BLER are derived, which are
used to devise an algorithm to determine such minimum blocklength and
power allocation coefficients for NOMA that satisfies reliability targets for
the users. NOMA has a lower blocklength in high transmit signal-to-noise
ratio (SNR) conditions, leading to lower latency than OMA when reliability
requirements in terms of BLER for the two users are in the order of 10−5.

Keywords: non-orthogonal multiple access, hybrid automatic repeat request,
chase combining, short packet communications, block error rate, ultra-reliable
communications.
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1 INTRODUCTION

Mobile communications became an integral part of people’s lives over the past two
decades. Currently, we are waiting for the mass-scale deployment of the fifth-generation
(5G) mobile networks, which have evolved exponentially from the first generation of
analogue communications. This immense growth in wireless communication systems is
always driven mainly by the need for supporting more users to utilize a high volume of
data with high reliability and reduced latency. Based on these requirements, 5G main use
cases were defined by the 3rd generation partnership project (3GPP) as enhanced mobile
broadband (eMBB), ultra-reliable low latency communication (URLLC) and massive
machine-type communications (mMTC). Data rates up to 10 Gbps are expected in eMBB
while mMTC needs to support a high density of low data rate devices within a given
area [1].
Ensuring ultra-reliability means achieving a very high probability of success in the

transmission of a given amount of data. The channel impairments compromise the
reliability of the transmission in wireless systems. Error control coding schemes and
diversity schemes are used to combat these impairments. The phenomenal work by
Shannon proved the existence of coding techniques that can achieve diminishing error
probability with sufficiently large packets. In the sequel, error control coding or channel
coding techniques, such as Turbo, low-density parity-check (LDPC) and polar codes were
invented which can deliver high reliability.
On the other hand, diversity schemes exploit frequency, space and time diversity

to ensure reliability. They allow the packet to be transmitted using different channel
conditions that can be combined in the receiver to achieve a high success probability
in decoding. Frequency diversity is achieved by transmission over multiple frequencies,
which will undergo different fading conditions while spatial diversity is the use of multiple
antennas to transmit the data. Time diversity is achieved by re-transmissions of the
same packet over multiple time slots. Hybrid automatic repeat request (HARQ) is a
technique where error control coding and automatic repeat request (ARQ), which support
re-transmissions of the same packet based on acknowledgement from the decoding-end,
have been combined to achieve the required reliability.
On the contrary, low-latency implies end-to-end delivery of the data is done in a

minimum amount of time. End-to-end delay consists of over-the-air transmission delay,
queuing delay, processing delays and delays associated with re-transmissions. Therefore,
minimizing delay would take minimizing the delay in each of these components through
dense coverage, use of short transmission time intervals (TTI), use of mobile edge
computing and network slicing, having grant-free access schemes and use of shorter frames
and packets etc. [2].
Improving reliability and minimizing the latency are two targets that are conflicting

with each other to be achieved simultaneously. The reason is improving reliability would
be supported by re-transmissions including the use of longer packets, which will then
increase the latency. A trade-off between latency and reliability that fit different use-
cases is required when considering URLLC. Some URLLC use-cases are remote surgery
and factory automation which have stricter targets like 1× 10−9 with 1 ms latency and
V2X communications, and tactile internet which have reliability around 1 × 10−5 and
latency requirements ranging from 1 ms to 100 ms [3].



Since the bandwidth is a scarce resource, improving spectral efficiency is another
mandatory requirement in future networks. Recently, non-orthogonal multiple access
(NOMA) has gained massive attention in the industry and academia since it has been
shown to outperform currently widely used orthogonal multiple access (OMA) in terms
of spectral efficiency and user fairness [4].

1.1 Motivation

The motivation behind this thesis is to analyze the performance of a system comprising
of the three enablers; NOMA combined with HARQ in finite blocklength. While NOMA
allows higher spectral efficiency by utilizing the same frequency-time resource, the use of
HARQ improves the reliability, and the use of short packets allows reducing latency. The
main goal is to investigate the ability of NOMA to deliver ultra-reliability using HARQ
combined with the use of short packets to reduce latency. The reliability is investigated by
characterizing the average block error rate (BLER) and searching for a minimal number
of channel uses or blocklength to reduce latency that satisfy the reliability requirements
is in interest.

1.2 Thesis Structure

This thesis comprises of five chapters. Chapter 1 describes the introduction to the thesis
and the motivation for carrying out the work done in the thesis. The organization of the
remaining chapters is as follows.
Chapter 2 describes the background of the topics that are associated with the thesis.

First, it provides a brief yet concrete introduction on NOMA, HARQ process, and coding
rate in finite block length. Next, the related work section discusses the state-of-the-art
on NOMA with HARQ and finite blocklength.
Chapter 3 presents the core of the thesis, which provides tight analytical

approximations for characterizing BLER performance of NOMA with HARQ-CC in finite
block length. The first section introduces the system model considered, and the following
section outlines the analytical approximations with proofs provided in the appendices.
Also, the third section presents verification of the derived expressions with the aid
of Monte Carlo simulations. Then the performance of NOMA is discussed based on
simulations using the approximations derived.
Chapter 4 investigates determining the minimum block length and power allocation,

which satisfy reliability requirements for the NOMA users in the system considered.
For this purposes, asymptotic average BLER approximations are developed and their
verification for suitability is presented. Then an algorithm for computing the minimum
blocklength is presented which is used to compare the blocklength requirement of NOMA
and OMA for given relialibity targets in terms of average BLER.
Chapter 5 provides the conclusion of the the thesis. Also, future directions that can

be followed for more insights are presented.
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2 BACKGROUND AND RELATED WORKS

This chapter briefly discusses, the background on the main areas that are associated with
the work in this thesis, which are NOMA, HARQ and coding rate in finite blocklength.
Also, this chapter discusses the state-of-the-art related to the thesis work.

2.1 NOMA

NOMA has gained considerable interest in the wireless communication research recently
due to its ability to increase the spectral efficiency of a communication system compared
to the conventional orthogonal multiple access (OMA) systems while ensuring user
fairness [5]. The conventional communication systems use OMA basically due to its
simplicity in the receiver. However, due to channel impairments caused during the
transmission, the orthogonality of the signals transmitted will be distorted. Consequently,
this leads to needing complex procedures to restore the orthogonality before decoding the
signal, such as multiuser equalizers [6]. NOMA can support multiple users simultaneously
while serving them in the same time-frequency resource by multiplexing through power or
code domains. Therefore, many researchers study NOMA for both up-link and downlink
scenarios. Downlink multiuser superposition transmission (MUST), which is a form of
NOMA, was included in 3GPP release 13 [7], while 3GPP release 15 for 5G New Radio
(NR) [8] included a study item on NOMA for uplink.
Code domain NOMA is mainly inspired by the code division multiple access (CDMA)

systems where unique spreading sequences multiplex users’ information within the same
frequency-time resource. The difference between NOMA and CDMA is that NOMA uses
sparse spreading sequences. The main techniques studied in the literature are sparse
code multiple access (SCMA), multiuser shared access (MUSA), low density spreading
CDMA and orthogonal frequency division multiplexing (LDS-CDMA and LDS-OFDM)
and successive interference cancellation amenable multiple access (SAMA). An interested
reader is referred to [6], which contains a summary of the techniques mentioned above.

Base 
Station

User 1

User 2

ℎ
̃ 
1

ℎ
̃ 
2

��1‾ ‾‾‾√

��2‾ ‾‾‾√

Power

Time-Frequency

Decode user
2's data

Decode user
1's data

SIC at User 1

Decode user
2's data

Figure 1. Power domain NOMA for 2 users. User 1 is the stronger user and user 2 is the
weaker user.

