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Exact and Heuristic Approaches for Multi-component Optimisation Problems

by Junhua WU

Modern real world applications are commonly complex, consisting of multiple sub-
systems that may interact with or depend on each other. Our case-study about wave
energy converters (WEC) for the renewable energy industry shows that in such a
multi-component system, optimising each individual component cannot yield global
optimality for the entire system, owing to the influence of their interactions or the
dependence on one another. Moreover, modelling a multi-component problem is
rarely easy due to the complexity of the issues, which leads to a desire for exis-
tent models on which to base, and against which to test, calculations. Recently,
the travelling thief problem (TTP) has attracted significant attention in the Evolu-
tionary Computation community. It is intended to offer a better model for multi-
component systems, where researchers can push forward their understanding of
the optimisation of such systems, especially for understanding of the interconnec-
tions between the components. The TTP interconnects with two classic NP-hard
problems, namely the travelling salesman problem and the 0-1 knapsack problem,
via the transportation cost that non-linearly depends on the accumulated weight
of items. This non-linear setting introduces additional complexity. We study this
nonlinearity through a simplified version of the TTP - the packing while travelling
(PWT) problem, which aims to maximise the total reward for a given travelling tour.
Our theoretical and experimental investigations demonstrate that the difficulty of a
given problem instance is significantly influenced by adjusting a single parameter,
the renting rate, which prompted our method of creating relatively hard instances
using simple evolutionary algorithms. Our further investigations into the PWT
problem yield a dynamic programming (DP) approach that can solve the problem in
pseudo polynomial time and a corresponding approximation scheme. The experi-
mental investigations show that the new approaches outperform the state-of-the-art
ones. We furthermore propose three exact algorithms for the TTP, based on the DP
of the PWT problem. By employing the exact DP for the underlying PWT problem
as a subroutine, we create a novel indicator-based hybrid evolutionary approach for
a new bi-criteria formulation of the TTP. This hybrid design takes advantage of the
DP approach, along with a number of novel indicators and selection mechanisms
to achieve better solutions. The results of computational experiments show that the
approach is capable to outperform the state-of-the-art results.
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Chapter 1

Introduction

Nowadays, real-world applications are becoming ever more complex. For instance,
in the paradigm of modern business management, individual commercial activities
no longer compete as solely autonomous entities (namely silos), but rather as supply
chains [92]. Not only internal functional departments (such as Finance, Production,
Sales, Logistics and etc.), but also external suppliers and/or distributors are tightly
integrated in order to pursue the success of the business as a whole. Figure 1.1 de-
picts a framework of a supply chain management structure that is guided by such
a philosophy, in which materials, products, services, information and so on are con-
trolled and managed across both multi-functional silos within the company and the
various corporate silos outside. The purpose of designing such a complex multi-
component system is that the overall performance of the system is presumed to be
better than the loose aggregate of the silos, as synergy of the integration is expected
to increase productivity.

FIGURE 1.1: Supply Chain Management Structure [39]



2 Chapter 1. Introduction

Similar circumstances occur in industrial engineering. As an example, we will
present our case-study, wave energy converter (WEC) optimisation, in Chapter 4.
In this study, we try to optimise the overall energy absorption of an array of WECs,
which are the devices that capture and convert wave energy to electricity or that
power a reverse osmosis desalination plant to create potable water [106]. In order to
achieve this goal, not only the parameters of each individual WEC (such as the shape
and/or dimensions, stiffness, damping coefficient, and etc.) are to be optimised
according to the hydrological frequencies in the ocean area to be deployed, but also
the hydrodynamic interactions among WECs have to be taken into consideration,
because the interactions have a significant impact on the overall performance of the
array, i.e. it can be constructed or deconstructed by the interactions [153]. Therefore,
only optimising each WEC (silo) cannot yield the overall optimality of an array.

Both of the above systems can be regarded as the multi-component systems [9],
each of which is composed of multiple components that may interact with and/or
interdependent on each other. More importantly, such a system has to be regarded
as an entirety when it is measured, analysed, optimised and so on.

In general, when we conduct activities (e.g. measurement, analysis, optimisa-
tion, and so forth) with a system, we follow a universal problem solving approach
of two steps: step 1) create a model of the problem or system; step 2) study the
model and generate solutions [120], namely:

Problem �! Model �! Solutions. (1.1)

However, for a multi-component system, it is unlikely to be a trivial matter to create
an accurate model, due to the complexities within the system itself. In other words,
modelling the multi-component problems may either be impossible or extremely
expensive. This leads to a need for existent models or what are more commonly
called the benchmark problems.

A benchmark problem is a well-defined model, which can be treated as a uni-
fied platform with which researchers can experiment and compare different algo-
rithms fairly. This platform not only saves the effort of modelling from scratch,
but also helps to improve verifiability - a ubiquitous requirement of scientific pub-
lications [120]. Verifiability requires that researchers must demonstrate the com-
pleteness of the entire process of problem-solving in their publications, meaning
the processes and results are rigorously presented and compared, so that the read-
ers can replicate the approaches taken. By working on an existing model instead
of starting from scratch, researchers can compare their work with others’ on the
same benchmark problem more easily. Famous examples of benchmark problems
include the travelling salesman problem (TSP) [34], knapsack problem (KP) [111],
minimum spanning tree (MST) [68], constraint satisfaction problems (CSPs) [166],
job shop scheduling problem (JSP) [60], linear programming problems (LP) [31, 18],
nonlinear programming problems (NLP) [11, 16], bound constrained optimisation
problem (BCP) [17], the nonlinear equations problem (NE) [131], nonlinear least-
squares problem (NLSP) [10, 83], etc. Researchers usually organise the instances of
the problems into various benchmark libraries, so that newcomers can easily start
to work with them. Examples include OR-Library [12], TSPLIB [145], CSPLIB [62],
PSPLIB [88], SATLIB [79], MVF [1], CUTEst [67], etc.

Despite their academic purpose, most of the current benchmark problems often
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fail to model real-world, multi-component systems well, as in general they concen-
trate on the individual silos instead of measuring the system as a whole. For exam-
ple, a delivery system typically contains at least two parts: a route/tour planning
system and a packing system for organising packages to be delivered, which may
be correspondingly represented by the TSP and KP respectively. However, such
models do not reflect the interdependence between the tour planning system and
the packing system, even though this factor may influence the overall performance
of the delivery system significantly. In Chapter 2, we will elaborate a real-world
example of such a complex delivery system from a water tank manufacturer in Aus-
tralia [159], which demonstrates that the interdependences have yet to be taken into
account and solving each silo separately in a complex system cannot yield overall
optimality.

Meanwhile, some benchmarks indeed take real-world complexities into consid-
eration. For example, the vehicle routing problem (VRP) [95] considers the set of
routes for an entire fleet of vehicles to traverse, instead of a single route as in the
setting of the TSP. This means that each route of a vehicle has to be considered as a
subcomponent to optimise. However, the complexity of this problem is still limited
due to its homogeneous subcomponents. Some benchmarks [163, 99, 134] pay spe-
cial attention to the large size problems formed by interaction between various sub-
components, on which Cooperative Coevolution or other bi-level optimisation ap-
proaches [141, 155, 133] are experimented. Nevertheless, the subcomponents mostly
are derived from simple test functions.

In 2012, Michalewicz [120] highlighted the gap between the current academical
benchmark problems and the real-world multi-component systems, later he and his
colleagues proposed a new benchmark problem: the travelling thief problem (TTP)
[24], aiming to narrow the gap. Instead of modelling the tour planning part and the
packing part separately, the TTP seeks to represent the complex delivery system as
a whole. The two disparate NP-hard components are organically bound together
in this benchmark by the cost of transportation, so that dealing with the interdepen-
dence becomes crucial for solving the problem. In order to tackle a multi-component
problem, one might consider the divide and conquer paradigm, which divides the
problem into subcomponents and solves them independently. However, the TTP
presents a multi-component benchmark problem showing that its two sub-problems
(TSP and KP) cannot be easily separated, which makes it uniquely hard to solve.

Thus far, many approximate approaches have been proposed for the TTP [139,
25, 117, 116, 118, 56, 160, 69, 168, 51, 50, 52, 113, 53, 104, 20]. However, to the best of
our knowledge, all of them focus on utilising existing heuristic approaches (such as
local search [80], simulated annealing [86], tabu search [64], genetic algorithm [123],
genetic programming [167], memetic algorithm [127], swarm intelligence [37], etc.),
incorporating these with well-studied operators of the TSP and KP (such as 2-opt
[38], MPX [96], ERX [96], Bit-flip, etc.) or the slight variations of such operators.
Operators or approaches that are specifically designed under the guidance of the
theoretical understanding of the TTP remain elusive.

In the journey of pursuing the solutions of a problem, the theoretical understand-
ing of the problem usually plays a vital role. For example, in the research of TSP,
Dantzig et al. [40] proposed a method to solve a TSP instance including 49 cities in
1950s, based on the understanding that the TSP problem could be transformed into
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an integer linear programming (IP [151]) problem and they used the cutting-plane
method [151] to solve this instance. In 1960s, a method of calculating bounds of
TSP instances was developed according to the understanding that the length of an
optimal tour of a TSP is at most twice the weight of the minimum spanning tree of
the TSP graph [3]. Christofides [30] therefore developed an approximate algorithm
that guarantees its solutions within a factor of 3/2 of the optimal solution length.
Theoretical understanding helps in the study of heuristic approaches as well. For
example, Kötzing et al. [89] recently proved that a local optimum gives a good ap-
proximation for the Euclidean TSP, which is based on the understanding that the
2-OPT [38], a famous heuristic operator, shown polynomial bounds on the expected
number of steps until 2-OPT reaching the local optimum. They therefore success-
fully transfer the finding to ACO and improve the performance of the algorithms.

However, the theoretical understanding of the TTP is not easily gained. On the
one hand, no exact approach of the TTP so far has been proposed except ours (which
will be introduced in Chapter 7) to the best of our knowledge. On the other hand,
the TTP is hard not only because of the intertwinement of the two components but
also due to the nonlinearity of the transportation cost. The transportation cost is
the mathematical factor that connects the two subcomponents in the TTP, while it
nonlinearly depends on the weight of the collected items and the overall gain of
the packing component depends on the profit from collected items and the trans-
portation cost. This nonlinearity distinguishes the KP component of the TTP from
the classical knapsack problems that are characterised by the constraint of weight
(namely the capacity of the knapsack), which therefore introduces an additional
complexity.

In order to understand more in this nonlinearity of the TTP, Polyakovskiy et al.
[140] introduce a simplified version of the TTP: the packing while travelling (PWT)
problem, in which the route or tour is a predefined constant. In other words, they
only pay attention to the packing part in the TTP. Nevertheless, their research shows
that the problem is NP-hard even without the capacity constraint usually imposed
on the knapsack (i.e. any combination of items is feasible). On the other hand,
previous studies of the heuristics of the TTP indicate that the packing component
in general has a greater impact on the overall reward when a near optimal tour is
provided [56, 140]. Therefore one of the efficient approaches for solving the TTP is
to evolve the packing plan while a set of near optimal tours are provided by a TSP
solver.

Putting all the above together, it is reasonable to believe that the PWT problem
might be the key to the theoretical understanding of the TTP. In our study, we con-
duct further investigations on the PWT problem and the TTP, trying to find out:
What makes a PWT or TTP instance hard or easy? What essentially distinguishes
the PWT problem from classic knapsack problems? Can we find the optimal so-
lutions of the PWT problem efficiently (in pseudo polynomial time) similar to the
traditional knapsack problems? Is there any exact approach for the TTP? How can
we utilise the exact approaches or the knowledge of such approaches to facilitate
and improve the approximate approaches on both its single objective form and the
bi-objective form? And so on.

The remainder of this thesis is organised as follows:



Chapter 1. Introduction 5

Chapters 2 and 3 briefly introduce the backgrounds and prerequisites of the stud-
ies discussed and conducted in this thesis. In Chapter 2 we first revisit the gen-
eral definitions of optimisation problems, and then discuss the relationship between
real-world complex systems and the travelling thief problem in greater detail. The
formal settings and formulations of the TTP and the PWT problems are also pre-
sented in this chapter. In Chapter 3 we review some approaches for optimisation
problems. The popular exact and heuristic algorithms such as dynamic program-
ming, branch and bound method, local search, evolutionary algorithms, etc. are
briefly introduced. In addition, we also provide a concise literature review of the
approaches for the TTP.

Chapter 4 presents our case-study of the optimisation of a real-world complex
wave energy system, where the interactions of individual silos have to be consid-
ered for the overall optimisation to be successful. Due to the circumstances, the
modelling and optimisation of the system are challenging. We demonstrate our
novel approximation of this model and the optimisation based upon it.

The studies for the PWT problem are given in Chapters 5 and 6. The study pre-
sented in Chapter 5 focuses on an important parameter called the renting rate, which
connects the profit from selected items and the nonlinear transportation costs. We
then show, using theoretical and experimental investigations, how the renting rate
affects the number of items that can be eliminated by the simple pre-processing
scheme, hence influencing the overall hardness of a particular PWT/TTP instance.
Based on this discovery, we construct instances in a theoretical and experimental
way, whereby a simple baseline evolutionary algorithm fails to obtain an optimal
solution. Chapter 6 proposes an exact dynamic programming approach of the PWT,
which considers the items in the order in which they appear on the route that needs
to be travelled and applies dynamic programming, as for the classic knapsack prob-
lem. A corresponding relaxation using appropriate rounding of the dynamic pro-
gramming is also investigated.

Our studies of the travelling thief problem are provided in Chapters 7 and 8. In
Chapter 7, we propose three exact approaches for the TTP, formed from an extension
of the findings described in the previous chapters (Chapters 5 and 6), which use a
dynamic programming approach, the branch and bound search, and the constraint
programming. Furthermore, we measured the existing approximate approaches for
the TTP based on the results of the best exact approach for some small TTP in-
stances. We then present a multi-objective version of the TTP in Chapter 8, where
the goal is to minimise the weight and maximise the overall benefit of a solution.
We present a hybrid evolutionary approach for the bi-objective TTP that uses the
dynamic programming approach for the underlying PWT problem as a subrou-
tine. The approach is adapted from the basic indicator-based evolutionary algo-
rithm (IBEA [182]) incorporating with a series of novel customised indicators and
parent selections in order to encourage the synergy of both the evolutionary algo-
rithm and the dynamic programming approach.

