838 research outputs found

    On the performance of baseline evolutionary algorithms on the dynamic knapsack problem

    Get PDF
    Evolutionary algorithms are bio-inspired algorithms that can easily adapt to changing environments. In this paper, we study single- and multi-objective baseline evolutionary algorithms for the classical knapsack problem where the capacity of the knapsack varies over time. We establish different benchmark scenarios where the capacity changes every Ï„ iterations according to a uniform or normal distribution. Our experimental investigations analyze the behavior of our algorithms in terms of the magnitude of changes determined by parameters of the chosen distribution, the frequency determined by Ï„ and the class of knapsack instance under consideration. Our results show that the multi-objective approaches using a population that caters for dynamic changes have a clear advantage on many benchmarks scenarios when the frequency of changes is not too high.Vahid Roostapour, Aneta Neumann, and Frank Neuman

    Evolutionary Multi-Objective Optimization for the Dynamic Knapsack Problem

    Full text link
    Evolutionary algorithms are bio-inspired algorithms that can easily adapt to changing environments. In this paper, we study single- and multi-objective baseline evolutionary algorithms for the classical knapsack problem where the capacity of the knapsack varies over time. We establish different benchmark scenarios where the capacity changes every Ï„\tau iterations according to a uniform or normal distribution. Our experimental investigations analyze the behavior of our algorithms in terms of the magnitude of changes determined by parameters of the chosen distribution, the frequency determined by Ï„\tau, and the class of knapsack instance under consideration. Our results show that the multi-objective approaches using a population that caters for dynamic changes have a clear advantage in many benchmarks scenarios when the frequency of changes is not too high. Furthermore, we demonstrate that the distribution handling techniques in advance algorithms such as NSGA-II and SPEA2 do not necessarily result in better performance and even prevent these algorithms from finding good quality solutions in comparison with simple multi-objective approaches

    On the Impact of Operators and Populations within Evolutionary Algorithms for the Dynamic Weighted Traveling Salesperson Problem

    Full text link
    Evolutionary algorithms have been shown to obtain good solutions for complex optimization problems in static and dynamic environments. It is important to understand the behaviour of evolutionary algorithms for complex optimization problems that also involve dynamic and/or stochastic components in a systematic way in order to further increase their applicability to real-world problems. We investigate the node weighted traveling salesperson problem (W-TSP), which provides an abstraction of a wide range of weighted TSP problems, in dynamic settings. In the dynamic setting of the problem, items that have to be collected as part of a TSP tour change over time. We first present a dynamic setup for the dynamic W-TSP parameterized by different types of changes that are applied to the set of items to be collected when traversing the tour. Our first experimental investigations study the impact of such changes on resulting optimized tours in order to provide structural insights of optimization solutions. Afterwards, we investigate simple mutation-based evolutionary algorithms and study the impact of the mutation operators and the use of populations with dealing with the dynamic changes to the node weights of the problem

    An Immune System-Based Genetic Algorithm to Deal with Dynamic Environments: Diversity and Memory

    Full text link
    Abstract. The standard Genetic Algorithm has several limitations when dealing with dynamic environments. The most harmful limitation as to do with the tendency for the large majority of the members of a population to convergence prematurely to a particular region of the search space, making thus difficult for the GA to find other solutions when changes in the environment occur. Several approaches have been tested to overcome this limitation by introducing diversity in the population or through the incorporation of memory in order to help the algorithm when situations of the past can be observed in future situations. In this paper, we propose a GA inspired in the immune system ideas in order to deal with dynamic environments. This algorithm combines the two aspects mentioned above: diversity and memory and we will show that our algorithm is also more adaptable and accurate than the other algorithms proposed in the literature.

    Exact and heuristic approaches for multi-component optimisation problems

    Get PDF
    Modern real world applications are commonly complex, consisting of multiple subsystems that may interact with or depend on each other. Our case-study about wave energy converters (WEC) for the renewable energy industry shows that in such a multi-component system, optimising each individual component cannot yield global optimality for the entire system, owing to the influence of their interactions or the dependence on one another. Moreover, modelling a multi-component problem is rarely easy due to the complexity of the issues, which leads to a desire for existent models on which to base, and against which to test, calculations. Recently, the travelling thief problem (TTP) has attracted significant attention in the Evolutionary Computation community. It is intended to offer a better model for multicomponent systems, where researchers can push forward their understanding of the optimisation of such systems, especially for understanding of the interconnections between the components. The TTP interconnects with two classic NP-hard problems, namely the travelling salesman problem and the 0-1 knapsack problem, via the transportation cost that non-linearly depends on the accumulated weight of items. This non-linear setting introduces additional complexity. We study this nonlinearity through a simplified version of the TTP - the packing while travelling (PWT) problem, which aims to maximise the total reward for a given travelling tour. Our theoretical and experimental investigations demonstrate that the difficulty of a given problem instance is significantly influenced by adjusting a single parameter, the renting rate, which prompted our method of creating relatively hard instances using simple evolutionary algorithms. Our further investigations into the PWT problem yield a dynamic programming (DP) approach that can solve the problem in pseudo polynomial time and a corresponding approximation scheme. The experimental investigations show that the new approaches outperform the state-of-the-art ones. We furthermore propose three exact algorithms for the TTP, based on the DP of the PWT problem. By employing the exact DP for the underlying PWT problem as a subroutine, we create a novel indicator-based hybrid evolutionary approach for a new bi-criteria formulation of the TTP. This hybrid design takes advantage of the DP approach, along with a number of novel indicators and selection mechanisms to achieve better solutions. The results of computational experiments show that the approach is capable to outperform the state-of-the-art results.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201
    • …
    corecore