Power domain NOMA mainly exploits the difference in power levels to different users to
multiplex them while utilizing the same frequency-time resource. Superposition coding
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is used to combine the signals to different users with different power. The users are
arranged in the increasing order of their channel gains, and more power is allocated to
weak users having lower channel gains to ensure user fairness. Successive interference
cancellation (SIC) is employed at the receivers of the users to decode the signal. The
weakest user treats signals to the other users as interference and decodes its signal while
the strongest user with the highest channel gain will decode all the other users’ signals
successively and then decode its signal. All the other users will first decode the signals
to the weaker users compared to themselves and treat the stronger users’ signals as
interference and decode their signal. Figure 1 depicts the power domain NOMA concept
for two users. User 1 is the stronger user thus less power is allocated to user 1 and
more power for user 2 by making α1 < α2 such that α1 + α2 = 1 when P is the total
transmit power. The trade-off for using the same frequency-time resource in such a
system is the increased receiver complexity when performing SIC. To further enhance
the spectral efficiency multiple input multiple output-NOMA (MIMO-NOMA) has been
proposed, which combines the MIMO techniques while another variant of NOMA known
as cooperative NOMA (C-NOMA) has been proposed utilizing the concept of relaying.

2.2 HARQ

This section provides a brief introduction to HARQ strategies. Transmissions of data
through a channel can undergo changes to the symbols transmitted, eventually leading
to failure of decoding the data in the receiver. Therefore, an error detection and correction
method is used to ensure the reliability of the data transmission, such as ARQ. ARQ
checks the correctness of the data received by checking cyclic redundancy check (CRC)
bits or parity bits in the receiver and sends a negative acknowledgement (NACK) to the
transmitter if the decoding failed or a positive acknowledgement (ACK) otherwise. Upon
receiving a NACK, the transmitter sends the data again or sends new data if an ACK is
received. ARQ ensures the reliability of the communication but degrades the data rate
since delivering a single chunk of data consumes multiple transmissions.
Forward error control (FEC) or channel coding is the technique adding redundant bits

to the data before transmission, which will ensure the decoding of the received data even
under poor channel conditions. These coding schemes compute redundant bits in a more
complicated procedure than parity or CRC bits to ensure reliability. FEC can improve
reliability at the expense of using more bandwidth to transmit the redundant bits.
HARQ is the combination of ARQ and FEC, which will ensure the reliability also with

a reduced number of re-transmissions. There are two main types of HARQ procedures,
namely type-I and type-II [9]. Type-I ARQ sends the same version of the data packet in
all the transmission rounds until an ACK is received or it reaches a maximum number
of re-transmissions. The receiver discards the packet received earlier, and decoding is
attempted for each re-transmission independently from previously received data. Type-
II eliminates the inefficiency caused by discarding the previous packet by storing the
previously received data. The BS re-transmits the packet with new redundancy bits
from the channel encoder and the received data is soft combined in the receiver with the
previous transmissions. Hence, type-II is also known as HARQ-Incremental Redundancy
(HARQ-IR), and it results in a low code rate FEC but ensures high reliability in decoding
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the packet. HARQ-IR is more complicated than other types of HARQ to implement and
consumes more resources in comparison to other schemes.

NACK

Transmitter Receiver

1

1

1

1

1

1

2

New
Data

New
Data

NACK

ACK

Initial Transmission

1st  Re-transmission

2nd  Re-transmission

...

1

11

Figure 2. HARQ-CC procedure with 3 transmission rounds.

In HARQ-CC, the same version of the packet is re-transmitted but the receiver does
not discard the previously received packet. Instead, the earlier packets are stored and soft
combined as in type-II with the new re-transmitted packet. Therefore, HARQ-CC offers
a good trade-off between the reliability and complexity. Figure 2 depicts the HARQ-CC
procedure for 3 transmissions. For the first two attempts, the receiver fails to decode the
data thus sends NACKs. Each time the same packet denoted by "1" is re-transmitted by
the BS. Generally, the protocol defines a maximum number of re-transmissions due to
latency conditions, and if the receiver fails to decode within the limit, the BS discards
the packet and sends new data.

2.3 Coding Rate in Finite Blocklength

This section discusses the background on the maximum coding rate in finite blocklength,
which differs from the classical information-theoretical results in the infinite blocklengths.
Let N be the number of information bits that needs to be transferred using a blocklength
ofM channel uses or complex symbols. Shannon’s capacity theorem states the maximum
rate of N/M that the information can be transmitted with arbitrarily small packet error
probability by choosing sufficiently large M . However, in the finite blocklength regime,
this rate cannot be achieved since the blocklength cannot be made sufficiently large.
Hence, there is a penalty to be paid for using a finite blocklength. Recently, Polykiansky
et al. [10] presented tight bounds on the largest rate N/M for which there exist an
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encoder/decoder pair with a finite blocklength M when the packet error probability does
not exceed ε.
A code can be defined as (N,M,P, ε) code, which consists of an encoder-decoder pair

as in Figure 3.

ChannelEncoder :  EM Decoder :  DM

Figure 3. Encoder-decoder pair in a communication system.

The encoder is the function EM , which maps the k information bits to n symbols as

EM : {b1, b2, · · · , bN} → {x1, x2, · · · , xM} (1)

subjected to an average power constraint defined by

1
M

M∑
m=1
|xm|2 ≤ P, (2)

where P is the maximum allowed transmit power. The decoder estimates the N
information bits from the received channel outputs yp, when the xm symbols are
transmitted through the channel that can be defined as the function DM

DM : {y1, y2, · · · , yM} → {b̂1, b̂2, · · · , b̂N} (3)

which satisfies the maximum error probability constraint as

max
∀p

Pr{b̂p 6= I|I = bp} ≤ ε. (4)

The maximum achievable rate of such a code R∗(M, ε) is

R∗(M, ε) = sup
{
N

M
: ∃(N,M,P, ε)code

}
bits per channel use. (5)

In [10] this maximum achievable rate R∗(M, ε) is derived as

R∗(M, ε) = log2(1 + γ)−
√
V

M
Q−1(ε) +O

(
log2M

M

)
, (6)

where γ is the SNR , Q−1(·) is the inverse of the Q function, V is the channel dispersion
defined by V = (log2e)2

(
1− 1

(1+γ)2

)
and O(·) denotes the remainder terms. The

approximation in (6) conveys that there is a penalty for using finite blocklength compared
to the channel capacity given by Shannon’s theorem. Note that the remainder term
O
(
log2M
M

)
can be omitted when the blocklength M is sufficiently large [11], such as

M ≥ 100.
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2.4 Related Works

Recently, NOMA has been studied extensively due to its capability to improve the
spectrum efficiency compared to OMA [5], [6]. As described in Section 2.2, HARQ
can reduce error probability, which could arise with the adverse channel conditions by
exploiting time diversity. Combining NOMA with HARQ improves the spectral efficiency
along with improving the reliability. Studies on HARQ with NOMA can be found in
the literature [12–17]. Authors in [12] show that NOMA with SIC employing HARQ-
IR can outperform OMA in outage probability. In [13], a power allocation strategy
for HARQ-IR with NOMA, when a maximum number of transmission is specified with
given outage targets, has been presented based on deriving a lower bound on the error
exponent. The outage performance of NOMA with the HARQ-CC scheme has been
studied in [14] by deriving closed-form approximations for outage probability. In [14],
the power allocation for NOMA is a constant for all the transmission rounds. In [15],
approximations for the outage probability of NOMA users with HARQ-CC, considering
different power allocation coefficients in the sequence of re-transmission rounds, has been
derived based on a similar approach to [14], and the power allocation strategy has been
devised. All the works mentioned above in NOMA with HARQ assume re-transmission
is done to all the users, if any of the users fails to decode the signal. A more flexible
partial HARQ-CC scheme over time-correlated fading channels has been proposed in [16]
and the outage performance is discussed. Further, [17] investigates more on NOMA with
partial HARQ-CC and HARQ-IR in time-correlated fading channels, by deriving closed-
form expressions for outage probabilities. Based on the derived expressions, a condition
to ensure NOMA outperforming OMA is obtained and a power minimization solution,
similar to work in [15] for different re-transmissions, has been discussed.
The recent work on the maximum coding rate in the finite blocklength regime by