The content of Chapters 4, 5, 6, 7 and 8 are based on the published or submitted
papers, as follows respectively:

• J. Wu, S. Shekh, N. Y. Sergiienko, B. S. Cazzolato, B. Ding, F. Neumann, and
M. Wagner. “Fast and Effective Optimisation of Arrays of Submerged Wave
Energy Converters”. In: Proceedings of the 2016 on Genetic and Evolutionary
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Computation Conference, Denver, CO, USA, July 20 - 24, 2016. 2016, pp. 1045–
1052

• J. Wu, S. Polyakovskiy, and F. Neumann. “On the Impact of the Renting Rate
for the Unconstrained Nonlinear Knapsack Problem”. In: Proceedings of the
2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA, July
20 - 24, 2016. 2016, pp. 413–419

• F. Neumann, S. Polyakovskiy, M. Skutella, L. Stougie, and J. Wu. “A Fully
Polynomial Time Approximation Scheme for Packing While Traveling”. In:
CoRR abs/1702.05217 (2017). arXiv: 1702.05217. URL: http://arxiv.
org/abs/1702.05217

• J. Wu, M. Wagner, S. Polyakovskiy, and F. Neumann. “Exact Approaches for
the Travelling Thief Problem”. In: Simulated Evolution and Learning - 11th Inter-
national Conference, SEAL 2017, Shenzhen, China, November 10-13, 2017, Proceed-
ings. 2017, pp. 110–121

• J. Wu, S. Polyakovskiy, M. Wagner, and F. Neumann. “Evolutionary Compu-
tation plus Dynamic Programming for the Bi-Objective Travelling Thief Prob-
lem”. In: CoRR abs/1802.02434 (2018). arXiv: 1802.02434. URL: http:
//arxiv.org/abs/1802.02434

The conclusion to the whole thesis is drawn in Chapter 9.

https://arxiv.org/abs/1702.05217
http://arxiv.org/abs/1702.05217
http://arxiv.org/abs/1702.05217
https://arxiv.org/abs/1802.02434
http://arxiv.org/abs/1802.02434
http://arxiv.org/abs/1802.02434
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Chapter 2

Real-World Multi-Component
Optimisation Problems and the
Travelling Thief Problem

As we state in the introduction (Chapter 1), real-world multi-component systems are
usually hard to solve. One of the most important reasons for this is that tackling
such problems relies on proper corresponding models. However, most of the exist-
ing models (i.e. the benchmark problems) may have drawbacks. For example, some
focus too much on individual silos, some only consider the interactions between
simple test functions or homogeneous subcomponents. Among them, the travel-
ling thief problem (TTP) combines two disparate NP-hard components: the travel-
ling salesman problem (TSP) and the knapsack problem (KP), which represents the
real-world complexities profoundly and provides a unique benchmark problem for
multi-component problems.

In this chapter, we introduce the general background of the TTP, giving the def-
inition of the general optimisation problem in Section 2.1. In Section 2.2, we enu-
merate two real-world multi-component cases of optimisation, in which solving in-
dividual components cannot guarantee the overall optimality. We then introduce
a newly proposed benchmark problem that is designed to imitate the real-world
multi-component problems more effectively in Section 2.3.

2.1 Optimisation Problem
In mathematics and computer science, an optimisation problem is designed to locate
the best solution from all feasible solutions. It is therefore commonly considered as a
type of search problem, where the search space contains all potential solutions. Op-
timisation problems can be categorised into those which are continuous and those
which are discrete, depending on the type of their variables, as well as single or
multi-objective according to the number of their objective functions. In a discrete
optimisation problem, variables are discrete and countable. In contrast, continu-
ous variables include infinitely uncountable values, for example, a variable over a
non-empty range of real numbers. On the other hand, a single-objective optimisa-
tion problem only involves one objective function to be optimised. In contrast, a
multi-objective one considers two or more objectives simultaneously, meaning the
interaction or the trade-off between objectives must be taken into account.
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2.1.1 Single Objective Optimisation Problems
A standard form of a single objective continuous optimisation problem can be de-
fined as follows:

minimise
x

f(x)

s.t. gi(x)  0, i = 1, . . . ,m (2.1)
hj(x) = 0, j = 1, . . . , p,

where f , gi and hj are general functions of the parametric n-variable vector x 2 Rn.
Among them, f is the objective function to be minimised, gi(x)  0 are m inequality
constraints, hj(x) = 0 are q equality constraints, and m � 0 and p � 0. The problem is
an unconstrained optimisation problem if there is no constraint being incorporated,
i.e. m and p equal 0. While the form defines a minimisation problem as a convention,
a maximisation problem can be treated by negating the objective function.

In some optimisation problems the variables make sense only if they take on
integer values, i.e. x 2 Zn for (2.1), which is a type of discrete optimisation problem.
Generally, discrete optimisation problems may contain not only integer variables,
but also more abstract variable objects such as binaries, permutations of an ordered
set or a graph. The defining feature of a discrete optimisation problem is that the
variable x is drawn from a finite (but often very large) set [131].

Combinatorial optimisation is a field of applied mathematics, combining tech-
niques from combinatorics, linear programming, and the theory of algorithms, to
solve discrete optimisation problems [35], and therefore is usually used as an alias
of discrete optimisation [136]. As formally defined by Neumann et al. [130], a com-
binatorial optimisation problem can generally be drawn as a triple (S, f,⌦), where
S is a given search space, f is the objective function, which should be either max-
imised or minimised, and ⌦ is the set of constraints that have to be fulfilled to obtain
feasible solutions. The goal is to find a globally optimal solution, meaning a solu-
tion s⇤ 2 S, with either the highest objective value in the case of maximisation or the
smallest objective value in the case of minimisation, each under the condition that
all constraints are fulfilled.

Nocedal et al. [131] believe that continuous optimisation problems are normally
easier to solve than their discrete counterparts, owning to the smoothness of the
functions, which allows the use of calculus techniques. In general, calculus tech-
niques mean to use objective and constraint information at a particular point x, to
deduce information about the behaviour of the objective function at all points close
to x. The deduced information is then used to guide the search direction. In con-
trast, combinatorial optimisation problems are to some extent harder to solve than
the continuous ones. This is because the behaviour of the objective and constraints
may change significantly as we move from one feasible point to another, even if the
two points are close according to some measure [131]. Thus it is usually not possible
to deduce the information of the neighbouring points from the current one.



2.1. Optimisation Problem 9

2.1.2 Multi-objective Optimisation Problems
When incorporating more than one objective function to be optimised simultane-
ously, an optimisation problem becomes a multi-objective optimisation problem,
which has been applied in many fields of science, including engineering, economics
and logistics, where optimal decisions need to be taken in the presence of trade-offs
between two or more conflicting objectives. Mathematically, in a k-objective optimi-
sation problem, the objective function f(x) is defined as follows [26]:

f(x) =

2

664

f1(x)
f2(x)
. . .

fk(x)

3

775 ,

where x is the parametric n-variable vector x 2 Rn if it is a continuous optimisation
problem, or a discrete structure for combinatorial optimisation.

In mathematical terms, a multi-objective optimisation problem can be formu-
lated into a minimisation problem as follows:

minimise
x

(f1(x), f2(x), . . . , fk(x)) (2.2)

s.t. x 2 X,

where the set X is the set of feasible solutions. Similar to single-objective optimi-
sation, the feasible set is typically defined by some constraints, and an objective
function to be maximised is equivalent to minimise its negative.

In general, when dealing with a multi-objective optimisation problem, a solu-
tions x1 is said to dominate x2 (denoted by x1 � x2) if x1 is better than x2 on all
objectives. Mathematically for the minimisation case, this means the following two
conditions are held if x1 � x2 [26]:

8i 2 {1, . . . , k} : fi(x1)  fi(x2), (2.3)
9j 2 {1, . . . , k} : fj(x1) < fj(x2). (2.4)

If x1 does not dominate x2 and x2 does not dominate x1 either, they are called non-
dominated solutions.

For a nontrivial multi-objective optimisation problem, no single solution exists
that simultaneously optimises each objective, namely no single solution that domi-
nates all other solutions. Therefore the expected result of optimising such a problem
is a set of non-dominated solutions, which is known as the Pareto front or Pareto op-
timal set [33]. In addition, without additional subjective preference information, all
solutions in a Pareto front are considered equally good (as vectors cannot be ordered
completely).
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2.2 Real-World Multi-Component Optimisation Prob-
lems

In this section we introduce two modern real-world cases of multi-component op-
timisation problems, which demonstrate the complexity of such complex systems.
Moreover, the second case directly inspires a new benchmark problem that is de-
signed to better imitate the multi-component problems.

2.2.1 The Wave Energy Converters Optimisation Problem
Our first case is from the renewable energy industry. Global energy demand is on
the rise nowadays, and given that there are finite reserves of fossil fuels, renewable
forms of energy are playing an ever more important role in our energy supply [105].
Wave energy is a widely available but largely unexploited source of renewable en-
ergy, with the potential to make a substantial contribution to future energy produc-
tion [46, 91]. The idea of harnessing wave energy has been around for at least two
centuries, with the first patent for a wave energy device being filed in 1799 [54].
However, it was not until the oil crisis of the 1970s and the publication of Stephen
Salter’s iconic paper in Nature [150] that interest in wave energy truly began to
surge. Since that time, the utilisation of wave energy has continued to be a very
active research area. There are currently dozens of ongoing wave energy projects at
various stages of development, exploring a variety of techniques [46, 91, 54, 103].

A device that captures and converts wave energy to electricity is often referred
to as a wave energy device or wave energy converter (WEC). One common WEC
design is called a point absorber or buoy. The buoy typically floats on the surface,
or just below the surface, of the water and captures energy from the movement of
the waves [91]. An example of a point absorber is the CETO wave energy converter1,
developed by Carnegie Wave Energy and named after the Greek sea goddess Ceto
[107]. The CETO system consists of one or more fully submerged buoys that are
tethered to the seabed in an offshore location, as shown in Figure 2.1. These buoys
use the motion of the waves to drive a hermetically sealed hydraulic line, which
in turn drives hydroelectric turbines to generate electricity, or to power a reverse
osmosis desalination plant to create potable water [106].

One of the central goals in designing and operating a wave energy device is to
maximise its overall energy absorption. As a result, the optimisation of various as-
pects of wave energy converters is an important and active area of research. Three
key aspects that are often optimised are geometry, control, and positioning. Geo-
metric optimisation seeks to improve the shape and/or dimensions of a wave en-
ergy converter (or some part of it) with the objective of maximising energy capture
[115, 124]. On the other hand, the optimisation of control is concerned with finding
good strategies for actively controlling a WEC [132]. A suitable control strategy is
needed for achieving high WEC performance in real seas and oceans, due to the
presence of irregular waves [70]. In our study we focus on the third aspect, namely
the positioning of wave energy converters.

1
https://www.carnegiece.com/wave/what-is-ceto/

https://www.carnegiece.com/wave/what-is-ceto/
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FIGURE 2.1: Operation of the CETO system [106].

A single wave energy converter can only capture a limited amount of energy.
For large-scale wave energy production and in order to make any significant con-
tribution to addressing global energy demand, it is essential to deploy wave energy
devices in large numbers. A group of wave energy devices working in close prox-
imity to one another is referred to as a wave energy farm or array [2]. Just as the
optimisation of individual wave energy devices is an area of research, so is the opti-
misation of arrays of such devices. In the case of arrays, the aspects that are typically
optimised include the layout or configuration of the array [29] and active control of
individual devices [58].

Despite the fact that the size of an array is relatively small (100 WECs in the
largest cases in our study), the interaction between WECs is quite complex. A sim-
ulation of such interactions across an array with 50 WECs takes around 35 hours,
which is the first major obstacle for applying iterative optimisation approaches to
the farm. By designing an approximation model and making numerous efforts to
optimise the simulation, we eventually speed up the simulation by around 6 min-
utes, which enables us to do the optimisation of the overall performance of the array.
The lessons we have learned from this work are two-fold. First, real-world optimi-
sation problems can be too complex to apply iterative optimisation approaches to
them, such as for local search, evolutionary algorithms, etc., due to the computa-
tional cost of evaluating the state. Second, the size of the problem is not the only
source of complexity. The interactions of among individuals or components may
well introduce difficulties. The details of this study will be elaborated in Chapter 4.

2.2.2 The Transportation of Water Tanks Problem
Another example is the transportation of water tanks, which was introduced by
Stolk et al. [159] and Bonyadi et al. [24]. In an Australian company, tanks with a large
volume are produced and delivered to geographically dispersed buyers. Due to the
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high cost of transport, the decision makers of the company have to minimise the cost
according to a key performance indicator (KPI) that is: to find the transport costs as
a percentage of the delivered goods’ value. The options that have to be taken into
account include: a) selection among several production plants or dozens of storage
facilities for picking available products to deliver; b) the choice of various types of
trucks, with or without trailers, whether suitable or not, to transport the goods; c)
packing products on trucks in an optimal way; d) selection of drivers according to
their qualifications, timetables, etc.; e) selection of optimal routes to travel; and so
on.

Most of the above choices are clearly hard enough to solve even in isolation. For
instance, the packing problem is at least as hard as the 3-dimensional bin packing
problem, which is a famous NP-hard problem. The optimal routes to travel can be
also approximated as an instance of the TSP if only one vehicle is considered, or of
the VRP if a fleet of vehicles is taken into account.

However, minimising the overall KPI is even harder than making each decision
separately, as the decisions made for one problem may impact the others. For ex-
ample, the goods packed on a truck may influence its optimal routes, as different
goods might need to be delivered to different buyers, hence different destinations.
Moreover, water tanks can often be bundled inside each other to save space during
the transportation period. But such bundled tanks have to be unbundled at special
locations nominated by the company before being shipped to customers. Therefore,
the route to the special sites has to be included when optimising the routes in this
case. More commonly, different tanks loaded on a truck might yield different costs
as they might require different types of trucks, drivers or petrol consumption. In
other words, the sub-problems, such as the packing planning problem and the rout-
ing planning problem, are intertwined. Solving each sub-problem in isolation can
not yield the overall optimality in this real-world case.