Polykiansky et al. [10] kindled many researches. Analysis of HARQ based systems using
finite blocklength have been presented in [18–21]. With the aim of maximizing per-user
throughput and minimizing the average delay, a solution to determine the blocklength
for a given number of bits in a system using type-I ARQ is presented in [18]. Authors
in [19] investigate the effect of power allocation with systems using type-I ARQ in finite
blocklength. In [20] a closed-form derivation of the outage probabilities on HARQ-IR
in finite blocklength is provided and analysis is done on power-limited throughput. A
power allocation method for HARQ-CC with finite blocklength, which targets reliability
constrains is proposed in [21].
Analysis on NOMA in the finite blocklength regime is reported in [11, 22–24]. In [22],

a two-user downlink system with finite blocklength is considered, which has a constraint
on the blocklength for a transmission to meet the latency constraints. A power allocation
and transmission rate optimization solution for NOMA is presented and benchmarked
along with OMA. Authors in [23] investigate the finite blocklength performance of a two-
user downlink NOMA system and demonstrate that having a common blocklength for
both NOMA users is optimal. Further, it is shown that when the latency is considered
NOMA outperforms OMA in finite blocklength. The scenario considered in [23] is a
single antenna system for BS and users while work in [11] considers a multiple antenna
BS, which also proves that NOMA outperforms OMA in terms of latency. Performance
analysis for an uplink NOMA system in finite blocklength is provided in [24] while OMA
is used as a benchmark.
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3 BLOCK ERROR PERFORMANCE OF NOMA SYSTEMS
WITH HARQ-CC IN FINITE BLOCKLENGTH

This chapter analyzes the performance of a NOMA system with HARQ-CC in finite
blocklength. The first section introduces the system, and the following sections present
analytical approximations for average BLER for the system described earlier. All
the proofs are provided in the appendices. The numerical results section discusses
the performance of NOMA with a comparison to OMA using the derived analytical
approximations.

3.1 System Model

Consider a downlink power domain NOMA system that uses short-packets for
communications. The system comprises of a single antenna base station (BS) and
two users u1, u2 equipped with single antennas as shown in Figure 4. Without loss
of generality, assume that u1 is located close to the BS, thus having a higher channel
gain and referred as the "near user", while u2 is located far from the BS with a lower
channel gain, referred as the "far user". With the limited channel state information (CSI)
available in the BS, the reliability of communication can be degraded. Therefore, to
overcome this, the system uses the HARQ-CC scheme.

Base 
Station

User 1

User 2

ℎ
̃ 
1

ℎ
̃ 
2

Figure 4. System model with a single antenna BS with two single antenna users. User 1
is the "near user" and user 2 is the "far user".

The BS serves the users following the NOMA principle. Let x1 and x2 be the unit
energy messages to u1 and u2, respectively. The BS encodes these messages using the
superposition coding technique with power allocation coefficients α1 and α2 such that
α1 + α2 = 1 with a total power of P . According to the NOMA principle, BS allocates
more power to the far user by setting α1 < α2 ensuring user fairness. Therefore, the
transmitted signal s can be expressed as

s =
√
α1Px1 +

√
α2Px2. (7)

The received signal yi at ui, i = 1, 2 in the tth transmission round can be expressed as

yi = h̃i,t(
√
α1Px1 +

√
α2Px2) + ni, (8)
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where h̃i,t = hi,t√
1+diη

, hi,t ∼ CN (0, 1) models the quasi- static Rayleigh fading of ui with
blocklength M in the tth transmission round, di is the distance between ui and the BS,
η is the path loss exponent and ni is the additive white Gaussian noise (AWGN) with
variance σ2.
The far user, u2 attempts to decode the received signal treating u1’s signal as

interference. Then the received SINR at u2 for decoding its message at the tth

transmission round is

γt22 = ρα2|h̃2,t|2

ρα1|h̃2,t|2 + 1
, (9)

where ρ is the transmit SNR such that ρ = P
σ2 .

The near user, u1 applies successive interference cancellation (SIC) in decoding the
messages, which means u1 decodes u2’s message first and then its own message without
interference. The SINR for u2’s decoding at u1 is given by

γt12 = ρα2|h̃1,t|2

ρα1|h̃1,t|2 + 1
. (10)

For u1’s message the SNR can be expressed as

γt11 = ρα1|h̃1,t|2. (11)

In the HARQ-CC procedure, in case of a failure to decode its message, the user retains
the received signal and sends a NACK to the BS. If a NACK is received to the BS from
any of the two users, BS retransmits the same encoded signal. Users employ maximum
ratio combining (MRC) for decoding by combining the received signals stored during
previous rounds and the new signal received. In case of successful decoding, the user
will send an ACK. BS transmits a new signal when it receives ACKs from both users.
This work assumes the feedback channel, which ACKs/NACKs are sent, to be a one-bit
error-free channel. The number of transmission rounds is limited to a maximum of T .
The SINR for decoding uj’s signal at ui where i, j = 1, 2 after T rounds of transmissions
is

γij =
T∑
t=1

γtij. (12)

3.2 Average Block Error Rate (BLER) in Finite Blocklength

Based on (6) described in Section 2.3, the decoder error probability or the BLER of ui
in finite blocklength is given by

εi ≈ Q

 log2(1 + γi)− Ni
M√

vi
M

 , Φ(γi, Ni,M) (13)

where γi is the SNR, vi is the channel dispersion as in (6), Ni
M

is the maximum achievable
rate R, with finite block-length M when Ni is the number of data bits for ui. Note that
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(13) becomes a valid approximation when M is sufficiently large, for example M ≥ 100
[11].
By taking the expectation of the instantaneous BLER over the SINR distribution

average BLER ε is given as

εi =
∫ ∞

0
Φ(γi, Ni,M)fγi(x)dx (14)

≈
∫ ∞

0
Q

 log2(1 + γi)− Ni
M√

vi
M

 fγi(x)dx (15)

where fγi(x) is the probability density function (PDF) of the SINR γi.
Equation 15, does not have a closed form solution and based on work the by Makki et

al. [20], Q
(
log2(1+γi)−

Ni
M√

vi
M

)
≈ Ξi(γi) can be approximated as

Ξi(γi) =


1, γi ≤ υi,
1
2 − λi(γi − θi), υi < γi < τi,

0, γi ≥ τi,

(16)

where
λi =

√√√√√ M

2π
(

2
2Ni
M − 1

) , θi = 2
Ni
M − 1, (17)

υi = θi −
1

2λi
and τi = θi + 1

2λi
. (18)

Using this approximation in (15), the average BLER εi is given by

εi = λi

∫ τi

υi
Fγi(x)dx, (19)

where Fγi(x) is the cumulative distribution function(CDF) of the SINR γi. The proof is
given in Appendix 2.

3.3 Average BLER for NOMA with HARQ-CC in Finite Blocklength

The user u1 uses SIC in decoding, so the instantaneous BLER depends on the two stages
in the SIC procedure. The success of the first stage affects the BLER in decoding at the
second stage. Therefore, the instantaneous BLER for u1 is given by

ε1 = ε12 + (1− ε12)ε11. (20)

Here ε12 is the BLER resulting from the first stage of the SIC decoding and 1−ε12 denotes
the success in the first stage. The average BLER ε11, results from the interference-free
decoding in the second stage. These are respectively given by

ε12 = Φ(γ12, N2,M) and ε11 = Φ(γ11, N1,M). (21)
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The user u2 directly decodes its message, so the instantaneous BLER ε2 is

ε2 = ε22 = Φ(γ22, N2,M). (22)

Then the average BLERs at the two users are obtained by

ε1 = E[ε1] and ε2 = E[ε2]. (23)

Since decoding of the u2’s message at both u1 and u2 given by ε12 in (21) and ε22 in (22)
have the same form, focus is given to compute εi2 where i = 1, 2 denotes the user doing
the decoding. From (19) it is clear that the CDF of the SINR is needed for computation
of an approximation for εi2.

3.3.1 Average BLER for Decoding Far User’s Information

Based on the work by Cai et al. [14], the CDF of the SINR γi2 for decoding of u2’s
message with HARQ-CC is derived as

Fγi2(r) ≈ cTi
∑

{p1,··· ,pN}∈P
Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

(ωk ln 2)E1

(
Sk,N
r

)
. (24)

The description of the variables and functions is given under (25) and the computation
of the CDF involves numerical approximation techniques described in Appendix 1. The
complete proof is provided in Appendix 3.
With the CDF of γi2 in (24), an approximation for the average BLER, εi2 can be

computed using (19). Therefore given the number of information bits N2, blocklength
M , transmit SNR ρ and power allocation coefficients for NOMA α1 and α2 for ui at a
distance di and the path-loss exponent η, the average BLER εi2 is given by

εi2 ≈ λ2c
T
i

∑
{p1,··· ,pN}∈P

Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

(ωk ln 2)[Φ(υ2, Sk,N)− Φ(τ2, Sk,N)] (25a)

where,
ci = 2πκα2

Nµiρ
e

1
µiρα1 , κ = α2

α1
, an = cos

(2n− 1
2N π

)
for n = 1, 2, · · ·N, (25b)

Λ = T !∏N
n=1 pn!

, P =
{
p1, ..., pN |T =

N∑
n=1

pn

}
, µi = 1

1 + di
η , (25c)

Ψ(an) =

√
1− a2

n

(2α2 − α1κ(an + 1))2 e
− 2α2
µiρα1(2α2−α1κ(an+1)) , (25d)

ωk = (−1)L2 +k
min(k,L2 )∑
bj= k+1

2 c

j(
L
2 +1)

(L2 )!

(
L
2
j

)(
2j
j

)(
j

k − j

)
, (25e)
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Sk,N = kκ ln 2
2

N∑
n=1

pn(an + 1), (25f)

Φ(x, y) = xe−
y
x − (x+ y)E1

(
y

x

)
, (25g)

λ2 =
√√√√ M

2π
(
2

2N2
TM − 1

) , θ2 = 2
N2
TM − 1, (25h)

υ2 = θ2 −
1

2λ2
, τ2 = θ2 + 1

2λ2
, (25i)

and N,L are complexity-accuracy trade-off parameters. Here E1(x) is the exponential
integral function defined by E1(x) =

∫∞
x

e−t

t
dt. The proof is provided in Appendix 4.

3.3.2 Average BLER for Interference-free Decoding of the Near User’s
Information

For u1 decoding its information with HARQ-CC after T transmissions, the SNR is given
by (11) which is

Z =
T∑
t=1

γt11

=
T∑
t=1

ρα1|h̃1,t|2

=
T∑
t=1

ρα1µ1|h1,t|2;µ1 = 1√
1 + d1

η . (26)

Since h1,t ∼ CN (0, 1), |h1,t|2 is an exponential variable, ρα1µ1|h1,t|2 is exponentially
distributed such that |h1,t|2 ∼ Exp( 1

ρα1µ1
). The sum of T exponential random variables

is a Gamma distributed random variable with T degrees of freedom. Therefore Z can be
described as

Z ∼ Gamma(T, 1
ρα1µ1

). (27)

Then the CDF of Z is,

FZ(r) = 1
Γ(T )γ

(
T,

r

ρα1µ1

)
(28)

where Γ(k) =
∫∞

0 tk−1e−tdt is the Gamma function and γ(k, x) =
∫ x

0 t
k−1 e−t dt is the

lower incomplete Gamma function.
Therefore, ε11 can be computed using (19) resulting in

ε11 = λ1(Υ(τ1)−Υ(υ1)) (29a)
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where,

Υ(x) = 1
Γ(T )

[
γ

(
T,

x

ρα1µ1

)
− ρα1µ1γ

(
T + 1, x

ρα1µ1

)]
, (29b)

µ1 = 1√
1 + d1

η , λ1 =
√√√√ M

2π
(
2

2N1
TM − 1

) , θ1 = 2
N1
TM − 1, (29c)

υ1 = θ1 −
1

2λ1
and τ1 = θ1 + 1

2λ1
. (29d)

The proof is provided in Appendix 5.

3.4 Average BLER for OMA with HARQ-CC in Finite Blocklength

Consider the system outlined in Section 3.1. If the users are served using OMA, the
blocklength or the number of channels uses available for a transmission M would be
shared between the two users and their messages will be transmitted utilizing the full
power for that particular number of channel uses. Let these number of channel uses
allocated to the users be specified by β1 for u1 and β2 for u2 such that β1 + β2 = 1. Now
the users are doing interference free decoding at their receivers. Then u1’s SNR is

γt1 = ρ|h̃1,t|2, (30)

and u2’s SNR is
γt2 = ρ|h̃2,t|2. (31)

Similar to the analysis of the u1’s interference-free decoding in Section 3.3.2, the average
BLER εOMA

i for the user ui can be obtained by

εOMA
i = λOMA

i (ΥOMA(τOMA
i )−ΥOMA(υOMA

i )) (32a)

where,

ΥOMA(x) = 1
Γ(T )

[
γ

(
T,

x

ρµ1

)
− ρµ1γ

(
T + 1, x

ρµ1

)]
, (32b)

µ1 = 1√
1 + d1

η , λOMA
i =

√√√√√ βiM

2π
(

2
2N1
βiTM − 1

) , θOMA
i = 2

N1
βiTM − 1, (32c)

υOMA
i = θOMA

i − 1
2λOMA

i

and τOMA
i = θOMA

i + 1
2λOMA

i

. (32d)

3.5 Numerical Results

In this section, the validation of the theoretical approximations for the average BLER
of NOMA with HARQ-CC in the finite blocklength regime is provided. Also, the
performance of NOMA is discussed based on the system model provided in Section 3.1.
Monte Carlo simulations are carried out based on the results for the decoding error
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probability in short blocklengths provided in Section 3.2. In all the simulations, the
complexity-accuracy parameter for the Gaussian Chebyshev procedure N , is set to 30
while the Gaver Stehfest Laplace inversion is done using L = 18 to ensure the numerical
accuracy. The path loss exponent η = 2. The two users are placed with d1 = 3 m and
d2 = 7 m unless stated otherwise. The blocklength, the number of information bits and
the number of maximum transmission rounds are stated in their relevant sections.
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Figure 5. Average BLER vs. transmit SNR (ρ) for different number of transmission
rounds (T ) with α1 = 0.3, α2 = 0.7, N1 = N2 = 160 and M = 200.

Figure 5 shows the average BLERs plotted against the transmit SNR (ρ) for different
maximum transmission rounds. The solid lines represent the analytical result computed
using the results in (25) and (29) while the dashed lines are computed by averaging
the decoder error probability based on (13) over multiple fading variations. The
approximations derived match with the Monte Carlo simulation results, which prove
the accuracy of the expressions in (25) and (29) for characterizing the average BLERs
in NOMA when HARQ-CC is enabled in short blocklength. According to Figure 5, the
far user always has a smaller average BLER than the near user, u1. The reason is that
higher power is allocated for the far user for user fairness in the NOMA principle. Also,
with the increasing number of maximum transmission rounds allowed, the average BLER
decreases for a particular transmit SNR. For the considered parameters, at least three
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maximum transmission rounds are required to achieve an average BLER of 1 × 10−5,
which is a requirement in the ultra-reliable communication, can be seen from Figure 5.
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Figure 6. Average BLER vs. maximum transmission rounds for α1 = 0.1, α1 = 0.3 for
ρ = 30 dB with N1 = N2 = 160 and M = 200.