2.3 The Travelling Thief Problem
As shown in our examples, modern real-world optimisation problems are complex
and often composed of multiple components or sub-problems that are classically
hard. In recent years, the so-called multi-component problems have gained special
interest [23, 159]. Such problems combine different optimisation problems into a
single problem and are motivated by complexity issues arising in the areas such as
logistics and supply chain management [87], especially for problems similar to the
transportation of water tanks in the previous section.

While multi-component problems are being studied, the main question is what
makes the combination of underlying problems harder to solve than solving each
of the subproblems separately. Recently, the travelling thief problem (TTP) [24] has
been introduced to study the interdependence of two classic optimisation problems
in a systematic way and to gain better insights into the design of multi-component
problems. The TTP combines the TSP and the KP by making the speed that a ve-
hicle travels along a TSP tour dependent on the weight of the selected items. Fur-
thermore, the overall objective is given by the sum of the profits of the collected
items minus the weight dependent travel cost along the chosen route. It reflects
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the complexity in real-world applications that can commonly be observed in the ar-
eas of planning, scheduling and routing. For example, delivery problems usually
consist of a routing part for the vehicle(s) and a packing part of the goods onto the
vehicle(s).

Bonyadi et al. [24] has given a thorough description of the TTP. Herein we revisit
their definitions of the TTP and its two sub-problems here, and then briefly intro-
duce the relevant state-of-the-art development of the TTP, including a simplified
version of the TTP and existing approaches for it.

2.3.1 The Travelling Salesman Problem
The TSP is one of the most intensively studied optimisation problems in compu-
tational mathematics and was first formulated in 1930 [3]. In a nutshell, it can be
defined as the following question: “Given a list of cities and the distances between
each pair of cities, what is the shortest possible route that visits each city exactly
once and returns to the original city?”

More formally, Letting N = {1, ..., n} be the list of cities in the size of n, and
D = (dij) 2 Rn⇥n denote the distance matrix in which an element dij represents the
distance between city i 2 N and j 2 N , we have the objective function of the TSP
denoted by:

f(⇡) =
n�1X

i=1

dxixi+1 + dxnx1 ,
⇣
⇡ = (x1, ..., xn), xi 2 N

⌘
. (2.5)

Here ⇡ represents a tour, which contains all of the cities in N exactly once, i.e. a
permutation of N . The matrix D is defined differently according to the physical
or theoretical meanings of instances. Popular types of distance metrics include Eu-
clidean distance, geometric distance, etc. The overall goal of the TSP is to minimise
the objective function f .

The well known benchmark library of the TSP is TSPlib collected by Reinelt [145].
It consists of hundreds of instances with sizes ranging from 14 to 85,900 cities, which
are derived from either industrial applications or geographic problems. Since its
creation in 1990, it has become the standard measurement of study about the TSP
and has been extensively investigated.

2.3.2 The Knapsack Problem
The KP is another classic NP-hard problem. Given a set of items, each with a weight
and a profit, a subset is to be determined, from which the total profit is maximised
while its total weight is under a limit (i.e. capacity). Formally, letting M = {1, ...,m}

be the set of items, pi and wi denote the profit and the weight respectively of item
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i 2 M , and C be the capacity, we have the definition of a KP as follows:

maximise f(⇢) =
nX

i=1

piyi,

s.t.
nX

i=1

wiyi  C.

Here ⇢ = (y1, ..., ym), yi 2 {0, 1} represents the packing plan of the item set,
meaning the item i is chosen when yi = 1, and vice versa. As yi is binary, this
problem is so called the 0-1 knapsack problem (KP).

The KP has been thoroughly studied by Martello, Pisinger and Toth [111, 110,
165, 138, 112, 109]. Their work mainly concentrates on proposing the exact algo-
rithms to tackle the 0-1 KP. In order to test their algorithms, they propose a KP
benchmark library that is generated in fifteen different types. The library contains
the KP instances, varying in weights and profits from items. The authors use it to
investigate which aspects result in challenges for KP solvers in general and for their
approach in particular.

2.3.3 The Definition of the TTP
In order to combine the above two problems together, Bonyadi et al. [24] firstly
assume that a set of cities N = {1, . . . , n} and a set of items M = {1, . . . ,m} are
given. City i, i = 2, . . . , n, contains a set of items Mi = {1, . . . ,mi}, M = [

i2N
Mi.

Item k positioned in the city i is characterised by its profit pik and weight wik. A
thief must visit each of the cities exactly once and then return back to the starting
city at the end. The distance matrix D = {dij} for every pair of cities i, j 2 N is
known. Any item may be selected, as long as the total weight of the collected items
does not exceed the capacity C, represented by a packing plan ⇢ = (y21, . . . , ynmn),
yik 2 {0, 1}.

They then introduce a new parameter - the velocity of the thief travelling along
a tour ⇡ = (x1, . . . , xn), xi 2 N , defined as follows:

vxi = vmax � ⌫Wxi . (2.6)

Here vxi 2 [vmin, vmax] denotes the velocity when the thief leaves from city xi. vmin

and vmax denotes the maximal and minimal speeds of the thief, which are the pre-
defined constants. ⌫ is a coefficient, defined by ⌫ = (vmax � vmin) /C. Wxi is the ac-
cumulated weight of the items collected in the preceding cities x1, . . . , xi, computed
by:

Wxi =
iX

j=1

mxjX

k=1

wxjkyxjk. (2.7)

The overall travelling time T (⇡, ⇢) can therefore be calculated as follows:

T (⇡, ⇢) =
dxnx1

vxn

+
n�1X

i=1

dxixi+1

vxi

. (2.8)
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Consequently, the accumulated weights have a negative impact on the overall
travelling time T (⇡, ⇢), which introduces the nonlinearity. The time increases when
more items are carried.

Given the total profit of the items, P(⇢) is computed by:

P(⇢) =
nX

j=1

mxjX

k=1

pxjkyxjk, (2.9)

we can calculate the overall reward by:

Z(⇡, ⇢) = P(⇢)�R · T (⇡, ⇢). (2.10)

Here R is an constant, introduced to connect the total profit and the overall travel-
ling time. It is semantically a renting rate that is to be paid for each time unit taken
to complete the tour.

The minuend R · T (⇡, ⇢) therefore becomes the total transportation cost, which
non-linearly depends on the weight of collected items.

Z(⇡, ⇢) can be expanded as follows.

Z(⇡, ⇢) =
nX

i=1

miX

k=1

pxikyxik �R ·

 
dxnx1

vmax � ⌫Wxn

+
n�1X

i=1

dxixi+1

vmax � ⌫Wxi

!
(2.11)

The sole objective of this problem is to find the optimal total reward max⇡,⇢ Z(⇡, ⇢),
which is the so-called Model I of the TTP.

Correspondingly, there is another model in [24], i.e. Model II, which considers
two objectives, namely maximising the total value while minimising the travel time.
The total value here is the value of all the picked items, after completing the tour,
which is measured according to a dropping rate Drd

Ti
c e for each item. Here Ti is the

total time that the item i is carried, and c is a constant. The value of item i therefore
is pi ·Drd

Ti
c e.

4 3

1 2

6

6
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4

5
Start

e41(20, 2) e31(100, 3)

e32(40, 1)

e33(40, 1)

e21(20, 2)

e22(30, 3)

FIGURE 2.2: An Illustrative Example [24, 139]
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A very simple example of the TTP problem with 4 cities is provided, as shown
in Figure 2.2 [24, 139]. Each city, except the starting city 1, has been assigned a set
of items, e.g. city 2 has item e21 of profit p21 = 20 and weight w21 = 2, and item
e22 of profit p22 = 30 and weight w22 = 3. We assume that the capacity is C = 3,
the renting rate R = 1 and vmax and vmin are set as 1 and 0.1, respectively. Then
the objective value Z(⇡, ⇢) = 50 for ⇡ = (1, 2, 4, 3) and ⇢ = (0, 0, 0, 1, 1, 0). More
specifically, the overall reward from city 1 to city 4 is �15, as the thief does not
collect any items while travelling through the first 3 cities. In the city 3, two items,
e32 and e33, are picked up, which gives a total profit of 80 and a carried weight of
2. On the final journey from city 3 back to city 1, the carried weight reduces the
speed and results in increased costs of 15. Consequently, the final objective value is
Z(⇡, ⇢) = �15 + 80� 15 = 50.

2.3.4 The Packing While Travelling Problem
The packing while travelling problem (PWT) has been introduced in [140] to push
forward theoretical studies on the TTP. It concentrates on the packing part of the
TTP, as this part can be regarded as a combination of a classical 0-1 knapsack prob-
lem with a non-linear travel cost function. The study of non-linear planning prob-
lems is an important topic and the design of approximation algorithms has gained
increasing interest in recent years [81, 179].

The PWT can be seen as the TTP when the route is fixed but the cost still depends
on the weight of the items on the vehicle. The problem is motivated by gaining ad-
vanced precision when minimising transportation costs that may have a non-linear
nature, for example, in applications where weight impacts the fuel costs [66, 100].
From this point of view, the PWT is a baseline problem in various vehicle routing
problems with non-linear costs. Some specific applications of the PWT may deal
with a single truck collecting goods in large remote areas without alternative routes,
that is, a single main route that a vehicle has to follow may exist while any devi-
ations from it in order to visit particular cities are negligible [140]. The problem is
NP-hard even without the capacity constraint usually imposed on the knapsack.
Furthermore, exact and approximative mixed integer programming approaches, as
well as a branch-infer-and-bound approach [140] have been developed for this prob-
lem.

The PWT can be formally stated as follows. Given are a set of cities N = {1, . . . , n+
1} and a set M of m items distributed among the first n cities. Thus, each city i,
1  i  n, has a set of items Mi ✓ M , |Mi| = mi. Each item eik 2 Mi is char-
acterised by a positive integer profit pik 2 [PL, PU ] and a positive integer weight
wik 2 [WL,WU ], where PL, PU and WL,WU are the lower and upper bounds on pik
and wik, respectively. There is a predefined tour ⇡ = (x1, . . . , xn+1), xi 2 N given to
a thief, who may collect any items, so that each of the cities must be visited in the
fixed order exactly once.

Let yik 2 {0, 1} be a variable indicating whether or not item eik 2 M is chosen in
a solution. Then a packing plan ⇢ = (y11, . . . , ynmn) represents a solution to the PWT
problem. It is notable that the essence of the solution or the packing plan ⇢ is a set
of selected items, i.e. {eik|eik 2 M, yik = 1}. The thief is travelling between the cities
in a rented vehicle with a variable velocity. When travelling from city i to i + 1, it
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has velocity vi 2 [vmin, vmax] which depends on the weight of the items collected in
the first i cities,

vi = vmax � ⌫
iX

j=1

X

ejk2Mj

wjkyjk, (2.12)

where ⌫ is a coefficient and C is the capacity of the vehicle, the same as in the TTP.
In addition, the PWT problem is unconstrained iff the total weight of all items in
M is less than or equal to C. In practice, we can assume that capacity C is always
equal to m⇥WU in order to keep the problem unconstrained when we focus on the
investigation of the unconstrained version.

The total reward with respect to ⇡ is calculated as

Z⇡(⇢) = P(⇢)�R · T⇡(⇢), (2.13)

where P(⇢) is the total profit of selected items and T⇡(⇢) is a total travelling time.
P(⇢) is to be computed as follows:

P(⇢) =
nX

i=1

X

eik2Mi

pikyik (2.14)

As the tour ⇡ is given, determining the full distance matrix D of R(n+1)⇥(n+1) is
not necessary. We consequently use a vector d of Rn to denote the distances between
each pair of cities along the tour ⇡. Each entry di, i 2 [1, n] represents the distance
between the i-th and i + 1-th cities on the tour. Therefore T⇡(⇢) can be defined as
follows:

T⇡(⇢) =
nX

i=1

di
vi
. (2.15)

Because the velocity depends on the weight of the chosen items, the total travel time
increases when the thief collects more items. Given a non-negative renting rate R,
R ⇥ T⇡(⇢) is the total transportation cost of the items in ⇢, which contains the non-
linearity, the same as in the TTP. The objective of the problem is to maximise the
overall benefit Z⇡(⇢).

2.3.5 The Benchmark Library of the TTP
In order to provide a unified platform for testing and comparing different approaches
to the TTP, Polyakovskiy et al. [139] propose a brand new set of instances that com-
bines the well-known test suites from each sub-problem. It thus far has been consid-
ered the main benchmark library of the TTP. The design of the library mainly tackle
the challenge of balancing the two sub-problems, which means one shall not dom-
inate another in the TTP. For example, the optimality of the TSP sub-problem shall
not make the KP packing aspect negligible. Vice versa, the most profitable loading
plan must not reduce the importance of a shorter tour. This requires the constants of
the TTP to be well adjusted, which is not a trivial task. Chapter 5 formally illustrates
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the non-triviality and elaborates the methods of obtaining harder/easier instances
via adjusting a most important constant - the Renting rate R.

To generate the TTP instances, Polyakovskiy et al. [139] select 81 TSP instances
from the TSPlib [145], which contains instances with the city size varied from 51 to
85, 900. In addition, they assume that all distances in the TTP library are integers.
To achieve this, they round all the distances in the 81 TSP instances up to the next
integer. For each TSP instance, they generate a knapsack component using three
ways from Pisinger [138] and Martello et al. [108]. Each way therefore results in a
unique KP type, which is uncorrelated, uncorrelated with similar weights and bounded
strongly correlated.

According to the analysis in [108], the three types of KP represent different hard-
nesses for solving. The uncorrelated type having the uniformly-at-random integers
for their weights and profits are easy to solve to optimality, even for large-sized in-
stances of KP. The uncorrelated type with similar weights has employed the profits
uniformly distributed within a normal range, i.e. [1, 103], but the weights within a
much narrower range, i.e. [103, 103 + 10]. It has already been shown that this type
of 0-1 knapsack instance is more time consuming to solve [108]. Strongly correlated
problems are typically very difficult. They have a normal range for the uniformly
distributed weights, but each profit is strictly equals to the corresponding weight
plus 100. This setting significantly increases the computational cost for the typical
solvers of the KP.

Moreover, the total number of items and the capacity of the knapsack are diver-
sified as well. In the library, items are evenly distributed in the cities from 2 to n
according to a factor that describes how many items per city are available. A total
4 factors are proposed, i.e. {1, 3, 5, 10}. On the other hand, 10 categories are cre-
ated to generated instances with different capacities from relatively small to large.
They are generated according to the total weight of all items W multiplying a factor
c 2 {

1
11 , . . . ,

10
11}.