Figure 6 shows the variation of average BLER of u1 and u2 with the maximum
transmission rounds at a transmit SNR of 30 dB. With the increasing number of
maximum transmission rounds, the reliability improves as all the curves decrease
monotonically, which is visible from Figure 6. Two power allocation coefficients α1 = 0.1
and α1 = 0.2 have been used for the simulation. When α1 = 0.1, u2 has a lower average
BLER than u1. When the power allocated to u1 is increased by making α1 = 0.2, u1 has a
lower average BLER than u2. Even a reliability requirement below 1×10−10 is achievable,
but with the expense of increased latency since the number of maximum transmissions
rounds should be increased.
The variation of the average BLER for the two users with the blocklength M is

analyzed next. In Figure 7, average BLER is plotted with the blocklength at 25 dB
transmit SNR (ρ) for 3 transmission rounds (T) with power allocation α1 set to 0.3. For
comparison purposes, both users have the same number of information bits, which is
300. The comparison with OMA is provided with β1 = 0.3, which means the priority
is given to u2, with more channel uses allocated to u2 and with β1 = 0.5 such that
an equal blocklength is allocated to both users. It is clear from Figure 7, when the
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blocklength increases the average BLERs in all scenarios decrease monotonically. The
result is desirable since increasing the blocklength means that Shannon’s theorem holds
and the decoder error probability eventually becomes negligible, which was non-negligible
in the finite blocklength regime. One interesting result is that the performance of u2 in
both scenarios is almost similar. However, u1 has a lower average BLER when NOMA
is used compared to OMA with β = 0.3. Nevertheless, as the blocklength increase, this
difference in performance between NOMA and OMA decreases.
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Figure 7. Average BLER vs. blocklength for NOMA with α1 = 0.3 and OMA with
β1 = 0.3, 0.5, ρ = 25 dB, T = 3 , N1 = N2 = 300.

Next, the two users are assigned similar priority in OMA with β1 = 0.5, which means
an equal number of channel uses is allocated to both users despite having the difference
in channel gains. The performance of u2 in this scenario degrades compared to the
performance with β1 = 0.3. However, u1 achieves a lower BLER than NOMA since higher
number of channel uses is available to u1. Although u1 has a lower average BLER with
equal priority in OMA than NOMA, u2’s average BLER degrades significantly. Therefore,
the NOMA scheme delivers fairness to both users unlike OMA since the difference in
average BLER between two users is smaller than in OMA while achieving considerable
average BLER performance for both users.
Figure 8 shows the variation of average BLER with the number of information bits

for the similar scenarios analyzed for the blocklength. For simplicity, both users are
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Figure 8. Average BLER vs. number of information bits for NOMA with α1 = 0.3 and
OMA with β1 = 0.3, 0.5, ρ = 25 dB, T = 3, M = 400.

assumed to have the same number of information bits. The blocklength is fixed at 400
channel uses for all the simulations. The average BLERs for all scenarios increase with
the increasing number of information bits when the blocklength is fixed since the required
rate increases. Comparison of NOMA with OMA for β1 = 0.3 shows that u2 has a similar
performance in both NOMA and OMA, while u1 has a lower average BLER. For β1 = 0.5
the difference in the average BLER between the two users in OMA is very high compared
to NOMA. Again, it is clear that using NOMA a better user fairness is achieved similar
to the analysis of average BLER with the blocklength.
Next, average BLER performance is analyzed with respect to the power allocation

coefficients α1 and α2. Recall that the α1 + α2 = 1 and 0 < α1 < 0.5 for the NOMA
principle. Therefore, the simulations are done for the range 0.05 ≤ α1 ≤ 0.5. Two
scenarios are considered where the distance between the two users is different. The
stronger user, u1 is kept at 3m, while the weak user, u2 is placed at two different distances
as d2 = 7m and d2 = 10m. The resulting plot is given in Figure 9. First, it can be noticed
that with increasing α1, average BLER of u1 decreases monotonically, which is expected
since α1 increasing reflects allocating more power to u1, which will allow fewer errors
in decoding the information. However, the average BLER of u2 increases monotonically
with α1 since it receives less power. For the two scenarios, when the distance from the
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Figure 9. Average BLER vs. α1 for NOMA with ρ = 25 dB, T = 3, M = 400, N1 =
N2 = 300.

BS to u2 is increased, average BLER increases since the increase in path loss will cause
reduced channel gain for u2.
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4 POWER ALLOCATION AND MINIMUM
BLOCK-LENGTH FOR NOMA WITH HARQ-CC IN

FINITE BLOCKLENGTH

In this chapter, the minimum blocklength needed to achieve reliability targets for
both users and power allocation is presented. For mathematical simplicity, asymptotic
behaviour is considered and the resulting expressions are verified for suitability to
characterizing the average BLER in high SNR conditions. Then the solution for achieving
minimum blocklength and power allocation is discussed with numerical simulations.

4.1 Asymptotic Average BLER for NOMA with HARQ-CC in Finite
Blocklength

Chapter 3 presents tight approximations for the average BLER in NOMA with HARQ-
CC in finite blocklength. These expressions are mathematically complex to handle.
Therefore, this section derives asymptotic expressions for the average BLER in high
SNR conditions. In short packet communications, the rate Ni

M
is small [11], which leads

to τi,M − υi,M being smaller. Thus, the integration in (19) can be approximated using
the Reimann integral approximation such that

ε∞i ≈ λi(τi − υi)Fγi(
τi + υi

2 ) = Fγi(θi), (33)

where the superscript ∞ denotes the asymptotic approximation.
Using the approximation with the Reimann integral as in (33), an asymptotic

approximation for ε11 can be obtained as

ε∞11 ≈ λ1(τ1 − υ1)Fγ11(τ1 + υ1

2 ) = Fγ11(θ1),

and from (28),

= 1
Γ(T )γ

(
T,

θ1

ρα1µ1

)
. (34)

The average BLER targets for ultra reliable communication are in the order of 10−5 or
lower and can be achieved with high transmit SNR. Therefore, 1− ε∞12 ≈ 1 in (23), which
results in ε∞1 ≈ ε∞12 + ε∞11. Therefore, ε∞1 approximates to E[ε∞12] + E[ε∞11] = ε∞12 + ε∞11 and
ε∞2 can be obtained by E[ε∞2 ] = E[ε∞22] = ε∞22. Hence, an asymptotic expression for εi2 is
derived next.
Note that when the transmit SNR increases, ci and Ψ(an) in (25) can be reduced to

the following expressions. When ρ→∞,

ci = 2πκα2

Nµiρ
e

1
µiρα1 ≈ 2πκα2

Nµiρ
(35)
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and

Ψ(an) =

√
1− a2

n

(2α2 − α1κ(an + 1))2 e
− 2α2
µiρα1(2α2−α1κ(an+1))

≈

√
1− a2

n

(2α2 − α1κ(an + 1))2 ;κ = α2

α1

=

√
1− a2

n

α2
2(1− an)2 , (36)

since the exponential parts tend to 1. Using the Reimann integral approximation
described earlier, the asymptotic average BLER in high SNR for u2’s decoding at ui
is derived as

ε∞i2 = ĉi
T

∑
{p1,··· ,pN}∈P

ΛΘ(an, pn)
M∑
k=1

(ωk ln 2)E1

(
Sk,N
θ2

)
(37a)

where

ĉi = 2π
Nµiρα1

, Θ(an, pn) =
N∏
n=1

(1− a2
n)

pn
2

(1− an)2pn
, (37b)

and the other variables and functions are defined in (25). The proof is provided in
Appendix 6.

4.2 Minimum Blocklength and Power Allocation

This section outlines the solution for computing the power allocation for a minimum
blocklength for the considered system in Section 3.1 which achieves the required BLER
targets. The problem of minimizing the blocklength M , which guarantees the required
BLERs can be stated as

min
α1,α2

M (38a)

s.t ε1 ≤ εR1 (38b)
ε2 ≤ εR2 (38c)
α1 + α2 = 1 (38d)
0 < α1 < 0.5 (38e)

for given ρ, µ1, µ2, N1, N2, T, (38f)

where the required BLERs for the two users are εR1 and εR2 . The conditions in (38b)
and (38c) ensure the reliability targets of the users while (38d) and (41d) arise from the
NOMA principle.
Next the behaviour of ε1 and ε2 w.r.t. M is described based on the asymptotic

expressions derived in Section 4.1, which draws the conclusion that equalities in
conditions (38b) and (38c) can be taken as active when the minimum blocklength is
achieved. For simplicity, the asymptotic expressions are denoted by the notations of the
exact average BLERs hereafter.
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Using (37), the partial derivative of εi2 w.r.t. M can be derived as

∂εi2
∂M

= −θ22
N2
TMN2 ln 2
TM2

ĉiT ∑
{p1,··· ,pN}∈P

ΛΘ(an, pn)
M∑
k=1

(ωk ln 2)e−
(
Sk,N
θ2

) . (39)

Accordingly, ∂εi2
∂M

< 0, which means that εi2 decreases with increasing M . Therefore,
∂ε2
∂M

= ∂ε22
∂M

< 0. Similarly, using (34) the partial derivative of ε11 w.r.t. M can be derived
as

∂ε11

∂M
= −2

N1
TMN1 ln 2

Γ(T )θ1TM2

(
θ1

ρα1µ1

)T
e
−
(

θ1
ρα1µ1

)
, (40)

which shows ∂ε11
∂M

< 0. Therefore, ∂ε1
∂M

< 0 since ε1 ≈ ε12 + ε11.
Let εi > εRi for i ∈ 1, 2 when M = M∗, which is the minimum blocklength in the

problem (38). Since εi is continuous and decreasing with M as proved earlier, a smaller
M can always be found such that εi = εRi which contradicts with M∗ being the minimum
blocklength. Therefore, the minimum of εR1 or εR2 in conditions in (38b) or (38c) is always
satisfied. If the blocklength is reduced below the value, which satisfies the minimum
of the two constraints, that constraint would be violated. Since the other condition is
satisfied with the blocklength resulting from the equality condition, both the equality
conditions in (38b) and (38c) are used to find the solution. Also, as α1 = 1− α2, finding
an α1 is sufficient to solve the problem. Hence, the problem (38) can simplified as

find α1 (41a)
s.t ε1 = εR1 (41b)

ε2 = εR2 (41c)
0 < α1 < 0.5 (41d)

for given ρ, µ1, µ2, N1, N2, T. (41e)

According to Section 4.1 and using conditions (41c) and (41c), εR1 and εR2 can be expressed
as,

εR1 = ε∞12 + ε∞11 and εR2 = ε∞22. (42)

Furthermore, carefully observing (37) and ĉTi in (37b) it follows that µT1 ε∞12 = µT2 ε
∞
22 =

µT2 ε
R
2 . Therefore, from (42) ε∞11 can be written as

ε∞11 = εR1 −
(
µ2

µ1

)T
εR2 , εR. (43)

Using (34) and (43), the blocklength M can be derived as

M = N1

T · log2 (1 + µ1ρα1Γ(T )γ−1(T, εR)) , (44)

where γ−1(k, x) is the inverse of the lower incomplete Gamma function.
Let G be a function such that G(α1) , ε2 − εR2 according to the condition in (41c).

Solving G(α1) = 0 will give the α1 needed to achieve for the minimum blocklength, which
can be used to find the minimum blocklength Mmin using (44). Noting that G(α1) is
highly nonlinear, the solution can be computed using Algorithm 1.
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Algorithm 1 Power Allocation and Minimum Blocklength for NOMA with HARQ CC
1: Input : εR1 , εR2 , ρ, µ1, µ2, N1, N2, T and tolerance ν
2: Output : Mmin and α∗1
3: Initialize : α−1 = 0 and α+

1 = 0.5
4: while |G(αc1)| > ν do
5: set αc1 ← (α+

1 + α−1 )/2 and compute G(αc1) based on (37) and (44)
6: if : G(αc1)G(α+

1 ) > 0 then set α+
1 ← αc1

7: else : set α−1 ← αc1
8: end while
9: set α∗1 ← αc1
10: compute Mmin using (44) with α∗1

4.3 Numerical Results

In this section numerical evaluations to verify the suitability of the asymptotic expressions
obtained in Section 4.1 and results with the proposed algorithm for computing the
minimum blocklength in Section 4.2 are presented. Figure 10 shows the average BLERs

0 5 10 15 20 25 30
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Analytical - User 1

Analytical - User 2

Analytical (highSNR) - User 1

Analytical (highSNR) - User 2

Figure 10. Analytical vs. asymptotic average BLER for α1 = 0.3, ρ = 30 dB, M = 400,
N1 = N2 = 300, T = 3.

for both users from (25) and (29) plotted with the asymptotic average BLER from (37)
and (34). Clearly, when the SNR is increasing the asymptotic approximations agree with
the analytical average BLER approximations developed in Chapter 3.
Based on Algorithm 1, the minimum blocklength needed to achieve a reliability of

10−5 for u1 and different reliability targets for u2 was evaluated. Since the asymptotic
expressions are accurate in high SNR, the computation was done for SNR values from 25
dB to 30 dB. The number of transmissions was set to 3, and the number of information
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bits for both users was set to 300. The resulting plot is shown in Figure 11. Clearly, with
increasing SNR, the minimum blocklength required reduces for any reliability target for
u2. Also, it can be noticed that when the reliability target of u2 increases from 1×10−6 to
1×10−5, the minimum needed blocklength decreases. The corresponding power allocation
(α1) that results from Algorithm 1 is shown in Figure 12. It can be noticed that when
the reliability requirement of u2 increases, more power is allocated to u2 resulting in a
decrease of α1.
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Figure 11. Minimum blocklength vs. transmit SNR for εR1 = 1 × 10−5 and varying ε2.
α1 = 0.3, N1 = N2 = 300, T = 3.

Figure 13 shows the gap in the required minimum blocklength to achieve the reliability
targets between OMA and NOMA. The minimum blocklength for OMA was calculated
by the addition of the blocklengths needed to achieve their reliability targets. Here the
difference is taken by subtracting the NOMA blocklength from the OMA blocklength.
For the simulated parameters, NOMA has a smaller blocklength than OMA on most
occasions where the gap is positive. The bold red curve represents both users having the
same reliability target of 1×10−5 and NOMA always has a lower blocklength requirement
of around 20 channel uses compared to OMA. For more strict conditions with lower
reliability target for u2 under low transmit SNR, OMA performs better where the gap
has become negative in some occasions. More analysis will be done as a future work for
investigating on occasions where OMA outperforms NOMA.
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5 CONCLUSION AND FUTURE WORK