In order to balance the two sub-problems, Polyakovskiy et al. [139] adjust the
Renting rate to be R = P(⇢⇤)

T (⇡⇤,⇢⇤) , where ⇢⇤ denotes the packing plan obtained by
solving the KP component solely, and ⇡⇤ is the near-optimal tour obtained via the
Chained Lin-Kernighan heuristic [101]. Such selection of R guarantees the existence
of at least one TTP solution with a zero objective value.

Overall, the library based on 81 TSP instances, 3 KP types, 4 item factors and 10
capacity categories contains 81⇥ 3⇥ 4⇥ 10 = 9, 720 different TTP instances in total.2

2.3.6 Single Objective and Multi-Objective
According to the definition in [24], there are two versions of the TTP, namely Models
I and II, which are single objective and bi-objective respectively. Thus far more at-
tention has been paid to the former [139, 25, 118, 116, 117, 168, 169, 161, 50, 56], than
the latter [20, 178]. The reasons behind this might be two-fold: first, Model I has a
more clearly defined objective function and the existing library [139] does not con-
tain instances for Model II; second, since the main purpose of the TTP is focused on
investigating the interdependence of the two sub-problems, it does not seem very

2All instances and implementations of the objective function are available online: http://cs.
adelaide.edu.au/~optlog/research/ttp.php

http://cs.adelaide.edu.au/~optlog/research/ttp.php
http://cs.adelaide.edu.au/~optlog/research/ttp.php
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necessary to examine bi-objectives before researchers understand the nature of the
interdependence well, as it might introduce unnecessary complexity. In this thesis,
we also mainly focus on the single objective. Nevertheless, we also investigate a
new bi-objective version of the TTP in Chapter 8, which is derived from our inves-
tigation of the single objective version. We regard it as the extension of our study of
Model I, instead of Model II.

2.4 Conclusion
In this chapter, we have given a brief background introduction about the multi-
component problems. We have reviewed the definitions of general optimisation
problems and then exemplified the multi-component optimisation problems by us-
ing two real-world case studies: the wave energy converters (WECs) optimisation
problem and the transportation of water tanks problem. Inspired by the transporta-
tion of water tanks problem and other logistical optimisation problems, the travel-
ling thief problem (TTP) was proposed as a benchmark problem of multi-component
optimisation problems. We thus revisited the formal definition and the settings of
the TTP as well as introduced state-of-the-art developments of it, including a sim-
plified version: the packing while travelling (PWT) problem, and the benchmark
library of the TTP. The content of this chapter defines the target problems of our
studies in this thesis. In the next chapter, we will introduce general approaches for
optimisation problems and exemplify some popular algorithms.
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Chapter 3

Exact and Heuristic Approaches for
Optimisation Problems

As introduced in the previous chapters (Chapters 1, 2), lots of optimisation problems
have been thoroughly studied by researchers in the fields of applied mathematics,
operation research, theoretical computer science etc. Famous examples include the
travelling salesman problem (TSP) [34], knapsack problem (KP) [111], vehicle rout-
ing problem (VRP) [95], and so on. In general, most of optimisation problems are
categorised as NP-hard [98], meaning there is no existing algorithm that can solve
the worst cases of any of the problems in polynomial time on a deterministic Turing
machine [156], unless NP = P . In other words, they are intractable [59].

Despite their intractability, many algorithms have been proposed to tackle the
problems. Among them exact approaches such as the dynamic programming (DP)
[14], branch and bound search (BnB) [125], constraint programming (CP) [114], etc.
have been studied widely, as such methods theoretically guarantee to yield opti-
mality. Moreover, exact approaches might bring valuable insights into the prob-
lems. For example, dynamic programming solves the 0-1 knapsack problem very
well (in pseudo-polynomial time), which suggests that the KP is composed of nu-
merous sub-problems that contains duplicated calculations. Such insights provide
better understanding of the problems and might be able to be utilised by other ap-
proaches. However, due to the nature of the NP-hardness of the problems, exact
approaches are normally bound to the problem instances with small sizes. Taking
the TSP as an example, the original BnB and LP can only solve the instances con-
taining up to around 50 and 200 cities respectively. In order to surpass this, some
techniques, such as the cutting-plane method [40] etc., are introduced to improve
the capability of the exact approaches. Nevertheless, the computational cost is still
immense. For example, in 2006 a TSP instance with 85, 900 cities was solved using
an LP solver named Concorde [4], which took over 136 CPU-years [3]. Moreover,
almost all of such methods are problem-specific, meaning that such improvements
for the TSP cannot be transferred to other problems easily.

On the other hand, heuristic approaches provide an alternative for dealing with
the problems. These methods trade optimality, completeness, accuracy and/or pre-
cision for computational efficiency. Some of them can solve the problem instances
with a size in the millions in a reasonable time, while the solutions are just 2-3%
away from optimality in a high probability case [144]. Although some heuristics are
still problem-specific, e.g. Lin-Kernighan [101], others, such as simulated anneal-
ing [86], tabu search [64], genetic algorithms [123], ant colony [43] etc., are mainly
problem independent. They usually require minor modification for adapting the
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algorithms from one problem to another, hence being so-called meta-heuristics [22].
In spite of the significant differences between the exact and heuristic approaches,

each of them can be recognised generally as a search algorithm with a special strat-
egy for the solution space of a problem. For instance, the DP is a search algorithm
where the strategy is to cache and reuse the results of the branches that have been
searched before; and heuristics normally explore the further areas of the search
space, based on an advance evaluation of such areas. In practice, there is no clear
answer about which type of approach is better than another, without taking the par-
ticular instances of an optimisation problem into consideration. According to the no
free lunch theorem by Wolpert et al. [171], a general-purpose universal optimisation
strategy is impossible, and one search strategy can outperform another if and only
if it is specialised to the structure of the specific problem. This implies a ubiquitous
circumstance that some particular instances of a problem might be solved well by
one strategy and others might correspond to another approach. Therefore, the com-
bination of approaches (namely hybrid approaches) are naturally desired, as such
a design might bring better performance in general. In this thesis, we consider the
both the exact and the heuristic, as well as hybrid approaches towards investigating
them in terms of the complex and multi-component optimisation problems intro-
duced in Chapter 2.

The chapter includes definitions of these approaches. We first describe general
search algorithms in Section 3.1. Then we enumerate some exact approaches and
heuristics in Sections 3.2 and 3.3 respectively. Moreover, we give an introduction to
multi-objective evolutionary algorithms in Section 3.4.

3.1 Search Algorithms
Search algorithms are ubiquitous in computer science, especially for solving opti-
misation problems. Classically, a search algorithm is used to retrieve information
stored within an existing data structure, such as an array, table, tree etc. In contrast,
the search algorithms for an optimisation problem deal with the problem space that
is defined by the objective function(s) and constraints, where the goal is find a vari-
able assignment that will maximise or minimise the function(s) of those variables
under the constraints. Such a space is commonly either infinite (in continuous opti-
misation problems) or extremely large (in combinatorial optimisation problems), as
introduced in Section 2.1.

Algorithms for these problems include the very basic and general brute-force
search (also called naïve or exhaustive search), which systematically enumerates all
possible candidate solutions for the problem and finds the optimality among them.
Although a brute-force search is simple to implement, will always find a solution
if it exists, and guarantees that the found solution is optimal, it is not efficient in
practice. Its cost is proportional to the number of candidate solutions, meaning it
cannot handle the phenomenon so-called combinatorial explosion of the intractable
problems, i.e. the amount of candidates explodes along with the increasing size
of the problem. This implies that the search can only work on the problems with
very limited size. Nevertheless, the search is useful as a baseline method when
benchmarking other algorithms. Our study in Chapter 4 demonstrates such a case.
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Algorithm 1 A Generic Graph Search Algorithm [149]
function GRAPH-SEARCH(a problem instance) return a solution, or failure

initialise the frontier using the initial state of problem
initialise the explored set to be empty
loop

if the frontier is empty then
return failure

end if
choose a leaf node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
end if
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier only if

not in the frontier or explored set
end loop

end function

Considering the state space of a combinatorial optimisation problem is a graph,
namely an ordered pair G = (V,E) comprising a set V of nodes (also called vertices
or points) together with a set E of edges (also called arcs or lines), where an edge
e 2 E ✓ V 2 is the association and takes the form of the unordered pair of the
vertices. Algorithm 1 demonstrates a generic approach that exhaustively explores
the space, in which the frontier is the set of all leaf nodes (i.e. nodes without children)
in the graph that are available for expansion at any given point [149].

In Algorithm 1, extra effort has been incorporated to deal with the circular paths
in the graph, which introduces extra cost. Therefore, if we are dealing with the
search space without circuits, such as a tree, the algorithm could be more efficient.
Besides, some improvements can be applied to the search algorithm, for example,
avoiding repetitively exploring the branches that have been expanded or pruning
the branches where the goal cannot exist. The search algorithms applying such
strategies may be able to improve performance, while the final optimality will still
be guaranteed simultaneously, thus, this is called an exact approach. On the other
hand, many heuristic approaches, which rank the branches to be explored accord-
ing to certain known information and only expand search to the more promising
branches, are not be able to secure optimality but they usually do provide better
performance.

Nevertheless, there is no insuperable barrier between the two approaches. In-
deed, a combination of approaches (namely hybrid approaches) is usually desired
as such a design may bring better performance in general. In addition, the exact ap-
proaches can normally be transformed to the corresponding approximate form via
relaxation techniques, for example.
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3.2 Exact Approaches
In this section, we introduce the background of the three exact approaches that are
used in our study. Among them, we pay special attention to dynamic program-
ming (DP). We not only design the exact algorithms for the travelling thief problem
through this approach, but also contribute some insights and a hybrid approach into
the TTP. Meanwhile, the branch and bound (BnB) method and constraint program-
ming (CP) provide the alternatives to the TTP for comparison.

3.2.1 Dynamic Programming
For a problem that can be divided into a number of sub-problems, the divide-and-
conquer method [36] is a common approach. A typical divide-and-conquer ap-
proach recursively applies the following three steps to the problem:

• Divide the problem into a number of disjointed sub-problems;

• Conquer the sub-problems by solving them recursively, or in a straightfor-
ward manner if the sub-problem is simple enough;

• Combine the solutions to the sub-problems into the final solution for the orig-
inal problem.

Dynamic programming [36] enhances the divide-and-conquer method. It ap-
plies when the sub-problems overlap, meaning the sub-problems share certain “sub-
sub-problems”. In this context, a divide-and-conquer algorithm does more work
than necessary, i.e. repeatedly solving the common sub-sub-problems. A dynamic
programming algorithm solves each sub-sub-problem just once and then stores its
solution, thereby avoiding the work of re-computing the answer every time.

As an example, a naïve approach for the 0-1 knapsack problem (KP, defined in
Section 2.3.2), which has an item set M and the capacity C of the knapsack, can be
defined as follows:

1: for all subset K ✓ M do
2: if the profit of K is the greatest so far and the weight of K is less than or

equal to C then
3: store K
4: end if
5: end for
6: return the best K

where the procedure of dealing with a subset K (namely lines 2 and 3) can be re-
garded as a sub-problem. The overall complexity of this algorithm will be O(2m).
However, it is not necessary to repetitively compute every subset of items, as every
subset K 0 can be regarded as a new item i adding to an existing subset K, where
K = K 0

\ {i}. This means that if we store the intermediate results of K and calculate
K 0 based on K, the complexity will be reduced accordingly, which is the essence of
dynamic programming. Moreover, for some subsets with an identical weight, we
only need to store the best result for the weight instead of for every subset. As the
weights of items are integers, this lightens the complexity to be the pseudo-polynomial
time, which is bound by O(mC).
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Algorithm 2 Dynamic Programming for 0-1 Knapsack Problem
function DP-KNAPSACK(M,C)

for w = 0 to C do
T [0, w] = 0

end for
for i = 1 to |M | do

for w = 0 to C do
if wi  w then

T [i, w] = max(T [i� 1, w], pi + T [i� 1, w � wi])
else

T [i, w] = T [i� 1, w]
end if

end for
end for
return T [n,C]

end function

Algorithm 2 sketches this approach, where the intermediate results are stored in
a two-dimensional table T and wi and pi are the weight and profit of item i respec-
tively. The key part of this algorithm is the recursive step:

T [i, w] = max(T [i� 1, w], pi + T [i� 1, w � wi]),

which means that when we are deciding to add a new item i into a subset K, we
only have two choices: either taking it or leaving it, depending on the maximal gain
we can have. In Chapters 6 and 7, we will introduce similar but more complex
strategies designed for the travelling thief problem.

The dynamic programming for a 0-1 knapsack problem can be relaxed to a fully
polynomial time approximation (FPTAS) [84], which can produce a solution within
1 � ✏ of being optimal in polynomial in both the problem size m and 1

✏
, given a

parameter ✏ > 0. In Chapter 6 we introduce a FPTAS for the parking while travelling
problem.

3.2.2 The Branch and Bound Method
Branch and bound (BnB) is another type of search strategy for optimisation prob-
lems. The approaches normally consider the search space as a rooted tree and sys-
tematically explores the branches of this tree. Before enumerating the candidate so-
lutions of a branch, the branch is checked against upper and lower estimated bounds
on the optimal solution, and is discarded if it is verified to be unable to produce a
better solution than the best one found so far by the algorithm. This method thus
avoids spending unnecessary effort on such branches. In general, a BnB algorithm
operates according to two principles:

• It recursively splits the search space (such as a tree) into smaller spaces (namely
branches), then optimises the objective function f(x) on these smaller spaces.
The splitting is called branching, which is usually exhaustive.
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Algorithm 3 A Generic Branch and Bound Method for Minimising a Function f [32]
initialise the bound B.
initialise a queue to hold a partial solution with none of the variables of the prob-
lem assigned.
repeat

take a node N off the queue.
if N represents a full solution x and f(x) < B then

x is the best solution so far, record it and set B = f(x).
else

while there is Ni produced from N do
if g(Ni) > B then

discard Ni

else
store Ni on the queue

end if
end while

end if
until the queue is empty

• To improve on the performance, the BnB algorithm keeps track of the best
bounds, and uses these bounds to “prune” the search space, eliminating the
smaller spaces that can be proved not to contain an optimal solution. This
action is called bounding.

Algorithm 3 is the skeleton of a generic branch and bound algorithm for min-
imising an arbitrary objective function f [32]. In practice, the initial value of the
bound B is commonly created by letting B = f(xh), where xh is a solution gener-
ated by an efficient and approximate approach. The bound can also be initialised
infinity for minimising problems if no such approach exists. The function g is a
bounding function that computes the lower bound of the partial solution Ni. It has
usually been defined according to the specific problem. In Chapter 7, we define a
bounding function for the travelling thief problem.

3.2.3 Constraint Programming
Constraint programming (CP) is a programming paradigm wherein relationships
between variables are stated in the form of constraints, i.e. representing the prob-
lem to be solved into a constraint satisfaction problem (CSP) [149]. A CSP can be
represented as a triple P = (X,D,C), where X is an n-tuple of variables X =
(x1, x2, . . . , xn), D is a n-tuple of domains D = (D1, D2, . . . , Dn) correspondingly,
and each xi 2 Di, C is a t-tuple of constraints C = (C1, C2, . . . , Ct). A constraint Ci

is a pair (Si, RSi), where Si is a subset of variables in X and RSi is a relation on the
variables in Si. The relation RSi can be defined either by enumerating every value
that satisfies the constraint or an abstract one such as an expression of the variables
in Si.

As constraint programming focuses more on formulating the properties of a so-
lution to be found instead of specifying a sequence of steps to execute in order to
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find a solution, it is called a form of “declarative programming”, which differs from
the common primitives of “imperative programming” languages. In practice, peo-
ple normally focus on representing their problems to be solved into the CSP ex-
pressions, and using existing software libraries, such as IBM ILOG CP Optimiser, to
tackle them.

The solving techniques used in processing the CSP usually consist of two por-
tions: 1) an exhaustive search technique for systematic exploration of the space of
solutions (even though the approximate approaches, such as local search, can also
be used as solvers, we do not consider them here as they can not guarantee the op-
timality). The search named backtracking is often used in this part. 2) the techniques
that can improve the efficiency of the exhaustive search, such as consistency tech-
niques, network structure based techniques, and domain-specific techniques. As the
details of such techniques are beyond the scope of this thesis, we refer the interested
reader to the texts by Russell et al. [149], Rossi et al. [146], Hooker [77], etc.

3.3 Heuristics
A heuristic search, also known as a informed search, is a search strategy that uses the
additional knowledge of the problem to guide or prioritise the search path [149].
In this way, the solutions can be found more efficiently, but with no guarantee of
optimality in most cases.

For example, in terms of the generic search algorithm in Algorithm 1, we apply
a slight modification to it in which we sort the nodes to be expanded according
to an evaluation function f and choose the node n with minimal value of f(n) to
be expanded first. This strategy is called best-first search. Moreover, if we have a
heuristic function h(n) that can estimate the cost of the path from the current node n
to the final goal node according to some knowledge or experience, we can use this
function h(n) as the evaluation, i.e. f(n) = h(n). This strategy is one of the classical
heuristic searches, named a greedy or best-first search. In general, a heuristic search
depends on a heuristic function that is mainly a rule of thumb to guide the search
path in order to improve efficiency.

As heuristics do not guarantee optimality, they can be called approximate ap-
proaches. However, they are different from the approximation algorithms that are
able to provide a bound on the quality of the returned solutions, such as the fully
polynomial-time approximation scheme (FPTAS). In general, heuristics do not for-
mulate such a bound, unless with special design.

In addition, there are two types of heuristics: construction and improvement. The
former constructs one solution from scratch by performing iterative construction
steps where parts of the solution are determined in each step and the process stops
after the solution is complete. The latter follows a few search strategies to iteratively
improves the new, complete solution(s) from inferior to superior one(s) [147].

Traditionally, heuristics are problem-specific. However, modern heuristics have
been developed to be problem-independent, based on the improvement mechanism,
these are defined as meta-heuristics. They are usually applicable to a large variety of
problems with known, very limited, problem specifications. Meta-heuristics fol-
low a process with two phases, namely intensification and diversification, which are
performed alternately in the search period. The heuristics focus on exploiting the
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promising areas of the search space during the intensification phase, as well as ex-
ploring new areas in the diversification phase [147].

Moreover, heuristics can be divided into single-solution methods and population-
based ones. The former only generate, maintain and improve one current incumbent
solution in every iteration. Examples include local search (LS), simulated annealing
(SA), etc. In contrast, approaches such as evolutionary algorithms (EA) and memetic
algorithm (MA) usually manipulate a set of solutions in each generation, thus they
are called population-based heuristics.

Heuristics have been attractive for operations research and artificial intelligence
for decades [149, 76, 147, 65, 90, 122, 8, 61, 63, 142, 154, 21, 130, 48, 119]. In this sec-
tion, we introduce some common heuristics for optimisation problems, especially
for the travelling thief problem, most of which can be defined as meta-heuristics.

3.3.1 Local Search
Local search (LS) is a series of heuristics that focuses on searching the neighbour-
hood of current state n. In some literature, it is called the “greedy heuristic” [162].
The capabilities of its heuristic function are mainly two-fold: 1) finding all neigh-
bours of the current state according to predefined distances between the states. 2)
selecting a state among the neighbours as the next current state according to certain
selection rules.

The search is not systematic, comparing with other searches like an exhaustive
search or best-first search. However, in systematic searches, the algorithms have to
include a strategy that prevents the search going back to visited paths yet covers all
the paths that have not been visited (such as the frontier shown in Algorithm 1 of
Section 3.1). This strategy requires extra memory, with costs potentially being sig-
nificantly high. Local searches do not have this drawback, as they only focus on the
current state. Therefore, the memory cost of local searches is very low and usually
a constant amount. Moreover, a local search can often find reasonable solutions in
the infinite or vast search space, where a systematic counterpart commonly fails.

Algorithm 4 depicts a basic local search called a hill-climbing (also known as
a steepest-ascent) search algorithm [149], which is a simple loop that continually
moves towards the “uphill”, which is the direction of those neighbours with higher

Algorithm 4 A Generic Hill-Climbing Search [149]
function HILL-CLIMBING(problem) return a state that is a local maximum

current = Make-Node(problem.Initial-State)
loop

neighbour = a highest-valued successor of current
if neighbour.Value  current.Value then

return current.State
end if
current = neighbour

end loop
end function
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FIGURE 3.1: A one-dimensional state-space landscape in which eleva-
tion corresponds to the objective value. The aim is to find the global
maximum. Hill-climbing search modifies the current state to try to im-

prove it, as shown by the arrow. [149]

values. It terminates when it reaches a “peak”, where no neighbour has a higher
value than the current one.

However, the success of hill climbing depends very much on the shape of the
state space, or landscape. In a landscape that is full of local maxima and plateaux, the
algorithm is easily stuck in a “peak” that is not globally optimal. As shown in Figure
3.1 [149], when the algorithm starts at the circled point, it will inevitably terminate
at the local maximum instead of the global maximum. In order to overcome this
drawback, some enhancements of the local search, such as simulate annealing (SA)
and genetic algorithms (GAs), incorporate additional strategies in order to escape
from the local optima.

3.3.2 Simulated Annealing
Simulated annealing (SA) is a representative example of meta-heuristics. It was
proposed by Kirkpatrick et al. [86] and Černý [27] independently, and can be used
for combinatorial as well as continuous optimisation problems.

The name and inspiration for SA come from metallurgy, where annealing de-
notes a technique involving heating and properly controlled cooling of a metal to
increase the size of its crystals and reduce their defects. The SA introduces the ran-
dom walk into hill climbing in a way similar to annealing. A random walk is a move
to a successor chosen uniformly at random from the set of successors. In contrast
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Algorithm 5 A Generic Simulated Annealing Heuristic [149]
function SIMULATED-ANNEALING(problem, schedule) return a solution

x = Make-Node(problem.Initial-State)
for t = 1 to 1 do

T = schedule(t)
if T = 0 then

return x
end if
x0 = a randomly selected successor of x
�E = f(x0)� f(x)
if �E > 0 then

x = x0

else
x = x0 only with probability e

�E
T

end if
end for

end function

with the hill climbing, it does not guarantee the solutions in the next iteration are
better than the current ones. However, it introduces diversification, thereby widen-
ing the range of exploration. In the heuristic, the random walk is designed as having
a high probability of being performed at the beginning of the run. This probability
decreases in a controlled way, similar to the cooling process. This design allows the
search to accept worse solutions and therefore encourages the run to escape from
local optima in the early stages. During the later period, the probability of moving
to worse new solutions is progressively changed towards zero so that the algorithm
will eventually converge to an optimum. With the probability being set and reduced
appropriately, the approach is quite likely to find a global optimum.

In practice, for a maximisation problem with the objective function f , the proba-
bility p is usually defined as follows:

p =

⇢
1 if �E > 0

e
�E
T if �E  0

,

where �E is the measure of the badness of moving from the current solution x to
the successor x0, namely �E = f(x0) � f(x). The T is the strategy parameter which
is called “temperature”. Temperature T is usually set high at the start so that the
moves that have large badness �E are allowed most likely. While the algorithm
is running iteratively, T goes down according to the running time or number of
iterations, which correspondingly reduces the chance of moving towards worse so-
lutions. Algorithm 5 illustrates the concept of the approach, where the relation be-
tween T and iteration number t is represented in a predefined function schedule(t).

3.3.3 Evolutionary Algorithms
An evolutionary algorithm (EA) is a category of meta-heuristics that is inspired by
biological evolution, which involves mechanisms such as reproduction, mutation,
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Algorithm 6 A Generic Scheme of an Evolutionary Algorithm [48]
procedure EVOLUTIONARY ALGORITHM

INITIALISE population with random candidate solutions
EVALUATE each candidate
repeat

SELECT parents
RECOMBINE pairs of parents
MUTATE the resulting offspring
EVALUATE new candidates
SELECT individuals for the next generation

until Termination condition is satisfied
end procedure

recombination (also termed crossover or mating), and selection [48]. The underlying
idea of EA is the competition among individuals of a population within a given
environment having limited resources, where the survivors of such a competition
demonstrate their best fitness within the environment. By defining a problem (es-
pecially an optimisation problem) as an environment, an EA imitates the natural
selection in biological evolution. After a sufficient number of generations, the ulti-
mate survivors are the good candidate solutions to the problem.

In an EA, the environment is usually defined by a fitness function, which evolves
a particular candidate solution (or individual). In some cases, the fitness function is
directly equivalent to the definition of the problem, i.e. the objective function plus
the constraints, but they are not necessarily identical. Fitness defines the direction in
which the population will evolve, which forms the basis of selection. Given an ob-
jective function to be maximised as the fitness, an EA starts with a set of candidate
solutions (namely a population) that are randomly created. Each individual of the
population is then measured by their degree of fitness. The relatively greater ones
usually have more chance of being selected to seed the next generation (namely the
offspring), which is the mechanism named reproduction. Mutation and recombina-
tion are applied as two operations in this period. The former is unary, which forms
a new candidate by modifying a slight part of a selected individual. The latter is
usually binary, combining the information from two selected candidates (namely
parents) to produce one or more new candidates (namely children). This process
is iterated until one or more candidates with sufficient quality is found unless an-
other terminal condition is reached. Algorithm 6 reveals the general scheme of this
process.

In general, the following six components must be specified in order to form a
particular EA:

• Fitness function,

• Representation,

• Population,

• Parent selection mechanism,
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• Variation operators: recombination and mutation,

• Survivor selection mechanism.

Among the above, the representation maps candidate solutions of the original prob-
lem (i.e. phenotypes) into the individuals of an EA (i.e. genotypes or chromosome).
For instance, a phenotype of the 0-1 knapsack problem (Section 2.3.2) is a packing
plan that is a description of the selected items, and the genotype can be a binary
string where each bit represents whether or not (1 or 0) the corresponding item is
selected. According to different types of representation, EAs are commonly cate-
gorised into various forms, as follows:

• Genetic Algorithm: the genotypes are strings over a finite alphabet, typically
binary or integers;

• Evolution Strategies: the genotypes are real-valued vectors;

• Genetic Programming: the genotypes are trees;

• Evolutionary Programming: the genotypes are finite state machines.

A population, in almost all the cases, is just a set of genotypes. This set usually
has a fixed size, where the worst individuals will be eliminated in the survivor selec-
tion if the size limit is reached. In addition, some special mechanisms or structures
may be incorporated in order to improve the diversity within a population.

The variation operators, namely the binary recombination and the unary mu-
tation, are used to produce the offspring. In the terminology of EA, a (µ + �)EA
denotes an evolutionary algorithm with a population size of µ and an offspring size
of �. The parent and survivor selections are two mechanisms that are used to push
the quality improvements of the population. The former is used to choose parents to
seed the next generations and is typically stochastic. The latter is for the elimination
of the worst individuals and often deterministic.

In practice, the decisions associated with the components of EA are often made
according to their investigational purpose and the specification or character of the
problem. For example the (1+1)EA, which is the simplest EA with a population size

TSP KP
Representation Permutation Binary strings of length m
Recombination Edge recombination One point crossover
Recombination probability 100% 70%
Mutation Inverse Bit Flip
Mutation probability 80% 1/m
Parent selection Best 2 out of random 5 Best 2 out of random 3
Survival selection Replace worst Replace worst
Population size 100 300
Termination condition 20, 000 generations No improvement in last

100 generations

TABLE 3.1: Examples of EA components for the travelling salesman
problem and knapsack problem
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Algorithm 7 A Simple Memetic Algorithm [48]
procedure MEMETIC ALGORITHM

INITIALISE population
EVALUATE each candidate
repeat

SELECT parents
RECOMBINE to produce offspring
MUTATE the resulting offspring
EVALUATE the offspring
IMPROVE offspring via local search
SELECT individuals for the next generation

until Termination condition is satisfied
end procedure

of 1 and an offspring size of 1, is usually used to gain some insights into a partic-
ular design without influence of too much diversification. In contrast, an EA with
well-tuned µ and � normally aims for good performance. Table 3.1 demonstrates
examples of the decisions used for the travelling salesman problem (Section 2.3.1)
and knapsack problem.