This thesis analyzed the performance of NOMA with HARQ-CC for finite blocklength. In
Chapter 3, tight closed-form approximations for the average BLER of a two-user downlink
NOMA system were derived. Due to the mathematical difficulty in evaluating the CDF of
the weak user’s SNR, numerical approximations were used. Their accuracy was verified
with Monte Carlo simulations. The simulations proved that the approximations are
accurate to measure the performance of the discussed system.
Further, the performance of NOMA with the number of transmissions in HARQ,

blocklength, information bits, and power allocation coefficients was analyzed based on
numerical simulations. The comparison with OMA was done proving that NOMA could
meet average BLER requirements of ultra-reliable communication such as 1× 10−5 while
ensuring user fairness better than OMA. Chapter 4 outlined asymptotic expressions to
further approximate the average BLERs due to the mathematical complexity in the
expressions developed in Chapter 3. An algorithm to determine the minimum block
length required to meet the reliability requirements of the two users was developed
based upon the asymptotic expressions. Simulations proved that NOMA has a lower
blocklength requirement in high SNR leading to lower latency compared to OMA when
the reliability requirements are in the order of 10−5.
As future work, more analysis is proposed on investigating a system having two

different block lengths for the users and devising the power allocation and minimum
blocklengths. In this work, the same power allocation was used in all the transmission
rounds. More analysis can be done to find a suitable power allocation method for the
different transmission rounds to minimize power. Also in the system considered the BS
and users have single antennas. The scenario with multiple antennas can be analyzed.
Analysis of other HARQ types such as HARQ-IR in finite block length for NOMA is also
a promising direction.
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1.1 Gaussian-Chebyshev quadrature

Gaussian-Chebyshev quadrature can be used to evaluate an integral numerically as
follows [25](8.8), [26]

I =
∫ b

a
f(x)dx = b− a

2

N∑
i=1

wi
√

1− x2
i f(x̂i) (45)

where

wi = π

N

xi = cos
(2i− 1

2N π
)

x̂i = b− a
2 xi + b+ a

2

andN is the number of quadrature nodes, which serves as a complexity-accuracy trade-off
parameter.

1.2 Gaver-Stehfest algorithm for numerical Laplace inversion

Through sampling of the Laplace space function on the real line Gaver-Stehfest
algorithm has the ability to numerically invert a Laplace transform very accurately for
the functions of type e−at [27]. This method is well described in [28] and [29]. When the
Laplace function is f̃(s), the inversion f(t) can be obtained by

f(t) ≈ ln 2
t

L∑
k=1

ωkf̃

(
k ln 2
t

)
(46)

where,

ωk = (−1)L2 +k
min(k,L2 )∑
bj= k+1

2 c

j(
L
2 +1)

(L2 )!

(
L
2
j

)(
2j
j

)(
j

k − j

)

when L is the number of sample points. Intuitively, increasing the number of sampling
points will increase the accuracy of the inversion but floating point implementations will
suffer from round off errors. When implemented in MATLAB, L = 18 is the maximum
that can be used with double precision [30].
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The integral in (15) is evaluated using the approximation in (16) as

εi ≈
∫ ∞

0

 log2(1 + γi)− Ni
M√

vi
M

 fγi(x)dx

≈
∫ ∞

0
Ξi(x)fγi(x)dx

=
∫ υi

0
fγi(x)dx+

∫ τi

υi
(1
2 − λi(x− θi))fγi(x)dx

= 1
2(Fγi(υi) + Fγi(τi))+

λiθi(Fγi(τi)− Fγi(υi))− λi
∫ τi

υi
xfγi(x)dx.

Using integration by parts,

= 1
2(Fγi(υi) + Fγi(τi)) + λi(θi)(Fγi(τi)− Fγi(υi))

− λi(τiFγi(τi)− υiFγi(υi))

+ λi

∫ τi

υi
Fγi(x)dx.

Substituting for υi and τi,

= 1
2(Fγi(υi) + Fγi(τi)) + λiθi(Fγi(τi)− Fγi(υi))

− λi((θi + 1
2λi

)Fγi(τi)− (θi −
1

2λi
)Fγi(υi))

+ λi

∫ τi

υi
Fγi(x)dx

= λi

∫ τi

υi
Fγi(x)dx,

which completes the proof.
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The SINR γi2 in NOMA with HARQ-CC after T transmission rounds is given by
(12). Since γti2s are independent for different transmission rounds, γi2 is a sum of
independent random variables. The PDF of the sum of independent random variables is
the convolution of the PDF of individual random variables expressed as

fZ(z) = fz1 ∗ fz2 ∗ · · · ∗ fzT (z) (47)

where zt = γti2 and Z = γi2 = ∑T
t=1 γ

t
i2. Taking the Laplace transform of (47) results in

f̂Z(s) = f̂z1(s)f̂z1(s) · · · f̂zT (s)

=
T∏
t=1

f̂zt(s),
(48)

where fzt(s) is the Laplace transform given by fzt(s) = L[fzt(zt)]. The PDF fzt(zt) of
zt = γti2 is derived next. From (9) and (10), zt can be written as,

zt = γti2 = ρα2|h̃i,t|2

ρα1|h̃i,t|2 + 1
. (49)

The CDF of zt is expressed by

Fzt(zt) = Pr

(
ρα2|h̃i,t|2

ρα1|h̃i,t|2 + 1
< zt

)

= Pr

(
|h̃i,t|2 <

zt
ρ(α2 − α1zt)

)
; (α2 − α1zt) > 0

= Pr

(
|hi,t|2 <

zt
µiρ(α2 − α1zt)

)
;µi = 1

1 + di
η . (50)

Since hi,t ∼ CN (0, 1), |hi,t|2 is an exponential variable such that |hi,t|2 ∼ Exp(1). Then
CDF Fzt(zt) is

Fzt(zt) = 1− e−
zt

µiρ(α2−α1zt) (51)

such that 0 < zt <
α2
α1

(= κ). For zt ≥ κ, Fzt(zt) = 1. Differentiating Fzt(zt) with respect
to zt, PDF fzt(zt) becomes

fzt(zt) = α2

µiρ(α2 − α1zt)2 e
− zt
µiρ(α2−α1zt) . (52)

Then the Laplace transform f̂zt(s) is

f̂zt(s) =
∫ κ

0
fzt(zt)e−sztdzt. (53)

The integral in (53) is simplified by the use of Gaussian-Chebyshev quadrature which
results in

f̂zt(s) ≈ ci
N∑
n=1

Ψ(an)e−
sκ(an+1)

2 (54)

where, ci = 2πκα2
Nµiρ

e
1

µiρα1 , κ = α2
α1
, an = cos

(
2n−1
2N π

)
for n = 1, 2, · · ·N,
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Ψ(an) =

√
1− a2

n

(2α2 − α1κ(an + 1))2 e
− 2α2
µiρα1(2α2−α1κ(an+1)) ,

and N is a complexity-accuracy trade-off parameter. From (48), fZ(s) is derived as

fZ(s) =
T∏
t=1

f̂zt(s)

≈
T∏
t=1

ci
N∑
n=1

Ψ(an)e−
sκ(an+1)

2

= cTi

(
N∑
n=1

Ψ(an)e−
sκ(an+1)

2

)T
. (55)

Using multinomial theorem, (55) is converted to

fZ(s) ≈ cTi
∑

{p1,··· ,pN}∈P
Λ

N∏
n=1

[
Ψpn(an)e−

sκ(an+1)
2

]

= cTi
∑

{p1,··· ,pN}∈P
Λ
[
N∏
n=1

Ψpn(an)
]
e

−sκ
2
∑N

n=1 pn(an+1) (56)

where

Λ =
(

T

p1, ..., pN

)
= T !∏N

n=1 pn!
,

and pns are taken from the set defined by

P =
{
p1, ..., pN |T =

N∑
n=1

pn

}
.

The PDF fZ(z) results from taking the inverse Laplace transform of fZ(s) as

fZ(z) = L−1[fZ(s)](z)

≈ cTi
∑

{p1,··· ,pN}∈P
Λ
[
N∏
n=1

Ψpn(an)
]
L−1[e−sκ

2
∑N

n=1 pn(an+1)]. (57)

The inverse Laplace transform in (57) is computed approximately using Gaver-Stehfest
algorithm as described in Appendix 1.2. Therefore, fZ(z) is approximated by

fZ(z) ≈ cTi
∑

{p1,··· ,pN}∈P
Λ
[
N∏
n=1

Ψpn(an)
]

ln 2
z

L∑
k=1

ωk[e
−kκ ln 2

2z
∑N

n=1 pn(an+1)] (58)

where

ωk = (−1)L2 +k
min(k,L2 )∑
bj= k+1

2 c

j(
L
2 +1)

(L2 )!