3.3.4 Memetic Algorithm
Memetic Algorithm (MA) is a type of hybrid approach that couples an evolutionary
algorithm (EA) with an individual learning procedure capable of performing local
refinements, such as a local search. It is motived by the view that, whilst EAs are
good at rapidly identifying good areas of the search space (exploration), they are
less competent at fine-turning solutions (exploitation), partially due to the stochastic
nature of the variation operators [48].

Inspired by Dawkins’ notion of a meme, MA is introduced by Moscato et al. [126]
in his technical report where memes can be viewed as agents that can transform
a candidate solution that is of direct interest but involves certain utility acquired
traits. Such acquired traits are developed by the additional learning or improve-
ment phase incorporated into the evolutionary cycle. Despite there being debate in
biology as to whether or not some acquired characteristics are actually inheritable
[93], increased interest in this type of hybrid algorithms has been justified by both
theoretical and empirical results [48]. Nowadays, MA covers a wide range of tech-
niques where an evolutionary-based search is augmented either by the addition of
one or more phases of local search or by the use of problem-specific information. Ex-
amples include hybrid GAs, Baldwinian EAs, Lamarckian EAs, genetic local search
algorithms, etc. Algorithm 7 represents a simple memetic algorithm.

3.3.5 Swarm Intelligence
Swarm intelligence is a collection of decentralised self-organised systems that typ-
ically consist of a population of simple agents interacting locally with one another
and within their environment. Similar to the EA, the inspiration for most swarm
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intelligence comes from biological systems, such as an ant colony, bee colony, bird
flock, etc. Even though that each individual agent follows very simple rules and
there is no centralised control structure dictating individual behaviour, the inter-
actions between such agents lead to the emergence of certain intelligential global
behaviour.

One famous swarm intelligence system is the ant colony optimisation algorithm
(ACO) [44], which is commonly used for solving computational problems that can
be reduced to finding good paths through graphs, such as the travelling salesman
problem. ACO mimics the behaviour of ants in a colony finding a target (such as
food). In nature, an ant lays down a pheromone trail when wandering around. If
another ant finds such a path, it is likely to follow the trail instead of wandering
randomly, which may reinforce the trail. However, the pheromone trail may evap-
orate over time. This phenomenon makes ants stay on the shorter path from their
colony to the target, as the shorter path is, the least time it takes for an ant to travel
down and back again, hence the evaporating pheromones are repaired more fre-
quently. Eventually the pheromone density becomes higher on shorter paths than
longer ones. Moreover, when one ant finds a short path from the colony to a tar-
get, other ants are more likely to follow that path, and positive feedback eventually
leads to all the ants following the single path. In ACO, artificial ants are created in a
graph, acting similarly to their counterparts in nature. Therefore, the shortest path
can be found after a period of imitation. Other swarm intelligence systems, such as
stochastic diffusion search [19], particle swarm optimisation [85] etc., imitate differ-
ent swarm systems for different types of problems.

3.4 Multi-objective Optimisation
As introduced in Section 2.1.2, a nontrivial multi-objective optimisation problem
(MOP) has a set of incomparable solutions that are not dominated by each oth-
ers, i.e. a Pareto optimal front. Traditional single-solution approaches to solve the
MOPs, therefore, are not as straightforward as for conventional single objective op-
timisation problems. Indeed, a decision has to be made to choose one current in-
cumbent solution among the conflicting ones. Such a choice is commonly made ac-
cording to certain higher-level information, such as human preferences. According
to the way of integrating into the higher-level information, traditional approaches of
multi-objective optimisation are usually divided into four categories: no preference,
priori, posteriori and interactive methods [82]. As the name suggests, the no prefer-
ence method does not include extra information for making decisions; the priori and
posteriori utilise extra knowledge before or after optimisation respectively; and the
interactive method integrates the preference tightly into the process of optimisation.

On the other hand, the population-based approaches, such as evolutionary algo-
rithms etc., provide alternatives that naturally support the optimisation of an entire
set of solutions to approximate the Pareto optimal front. This is why they have
attracted significant attention from the research community recently [26]. Corre-
spondingly, an evolutionary algorithm for multi-objective optimisation is called a
multi-objective evolutionary algorithm (MOEA).

In general, most MOEAs are designed with an assumption to deal with two ma-
jor inherent issues: the approximation to the Pareto optimal front and a good spread
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among the solutions [41]. Many MOEAs achieve the former via assigning fitness to
individuals, and the latter is kept by preserving diversity among solutions of the
same non-dominated front. On the other hand, there are approaches that focus on
the integration of user preferences into MOEA. In this section we briefly introduce
three popular MOEAs: NSGA-II [42], SPEA-2 [183] and IBEA [182], each of which
demonstrates design of the fitness and diversity preservation.

3.4.1 Non-dominated Sorting Genetic Algorithm II
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [42] is an elitism approach,
where the best individuals are preserved during the optimisation process. Some
empirical results [181] suggest that the design helps to achieve better convergence
in MOEAs. Moreover, NSGA-II proposes a fitness assignment based on sorting the
non-dominated solutions, named the fast non-dominated sorting, which is an im-
provement on naive non-dominated sorting. In terms of diversity preservation, it
introduces a crowdedness-comparison operator, which estimates the density of indi-
viduals via crowding distance, and guides the selection process toward a uniformly
spread-out Pareto optimal front.

Naively, given a population of size N , the sorting of non-dominated solutions
works as follows:

(a) compare each solution with every others in the population to find if it is dom-
inated;

(b) label all the non-dominated solutions as being in the first non-dominated front;

(c) repeat the comparison of (a) whilst not taking the solutions of the first non-
dominated front into consideration, and label the non-dominated solutions as
being in the second non-dominated front;

(d) do the rest in the same manner until all the solutions are labeled as different
levels of non-dominated fronts.

In the worst case, when there are N fronts and each front contains only one solution,
the overall complexity is O(MN3). Deb et al. [42] propose an improved version of
the sorting, whereby they store the solutions that each solution p dominates, and the
number of solutions which dominate the solution p, to speed up the procedure to
become O(MN2).

In order to maintain a good spread in the obtained set of solutions, the crowd-
ing distance is introduced to estimate the density of the solutions surrounding a
particular solution in the population, which is the average distance of two points
on either side of this point for every objective. Based on the crowding distance, a
crowdedness-comparison operator then guides the selection process towards choos-
ing the solutions that are located in a less crowded region when the candidates are
at the same level of non-dominance.
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Algorithm 8 Strength Pareto Evolutionary Algorithm 2 [183]
Input N : population size; N : archive size; T : maximum number of generations
Output A: non-dominated set

1: Initialisation: Generate an initial population P0 and create the empty archive (ex-
ternal set) P0 = ;. Set t = 0.

2: Fitness assignment: Calculate fitness values of individuals in Pt and Pt.
3: Environmental selection: Copy all non-dominated individuals in Pt and Pt to P t+1.

If size of P t+1 exceeds N then reduce P t+1 by means of the truncation operator,
otherwise if size of P t+1 is less than N then fill P t+1 with dominated individuals
in Pt and Pt.

4: Termination: If t � T or another stopping criterion is satisfied then set A to the
set of decision vectors represented by the non-dominated individuals in P t+1.
Stop.

5: Mating selection: Perform binary tournament selection with replacement on P t+1

in order to fill the mating pool.
6: Variation: Apply recombination and mutation operators to the mating pool and

set P t+1 to the resulting population. Increment generation counter (t = t + 1)
and go to Step 2.

3.4.2 Strength Pareto Evolutionary Algorithm 2
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [183] is another elitism approach.
Its fitness is based on the strength value S(i), which represents the number of dom-
inated solutions by the individual i. Accordingly, the fitness of an individual j is
determined by the sum of the strengths of all the dominators of j. The individuals
having a lower fitness value are better in SPEA2.

Similar to the crowding distance of NSGA-II, SPEA2 incorporates the distance
to the k-th nearest individuals as the measure of density, where k is commonly set
as the square root of the sample size. For each individual i, SPEA2 stores and sorts
all the distances from it to another individual. The inverse of the distance to the
k-th nearest neighbours is therefore used as the density estimation of i. Algorithm 8
depicts the general procedure of the algorithm.

3.4.3 Indicator-based Evolutionary Algorithm
Despite the popularity of NSGA-II and SPEA2 as well as other MOEAs that focus on
addressing both of the assumed issues, Zitzler et al. [182] argue that the assumption
is problematic in terms of both definition and practice. Moreover, they believe the
popular design of MOEAs does not allow for flexibility with respect to the prefer-
ence information used. They therefore propose a general indicator-based evolution-
ary algorithm (IBEA) that can be combined with arbitrary indicators. Such indica-
tors can be adapted to user preferences and the diversity preservation mechanism
is not necessarily required.

The authors of IBEA propose a binary quality indicator I to compare the quality
of two Pareto set approximations relative to each other. Particularly, if S is the Pareto
optimal front and A is the approximation of S, I(A, S) measure the extent to which
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Algorithm 9 Basic Indicator-based Evolutionary Algorithm [182]
Input ↵: population size; N : maximum number of generations; : fitness scaling

factor
Output A: Pareto set approximation

1: Initialisation: Generate an initial population P of size ↵; set the generation
counter m to 0.

2: Fitness assignment: Calculate fitness values of individuals in P , i.e. for all x1 2 P
set F (x1) = ⌃x22P\{x1} � e�I({x2},{x1})/.

3: Environmental selection: Iterate the following three steps until the size of popula-
tion P does not exceed ↵:

1. Choose an individual x⇤
2 P with the smallest fitness value, i.e., F (x⇤) 

F (x) for all x 2 P .

2. Remove x⇤ from the population.

3. Update the fitness values of the remaining individuals, i.e., F (x) = F (x) +
e�I({x⇤},{x})/ for all x 2 P .

4: Termination: If m � N or another stopping criterion is satisfied then set A to
the set of decision vectors represented by the non-dominated individuals in P .
Stop.

5: Mating selection: Perform binary tournament selection with replacement on P in
order to fill the temporary mating pool P 0.

6: Variation: Apply recombination and mutation operators to the mating pool P 0

and add the resulting offspring to P . Increment generation counter (m = m+1)
and go to Step 2.

A is close to the Pareto optimal. IBEA is built based on the idea of minimising
I(A, S) in a MOEA. Algorithm 9 illustrates the general version of this approach,
where fitness F (x1) is a measure for the loss in quality if x1 is removed from the
population.

3.5 Existing Approaches for the TTP
In this section, we provide a brief overview of existing approaches to the travelling
thief problem (TTP), many of which have recently been reviewed by Wagner et al.
[169].

In the original article about the TTP, Bonyadi et al. [24] provides a brute-force ap-
proach to their demonstrative tiny TTP instances, which illustrates the complexity of
this problem. Polyakovskiy et al. [139] develop this problem by proposing a library
with 9, 720 instances and a simple set of heuristics for solving them. The essential
idea of the heuristics is to solve the problem in two phases: the first is to construct a
good TSP tour without considering the knapsack part of the TTP problem; the sec-
ond is to create a packing plan in order to achieve a good TTP objective value for a
given TSP tour. It is noticeable that this approach does not take the interdependence
of the two sub-problems into consideration.
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By contrast, Bonyadi et al. [25] propose a heuristic that takes interdependence
into account. The so-called CoSolver approach is inspired by the cooperative co-
evolution, which solves the two sub-problems by two different modules, while the
communications between them are exchanged and managed. A comparison across
several instances shows the superiority of CoSolver over algorithms without con-
sideration of interdependence.

Mei et al. [117] furthermore highlight the necessity of taking interdependence
into account. Their mathematical analysis shows that the TTP problem is not addi-
tively separable, which results in the view that one cannot expect to achieve compet-
itive results by solving each component in isolation. The authors propose a memetic
algorithm with a two-stage local search, which considers the interdependencies in
more depth. It outperforms the cooperative coevolution based approach. Mei et al.
[116] conduct a more systematic investigation into the item picking heuristic in the
two-stage memetic algorithm, which yields a better approach. In [118], they investi-
gate the interdependence of TSP and KP in TTP more theoretically and empirically,
which demonstrates that considering the interdependence between sub-problems is
important for obtaining high-quality solutions for the overall problem.

Investigating the multiple operators of existing approaches comprehensively,
Faulkner et al. [56] propose a number of new operators, such as BitFlip and Pack-
Iterative, for optimising the packing plan given a particular tour; and Insertion for
iteratively optimising the tour given a particular packing. The heuristics that consist
of these operators outperforms the existing approaches.

Strzeźek et al. [160] propose a diversity-aware population selection operator for
genetic algorithms, which shows potential for improving the quality of the results
for the TTP. The operator enables the possibility of controlling the balance between
exploration and exploitation by managing the dispersion of the solutions.

Realising that the knapsack sub-problem has generally been found to have greater
impact on the objective function when a near optimal tour is provided, Gupta et al.
[69] designed the greedy heuristics that focus on solving the knapsack part, based
on the classic greedy approaches for the KP.

Wagner [168] investigates the use of swarm intelligence approaches with the
so-called Max–Min Ant System (MMAS, by Stützle et al. [161]). The resulting ap-
proaches focus on getting better overall rewards without being constrained by shorter
TSP tours. This allows them to outperform the previous best approaches by Faulkner
et al. [56] and Mei et al. [117] on relatively small instances with up to 250 cities and
2000 items.

El Yafrani et al. [51] discuss the pros and cons of a local search implementation
to solve the TTP. They analyse the issues of implementing local search algorithms
to solve a multi-component problem and propose an approach to implement neigh-
bourhood deterministic local search algorithms to solve small and mid-size TTP
instances. In their other paper, El Yafrani et al. [50] study and compare different
approaches for solving the TTP from a meta-heuristics perspective. A memetic al-
gorithm (MA2B) and one using simulated annealing (CS2SA) are proposed. Their
results show that the algorithms were competitive with the approaches by Faulkner
et al. [56] and Mei et al. [117] on a range of larger TTP instances. They also in-
vestigate the on a 2-OPT steepest ascent hill climbing algorithm and the simulated
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annealing meta-heuristic [52]. Their results are very competitive in comparison with
the state-of-the-art algorithms.