(
L
2
j

)(
2j
j

)(
j

k − j

)
.

The CDF is calculated by taking the integral over fZ(z) with respect to z as

FZ(r) =
∫ r

−∞
fZ(z)dz =

∫ r

0
fZ(z)dz. (59)
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Therefore,

FZ(r) ≈
∫ r

0
cTi

∑
{p1,··· ,pN}∈P

Λ
[
N∏
n=1

Ψpn(an)
]

ln 2
z

L∑
k=1

ωke
−kκ ln 2

2z
∑N

n=1 pn(an+1)dz

= cTi
∑

{p1,··· ,pN}∈P
Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

ωk ln 2
∫ r

0

1
z
e

−kκ ln 2
2z

∑N

n=1 pn(an+1)dz (60)

= cTi
∑

{p1,··· ,pN}∈P
Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

(ωk ln 2)Ik (61)

(62)

where

Ik =
∫ r

0

1
z
e

−kκ ln 2
2z

∑N

n=1 pn(an+1)dz. (63)

By change of variables with u = 1
z
integral in (63) converts to,

Ik =
∫ ∞
Sk,N
r

1
u
e−udu

= E1

(
Sk,N
r

)
(64)

where
Sk,N = kκ ln 2

2

N∑
n=1

pn(an + 1), (65)

and E1(x) is the exponential integral function defined by E1(x) =
∫∞
x

e−t

t
dt.
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CDF of γi2 is given by (24). Computation of the approximation for average BLER, εi2 is
provided here using (19). Note that after T transmission rounds the number of channel
uses for blocklength M will be TM .

εi2 ≈ λ2

∫ τ2

υ2
Fγi2(x)dx

≈ λ2

∫ τ2

υ2
cTi

∑
{p1,··· ,pN}∈P

Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

(ωk ln 2)E1

(
Sk,N
x

)
dx

= λ2c
T
i

∑
{p1,··· ,pN}∈P

Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

(ωk ln 2)
∫ τ2

υ2
E1

(
Sk,N
x

)
dx

= λ2c
T
i

∑
{p1,··· ,pN}∈P

Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

(ωk ln 2)Jk; Jk =
∫ τ2

υ2
E1

(
Sk,N
x

)
dx. (66)

The integral Jk is evaluated as below.

Jk =
∫ τ2

υ2
E1

(
Sk,N
x

)
dx.

By change of variables,

= −Sk,N
∫ Sk,N

τ2
Sk,N
υ2

E1 (v)
v2 dv.

Using integration by parts and Leibniz integral rule

= −Sk,N

[−E1(v)
v

]Sk,N
τ2

Sk,N
υ2

−
∫ Sk,N

τ2
Sk,N
υ2

e−v

v2 dv

 .
Using integration by parts again

= −Sk,N

[−E1(v)
v

+ e−v

v

]Sk,N
τ2

Sk,N
υ2

+
∫ Sk,N

τ2
Sk,N
υ2

e−v

v
dv


= −Sk,N

[−E1(v)
v

+ e−v

v

]Sk,N
τ2

Sk,N
υ2

+
[
E1

(
Sk,N
υ2

)
− E1

(
Sk,N
τ2

)]
= −Sk,N

[1
v

(e−v − (1 + v)E1(v))
]Sk,N

τ2

Sk,N
υ2


= υ2

(
e
−
Sk,N
υ2 − (υ2 + Sk,N)

υ2
E1(Sk,N

υ2
)
)
− τ2

(
e
−
Sk,N
τ2 − (τ2 + Sk,N)

τ2
E1(Sk,N

τ2
)
)

= Φ(υ2, Sk,N)− Φ(τ2, Sk,N) (67)

where

Φ(x, y) = xe−
y
x − (x+ y)E1

(
y

x

)
.
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Then from (66) and result in (67) for integral Jk, εi2 can be expressed as

εi2 = λ2c
T
i

∑
{p1,··· ,pN}∈P

Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

(ωk ln 2) [Φ(υ2, Sk,N)− Φ(τ2, Sk,N)] , (68)

which completes the proof.
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The average BLER, ε11 can be computed using (19) with the CDF for γ11 given by the
(28) as

ε11 = λ1

∫ τ1

υ1
Fγ11(x)dx

= λ1

∫ τ1

υ1

1
Γ(T )γ

(
T,

x

ρα1µ1

)
dx.

Using integration by parts,

= λ1
1

Γ(T )


[
xγ

(
T,

x

ρα1µ1

)]τ1

υ1

−
∫ τ1

υ1
xγ

(
T,

x

ρα1µ1

)
dx︸ ︷︷ ︸

Q1

 . (69)

Q1 is evaluated as

Q1 =
∫ τ1

υ1
x
d

dx
γ

(
T,

x

ρα1µ1

)
dx. (70)

By definition of the lower incomplete Gamma function

Q1 =
∫ τ1

υ1
x

(
d

dx

∫ x
ρα1µ1

0
tT−1e−tdt

)
dx.

By change of variables with u = δ1x where δ1 = 1
ρα1µ1

Q1 = 1
δ1

∫ δ1τ1

δ1υ1
u
d

du

(∫ u

0
tT−1e−tdt

)
du.

Using Leibniz integral rule

Q1 = 1
δ1

∫ δ1τ1

δ1υ1
u(T+1)−1e−udu

= 1
δ1

[γ(T + 1, u)]δ1τ1
δ1υ1

= ρα1µ1

[
γ

(
T + 1, x

ρα1µ1

)]τ1

υ1

.

Using the result of Q1 in (69)

ε11 = λ1
1

Γ(T )

([
xγ

(
T,

x

ρα1µ1

)]τ1

υ1

− ρα1µ1

[
γ

(
T + 1, x

ρα1µ1

)]τ1

υ1

)
= λ1(Υ(τ1,M)−Υ(υ1,M))

where

Υ(x) = 1
Γ(T )

[
γ

(
T,

x

ρα1µ1

)
− ρα1µ1γ

(
T + 1, x

ρα1µ1

)]
,

which completes the proof.
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From (36), Ψpn(an) can be approximated in high SNR as

Ψpn(an) ≈ (1− a2
n)

pn
2

α2pn
2 (1− an)2pn

.

Therefore,
N∏
n=1

Ψpn(an) ≈
N∏
n=1

(1− a2
n)

pn
2

α2pn
2 (1− an)2pn

= 1

α
2
∑N

n=1 pn
2

N∏
n=1

(1− a2
n)

pn
2

(1− an)2pn

= 1
α2T

2
Θ(an, pn) (71)

where

Θ(an, pn) =
N∏
n=1

(1− a2
n)

pn
2

(1− an)2pn
. (72)

Therefore, using (33) and the high SNR approximations derived in (71) and (35)
substituted to Fγi2 yields

ε∞i2 ≈ F∞γi2(θ2)

= cTi
∑

{p1,··· ,pN}∈P
Λ
[
N∏
n=1

Ψpn(an)
]

L∑
k=1

(ωk ln 2)E1

(
Sk,N
θ2

)

=
(

2πα2
2

Nµiρα1

)T ∑
{p1,··· ,pN}∈P

Λ 1
α2T

2
Θ(an, pn)

L∑
k=1

(ωk ln 2)E1

(
Sk,N
θ2

)
;κ = α2

α1

= ĉi
T

∑
{p1,··· ,pN}∈P

ΛΘ(an, pn)
L∑
k=1

(ωk ln 2)E1

(
Sk,N
θ2

)

where,
ĉi = 2π

Nµiρα1
, (73)

which completes the proof.