Martins et al. [113] consider a hyper-heuristic framework which encompasses a
heuristic selection approach aiming to find the best combinations of different known
heuristics according to a probabilistic distribution model. This so-called Heuristic
Selection based on the Estimation of Distribution Algorithm (HSEDA), outperforms
the state-of-the-art algorithms in most of the medium-sized TTP instances consid-
ered in their paper. On the other hand, El Yafrani et al. [53] study another hyper-
heuristic framework of heuristic generation methodologies, which aims to automat-
ically design new heuristics using components of previously known heuristics [157].
Their results show that this genetic programming (GP [94]) based approach is com-
petitive with the state-of-the-art algorithms on small and mid-sized TTP instances.

Lourenço et al. [104] present an evolutionary approach for the TTP, which seeks
complete solutions by simultaneously considering the two sub-problems and the
existing interdependence between them. Their EA relies on the individuals each
having a tour and a packing plan. The variation operators modify both components,
and a packing heuristic helps creating good packing plans for each individual.

On the other hand, studies on the multi-objective versions of the TTP are rela-
tively limited. Blank et al. [20] investigate a variant of the TTP, which is a bi-objective
version of the TTP, i.e. maximising the total profit and minimising the overall trans-
portation costs. Yafrani et al. [178] create an approach that generates diverse sets
of Model I/II solutions, while being competitive with the state-of-the-art single-
objective algorithms.

3.6 Conclusion
Chapters 2 and 3 cover the prerequisites and backgrounds of the studies in this the-
sis. In this chapter, we have introduced the general approaches to solving optimi-
sation problems and listed some examples, which include exact approaches such as
dynamic programming, branch and bound method and constraint programming;
heuristics such as local search, simulated annealing, evolutionary algorithms and
etc,. as well as three popular approaches for multi-objective optimisation. In ad-
dition, the approaches proposed in the existing literature for the travelling thief
problem have been briefly reviewed. From the next chapter on, we will start to
introduce our theoretical and empirical investigations on complex multi-objective
optimisation problems.
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Chapter 4

Fast and Effective Optimisation of
Arrays of Submerged Wave Energy
Converters

In this chapter, we elaborate the case study of wave energy converter (WEC) optimi-
sation that is introduced in Section 2.2.1. Here, we try to optimise the overall energy
absorption of an array of WECs. In order to achieve this objective, not only are the
parameters of each individual WEC to be optimised according to the hydrological
frequencies in the ocean area, but we also take into consideration the hydrodynamic
interaction between each device, because these interactions have a significant im-
pact on the overall performance of the array [153], optimising each silo individually
cannot yield the array’s overall optimality. However, due to the interaction of its
multiple components in this problem, the computational cost of the evaluation of
the model is prohibitively expensive, taking hours or even days for just one evalua-
tion. Iterative optimisation approaches, such as EA, are hardly to be applied in this
problem. We therefore creatively simplify this model via an approximation, which
makes the iterative optimisation doable.

In the current body of research on WEC arrays and their optimisation, many of
the devices under consideration are semi-submerged or floating [57, 13, 29]. In con-
trast, the CETO WEC is fully submerged beneath the ocean’s surface [106], as this
increases survivability in high sea states and has almost no visual impact. There is
very limited research into fully submerged wave energy converters. In particular,
we are not aware of any research into optimising the placement or configuration of
arrays of fully submerged wave energy converters. Moreover, a technological alter-
native to single-tether CETO WECs are three-tether WECs, as shown in Figure 4.1.
The capital cost of such devices is higher than that of conventional single-tether
heaving buoys due to the increased number of separate power take-off (PTO) sys-
tems for each tether. The total cost of the three-tether WEC array can be reduced
significantly if the layout allows adjacent devices to share the same mooring points
(see Figure 4.2). In this study, we will investigate and compare array layouts both
with and without shared mooring points.

In order to evaluate arrays, we use a recently developed frequency domain model
for arrays of fully submerged three-tether WECs. This model allows us to investi-
gate different parameters, such as the number of devices, array layout and buoy
size. The ideal choice of parameters leads to an optimisation problem: what is the
best combination of buoy radii and their locations for different array sizes? This
question therefore becomes the decision variables of this problem.
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Power take-off system

Sea floor

FIGURE 4.1: Schematic representation of a three-tether WEC (adapted
from [28]).

This chapter is based on a conference paper published at the Genetic and Evolu-
tionary Computation Conference (GECCO) [175]. The structure of the chapter is as
follows: we introduce the foundation model of interacting three-tether buoys in Sec-
tion 4.1 that we base our investigations on. In Section 4.2, we describe our speed-ups
of the original model, as the original model is computationally prohibitively expen-
sive for use in iterative optimisation approaches. Then, we present our experimental
results in Section 4.3, and finish with our concluding remarks.

4.1 Model of the Three-Tether WEC Array

4.1.1 System description
The WEC design that we consider is a fully submerged spherical body connected
to three tethers that are equally distributed around the buoy hull (Figure 4.1). Each
tether is connected to the individual power generator at the sea floor, which allows
to extract power from surge and heave motions simultaneously [152].

The arrangement of a three-tether WEC array may be considered in two different
ways:

(i) In arrays where all adjacent devices share common anchorage points and/or
power take-off system (see Figure 4.2). The main benefit of this layout is a
significant reduction in the capital cost of the array due to the smaller number
of mooring points as compared to the separately placed WECs. At the same
time, the optimal buoy placement in such arrays is fixed and depends only on
the ocean depth at the particular sea site and desired submergence depth of
the buoy [153];

(ii) In arrays where all devices are placed separately (see Figure 4.1). This layout
does not have any constraints on the farm geometry and a buoy placement can
be chosen considering various optimisation procedures.
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FIGURE 4.2: Top view on the array of WECs with shared mooring
points.

4.1.2 System dynamics
In the following, we briefly outline the model of this kind of WECs arrays as it was
derived by Sergiienko et al. [153].

The dynamic equation of the WECs array is derived in the frequency domain
using linear wave theory, where a fluid is inviscid, irrotational and incompressible
[55]. This model considers three dominant forces that act on the WECs:

(i) excitation force includes incident and diffracted wave forces when all bodies
are assumed to be fixed;

(ii) radiation force acts on the oscillating body due to its own motion in the ab-
sence of incident waves;

(iii) control, or power take-off (PTO) force, that exerts on the WEC from machinery
through tethers.

The key point in the array performance is the hydrodynamic interaction between
buoys that can be constructive or destructive depending on the array size and ge-
ometry.
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A spherical body is excited by ocean waves in surge, sway and heave only [158,
102]. However, a geometrical arrangement of a WEC with three tethers induces
small angular motions of the body that do not contribute to the power absorption.
Therefore, only translational motion of each body is included in the dynamic equa-
tion of the system.

Assuming that the total number of devices in the array is N and p is the body
number, then the dynamics of the p-th WEC in time domain is described as:

Mpẍp(t) = Fexc,p(t) + Frad,p(t) + Fpto,p(t), (4.1)

where Mp is a mass matrix of the p-th buoy, which is presented by the product of
the buoy‘s mass mp and an identity matrix in the size of 3, i.e. Mp = mpI3, in order
to calculate the forces on the 3 dimensions respectively; ẍp(t) is a body acceleration
vector in surge, sway and heave, Fexc,p(t), Frad,p(t), Fpto,p(t) are excitation, radiation
and PTO force vectors respectively. The PTO system is modelled as a linear spring
and damper for each mooring line with two control parameters, such as stiffness
Kpto and damping coefficient Bpto.

In case of multiple bodies, where p = 1 . . . N , Equation (4.1) can be extended to
include all WECs and expressed in frequency domain:

(4.2)
✓
(M⌃ +A⌃(!)) j! +B⌃(!)�

Kpto,⌃

!
j +Bpto,⌃

◆
ˆ̇x⌃ = F̂exc,⌃,

where subscript ⌃ indicates a generalised vector/matrix for the array of N bodies,
A⌃(!) and B⌃(!) are radiation added mass and damping coefficient matrices that
include hydrodynamic interaction between buoys, Kpto,⌃, Bpto,⌃ are the stiffness and
damping block-matrices of the PTO system.

As a result, knowing such parameters as coordinates and dimensions of each
buoy within the array layout and ocean depth at a particular sea site, the hydrody-
namic coefficients of the interactions can be calculated using specialised packages
(e.g. WAMIT [97]) or by using analytical models. Moreover, specifying control pa-
rameters for each PTO system, motion amplitudes and velocities of all buoys can be
determined using equation (4.2).

4.1.3 Performance index
The total power absorbed by the array of WECs can be calculated as:

P⌃ =
1

4
(F̂⇤

exc,⌃
ˆ̇x⌃ + ˆ̇x⇤

⌃F̂exc,⌃)�
1

2
ˆ̇x⇤
⌃Bˆ̇x⌃, (4.3)

where ⇤ denotes the conjugate transpose.
The performance of an array of N WECs is usually summarised using the so-

called q-factor:

q =
P⌃

N · P0
, (4.4)

where P0 is the power absorption of a single device in isolation. The q-factor is the
ratio of the power absorption of an array of WECs compared to the power absorp-
tion of those same converters in isolation. A q-factor greater than one indicates the
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presence of constructive interference in the array, as the array of devices is produc-
ing more energy than the devices would individually. Conversely, a q-factor less
than one is a sign of destructive interference, which may be detrimental to the per-
formance of the array.

Lastly, for the fair analysis of layouts that involve WECs of different sizes, we
choose the relative capture width (RCW) to be a non-dimensional index of power ab-
sorption:

RCW =
P⌃

Pw

 
2

NX

p=1

ap

! , (4.5)

where Pw is the incident wave-energy transport per unit frontage, ap is a radius of
the p-th body. RCW shows the fraction of power extracted from the wave per unit
length of the device. RCW from Equation (4.5) is frequency dependent, therefore,
for the particular sea site location, the RCW should be weighted according to the sea
state probability data. Thus,

RCW =

X

i

ni ·RCW (!i)

X

i

ni

, (4.6)

where ni is an occurrence probability of waves at particular frequency.

4.1.4 Model specification
In Table 4.1 we provide the dimensions of the WECs used in the remainder of this
article. We choose constant power take-off coefficients to give optimal power for the
regular wave of 1m amplitude and 9-second period. The mass of each buoy is equal
to 0.85 times the mass of the displaced water. Ocean depth is chosen to be 50m and
all WECs are submerged 6m to centre of buoy.

TABLE 4.1: Specification of WECs used in array optimisation.

Buoy radius a, m 5 4 3.2 2.5 2
PTO spring coeffi-
cient Kpto, kN/m

387 185 92 43 22

PTO damping
coefficient Bpto,
kN/(m/sec)

161 76 38 18 8.9

We calculate the hydrodynamic parameters of the WEC array (excitation force,
added mass and damping coefficients) based on the algorithm presented by Wu
[172]. The results of various array layouts and buoy sizes have been validated
against WAMIT [97], which is a computer program for computing wave loads and
motions of offshore structures in waves.
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4.2 Array Optimisation
In this section we present our approaches used to speed-up the simulations of the
WEC arrays. The techniques include approximations and caching. For an array of
50 WECs, the eventual speed-up is 350-fold, i.e., from approximately 2100 minutes
down to six minutes.

4.2.1 Model Approximation
The model approximation M

0 is a substitute of the three-tether model M with sig-
nificantly reduced computational cost and acceptable error of accuracy. In terms
of accuracy, we create a function p to compare the two models only based on the
agreement of their trends. In other words, if the benefit is increasing/decreasing in
M when changing from layout l1 to layout l2, we compare whether the same trend
takes place in the approximation M

0. Function p is defined as:

p(f(x), x1, x2) =

(
f(x1)�f(x2)
|f(x1)�f(x2)| f(x1) 6= f(x2)

0 f(x1) = f(x2)

Based on the function, a standard binary test is introduced according to the rule
that p(M0, l1, l2) = p(M, l1, l2) means positive and the contrary means negative. This
way we can compute the accuracy with regard to True Positive, True Negative, False
Positive and False Negative.

In order to reduce the computational cost, we consider to reduce the sampling
of frequencies. The original variant of the three-tether model utilises 50 sample fre-
quencies to simulate the probability of wave frequencies in reality. In Figure 4.3, the
blue histogram shows the records of different wave frequencies with their probabil-
ities taking place in a sea area close to Sydney [74], and in red we illustrate the 50
evenly chosen frequencies. Each point represents a certain small range of wave fre-
quency and its probability is the sum of the probability of this range. Therefore the
total probability of 50 frequencies still sums up to 1, so that the approximate power
absorbed by WECs can be calculated by using this simplified version. However,
the computation of total power is still costly. The calculation of an array with 50
WECs takes around 35 hours on one core of an Intel Core i5-4250U processor. Since
the computation time in linear in the number of considered frequencies, a natural
way to the reduce computational cost is to approximate the accurate model with
fewer sample frequencies. Our goal is to reduce computation time while keeping
the accuracy above 80%.

To achieve this, we create the model approximations with the numbers of sample
frequencies to be 10, 5, 4, 3, 2 and 1. Each sample frequency represents a range of ac-
tually occurring wave frequencies, and for each approximation we distribute them
equally over the spectrum. For the single frequency, however, we select the most
likely occurring frequency: 0.7 rad/s. Figure 4.4 illustrates all the probabilities of
frequencies used in the six approximation models compared with the probabilities
in the original three-tether model.



4.2. Array Optimisation 47

Wave frequency (rad/sec)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
ro

b
a
b
ili

ty
 %

0

2

4

6

8

Sydney Sea
State Probability
50 Frequencies
Model Probability

FIGURE 4.3: Sydney sea state: historic distribution and 50 samples

We investigate the six approximations in two specific scenarios: 1) arbitrary lay-
outs and 2) evolving layouts. Both of the scenarios are typical in optimisation, espe-
cially for evolutionary algorithms. We study layouts with 50 WECs in a one square
kilometre rectangular area with a safety constraint that the minimal distance be-
tween each pair of WECs must be 50 meters.

Arbitrary Layouts

In this scenario, we randomly generate 100 valid layouts and divide them into five
groups. For each group, we calculate the accuracy between the three-tether model
and each of six approximations. Then we plot the averages and standard deviations
of the groups of data in Figure 4.5. As we can see, the two- and three-frequency
approximations are the least accurate ones. The fastest model that considers only
the prevailing frequency is comparable in accuracy with the one that uses fives fre-
quencies, however, the latter takes fives times as long to compute.

Evolving Layouts

In this scenario we use a simple evolutionary algorithm called (1+1)-EA to study the
optimisation using the approximating three-tether model. This algorithm is a hill-
climber where new solutions are created based on the best-so-far encountered. If
the new solution provides a higher score, then it replaces the best-so-far, otherwise
the new solution is discarded; this is repeated until the total time budget is used up.
The reason of using the simple approach is due to two considerations: 1) achievabil-
ity, dispite our efforts on speeding up the computation and simplifying the model,
the computational cost of evalutating the model is still relatively expensive, which
does not allow us to experiment comprehansive approaches; 2) understandability,
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FIGURE 4.4: Probabilities of frequencies in six approximation models
and the original three-tether model

simple (1+1)-EA provides clear picture about how itrative optimisation works in our
approximation.

We run 400 generations of the algorithm with a simple mutation which randomly
chooses and moves only one WEC in a layout. This optimisation results in an in-
crease of the power output by around 5% (as shown in Figure 4.6), and it also gener-
ates 401 layouts including an initial random layout. We then calculate the accuracy
between the original three-tether model and each of six approximations based on
the layouts by using the same approach as for arbitrary layouts. The results are
again shown in Figure 4.7.

The results of both scenarios largely agree. The 10 and 5 frequencies approxima-
tions provide the best accuracy and precision in both scenarios. However, we do not
choose them due to their relatively higher cost compared with the single frequency
approximation. The single frequency (i.e., the prevailing frequency) approximation
provides acceptable accuracy and precision with minimal cost, which makes it the
ideal trade-off in our case. With incorporating the approximation, the cost of com-
putation is reduced by around 98%, i.e., from around 2,100 minutes to be around 42
minutes for calculating one layout of a 50 WECs array.

4.2.2 Model Speed-Up Through Caching
Another approach that we introduce along with the single frequency approxima-
tion in order to reduce the computational cost is ‘caching’, which is a technique
widely used in software engineering for improving performance. In our particular
model, the most frequently used calculations in our MATLAB model are integral,
factorial, and bessel. The time spent with such calculations is significant, and
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FIGURE 4.5: Accuracy of six approximation models for arbitrary lay-
outs. Shown are the results when 10, 5, 4, 3, 2, and only 1 (of 50) fre-

quencies are used.

a number of them are duplicated during the power computations for a single layout.
For instance, in order to calculate the power output of a 50 WECs array, one million
calls of integral are made, while around 89.5% of them are duplicates. Therefore
we cache the results of such calculations into several hash-maps with their param-
eters hashed to be the corresponding keys. This way, subsequent calls can query
the results with their parameters instead of recalculating them. By implementing
this technique, the computational cost can be reduced by around 85% without in-
fluencing the accuracy. For calculating one layout of a 50 WECs array mentioned in
the previous section, the cost is decreased further from about 42 minutes to about 6
minutes.

4.3 Computational Study
In this section we report on our layout investigations of submerged wave energy
converters. In the first set of experiments, we consider WECs arranged in a grid-
based layout. There, the devices can share mooring points and/or power take-off
systems, which results in a significant reduction in capital cost. In the second part,
we relax this constraint to investigate layouts where the buoys can be placed arbi-
trarily, as long as the minimum safety distance is maintained.
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FIGURE 4.6: Optimisation results of (1+1)-EA with a simple mutation

4.3.1 Radii Optimisation
We conduct a range of experiments for optimising the radii of buoys in a staggered
array as shown in the introductory Figure 4.2. In this array, the columns of buoys are
spaced 93.33m apart and the rows 107.77m, due to technical reasons. Each buoy in
the array can have a different radius of either 2m, 2.5m, 3.2m, 4m or 5m. This quanti-
sation is necessary for both optimisation and also in practice, in order to reduce the
number of buoy variants. q-factor is primarily used as the optimisation criterion,
although some experiments also consider the relative capture width (Equation 4.6).

For small array sizes, including 1x1, 1x2, 2x1 and 2x2, it is feasible to use brute
force search (BFS) to explore the entire solution space and find the optimal solution.
For example, the largest of these small arrays is the 2x2 configuration, which has
625 possible solutions and takes 10 hours to evaluate them all. The best 2x2 config-
uration has a q-factor of 0.9990 (with a corresponding RCW value of 0.6453), which
is a layout comprising of two 2m buoys and two 5m buoys. Interestingly, the best-
performing 2x2 layout in terms of RCW achieved a significantly higher value of
0.7988 (a layout with four 5m buoys), while the q-factor value decreased slightly to
0.9658, see Figure 4.8. However, this is actually not surprising since the q-factor and
RCW are two different measures: while RCW refers to the maximum power, the
q-factor shows to the maximum efficiency of the array in comparison to individual
devices. In the model, buoys of different sizes are submerged to the same depth due
to constraints of the staggered layout, which affects the efficiency of smaller buoys.
Thus, 5m devices submerged to 6 m are more productive in terms of power than
2m buoys submerged to the same depth. As a result, the optimisation using RCW
ends up with larger WECs. On the other hand, for the q-factor optimisation it is
more important to have a constructive hydrodynamic interaction between buoys in
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the array. Taking into account that in a staggered layout distances between devices
are around 100m, values of q-factor are much higher for smaller buoys as at such
distances interaction is reduced to a minimum.

The 3x3 array configuration has almost 2 million solutions, meaning that a brute
force search is no longer feasible due to the simulation times needed. Yet for smaller
arrays sizes, the optimal configuration is found to only consist of buoys with a ra-
dius of either 2m or 5m. Using this insight, we are able to conduct a partial BFS
of the 3x3 array by examining only those solutions containing 2m and 5m buoys.
This partial BFS takes approximately 2 days to complete, but the result is a solution
with a q-factor of 0.9956 (see Figure 4.9), which is comparable to the 2x2 optimal
configuration, even though the search was not completely exhaustive in this case.

Since this 3x3 solution found by the partial BFS is not necessarily optimal, we
tried using several variants of randomised local search. This did not yield a better
3x3 configuration.An exhaustive evaluation of the local neighbourhood further re-
vealed that this all 2m buoy solution was indeed a local optimum for single changes
in the buoy diameters.

We also briefly consider the 4x4 and 5x5 configurations. As BFS has proved to be
inefficient, we simply generate all 2m buoy solutions for 4x4 and 5x5, and all of them
proved to have q-factors of approximately 0.99. Although these are unlikely to be
optimal, the relatively high q-factors show that all 2m buoy solutions may provide
configurations with relatively high q-factors for even larger arrays. A similar local
neighbourhood check for these 4x4 and 5x5 solutions shows that they are indeed lo-
cal optima for performing changes to single buoys. This proves that a q-factor is not
suitable for the buoy size optimisation at the fixed layout and another performance
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FIGURE 4.9: Best solution found for the 3x3 staggered array. The direc-
tion of wave propagation is from left to right. All buoys have diameters
of 2m or 5m. q-factor value = 0.9956. RCW value = 0.5303. The large
5m buoys make the most of the incoming waves, and the small 2m

buoys are most efficient when placed behind the 5m buoys.

index should be developed for such a task.

4.3.2 Placement Optimisation
In the following experiments we no longer enforce the grid-like layout from be-
fore. We employ two different algorithms to optimise the layouts. The first one
is the (1+1)-EA (as used in Section 4.2), which randomly chooses and moves only
one WEC in a layout to a new feasible location. The second algorithm the Covari-
ance Matrix Adaptation based Evolutionary Strategy (CMA-ES) [71]. CMA-ES self-
adapts the covariance matrix of a multivariate normal distribution. This normal
distribution is then used to sample from the multidimensional search space where
each variate is a search variable. The covariance matrix allows the algorithm to
respect the correlations between the variables making it a powerful (and popular)
heuristic search algorithm.

Initially, both algorithms place the N buoys randomly in the provided area. In
preliminary experiments we found that the regular grid initialisation with maximal
distances in the rows and columns to perform similar to the random one. While the
grid minimises the interactions by maximising the intra-buoy distance, interestingly
the positive interferences appear to outweigh what would intuitively be considered
a disadvantage.
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Both algorithms take care of the constraints in the following ways. When a layout
has buoys which violate the proximity constraint or if a buoy is located outside the
allowed area, we resample a new solution in (1+1)-EA and CMA-ES, before invoking
the time-consuming simulations. For boundary constraints, CMA-ES rounds the
coordinates to the nearest boundary value.

The CMA-ES configuration we use here is as follows. We use a population size
of two, which is used to generate two new solutions. We run this (2+2)-CMA-ES for
200 generations, and with an initial standard deviation for each decision variable
of 20, based on preliminary experiments. The second algorithm, (1+1)-EA, we run
with the same total evaluation budget of 400 evaluations.

As we now focus on larger arrays, we use the approximate model from Sec-
tion 4.2, where only a single frequency is considered. Under the provided condi-
tions, a single isolated 5m buoy has a power output of 5.547e+5 Watts.

Figure 4.10 shows the results from our optimisation of both the simple (1+1)-
EA and the CMA-ES. In both cases, the former produces layouts with significantly
higher outputs. In the study of 25 buoys, the (1+1)-EA yields the median power of
1.240e+7 Watts in between the minimum 1.222e+7 Watts and the maximum 1.249e+7
Watts, which is much better than the counterpart 1.206e+7 Watts of CMA-ES within
the range [1.195e+7, 1.231e+7] Watts. The same happens in the study of 50 buoys:
the (1+1)-EA has the better median power output at 2.220e+7 Watts in between
2.194e+7 and 2.237e+7 than the median 2.151e+7 Watts within [2.128e+7, 2.186e+7]
of the CMA-ES. Both ranges of the results of (1+1)-EA are also narrower than the
ranges from CMA-ES, which we take as an indication that (1+1)-EA converges bet-
ter than CMA-ES, given the evaluation limit provided. Interestingly, this simple
algorithm outperforms CMA-ES, even though the later can adapt itself to the prob-
lem. It appears that the 200 generations given to CMA-ES are not enough time. To
a limited degree this is supported by our observation that CMA-ES begins to con-
verge at the end of the computation budget provided. By then, the average standard
deviation decreases to values of about 4 to 8, which means that large changes to the
layouts become increasingly unlikely.

As (1+1)-EA is not able to fine-tune a solution, we take a solution found for 25
buoys and give it to CMA-ES for fine-tuning, with � = 1.0 for 200 generations. The
resulting layout is shown in Figure 4.11 and its power output increased by 1.1%.
This means that while CMA-ES experiences difficulties in creating good layouts
from scratch, it can still be used to tune existing solutions.

In this layout, it is not very surprising that the buoys facing the incoming waves
have the highest power output. Further into the farm, the output decreases quickly,
because the interactions become increasingly important with increasing number of
columns [7]. This is turn shows the fidelity of our optimisation results. The opti-
misation considers this indirectly, as the density of the buoys on the left hand side
of the final layout is significantly higher than the density of buoys in the right hand
side. Interestingly, constructive interferences result at times in individual WECs
having an above-average output (greater than 5.547e+5 Watts) at certain locations,
e.g. the buoy located at (360, 680).

Finally, we briefly demonstrate the applicability of our approach to a very large
array. In the single run that we perform (1+1)-EA (again using 400 generations)
increases the q-factor significantly by 10.4% over the initial layout. Note that the



4.4. Conclusions 55

(400g)         (200g)
1+1 EA CMA-ES

P
o
w

e
r 

O
u
t 
(W

a
tt
)

×107

1.2

1.21

1.22

1.23

1.24

1.25
25 Buoys

(400g)         (200g)
1+1 EA CMA-ES

P
o
w

e
r 

O
u
t 
(W

a
tt
)

×107

2.14

2.16

2.18

2.2

2.22

2.24
50 Buoys

FIGURE 4.10: Optimisation results from our 25 and 50 buoys study.
Shown are the results of 20 independent runs. For 25 buoys, the ini-
tial average q-factor is 0.8123, and the final q-Factors for (1+1)-EA and
CMA-ES are 0.8930 and 0.8723. For 50 buoys, the initial average is
0.7267, and the final ones are 0.7995 for (1+1)-EA and 0.7760 for CMA-

ES.

optimisation with the original model would have taken about 2750 days. The actual
optimisation using our speed-ups presented in Section 4.2 took only 8.3 days, which
corresponds to a speed-up by a factor of 330.

We show the final layout in Figure 4.12. Just as before, the buoys facing the in-
coming waves have the highest power output. Further into the farm, the output
decreases quickly, however, at times positive interferences result in individual tur-
bines having an above-average output.

4.4 Conclusions
This study provides first insights into the layout problem of submerged wave en-
ergy converters. It is also the first time multiple three-tether buoys have ever been
investigated. Among other key pieces of new knowledge, we have made two high-
level observations that enable far more effective design of such arrays. First, we
have discovered a potential design flaw, i.e., buoys of different diameters should not
be submerged at the same depth, but the top surface of all buoys should be same
distance to the sea surface. Second, we have learned that positive interference can
result in higher than normal power outputs for individual buoys. This is surpris-
ing, since such effects are hardly ever heard of. For example in wind energy related
research, wake effects and turbulences with their negative effects are well-known,
but positive effects are not. In the chapter on potential future work on the analysis
of a WECs array, we suggest that the interaction model might need to be refined to
allow for varying submergence depths.
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FIGURE 4.11: Best layout found for the 25 buoy study. The direction
of wave propagation is from left to right. All buoys have diameter
5m, and the area is 0.707 · 0.707km2. The overall power out is 1.257e+7
Watts. The q-factor value is 0.9063 (initially 0.8964) and the RCW value
is 1.434 (initially 1.252). The colours indicate the power generated by

each buoy.

In general, our study of the interactions of each individual WEC in an array has
demonstrated an example of a complex system or a multi-component system in the
real-world, where solely optimising each WEC individually cannot yield the overall
optimality. Moreover, our evluation of the buoy interactions were computationally
prohibitively expensive, taking hours or even days. We have undertaken a problem-
specific methods in order to tackle the issue. Through model approximations and
caching, we achieved up to 350-fold speed-ups in the simulation times needed. This
in turn allowed us to iteratively optimise the interactions in WEC arrays and to
investigate this multi-component system.

As our approaches in this chapter is specific to this problem, it to some extent
motivates us to explore a more general way of investigating the multi-component
optimisation problems. In the next chapter, we will start to introduce our studies on
the benchmark multi-component problem: the travelling thief problem.
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FIGURE 4.12: Best layout found for the 100 buoy study. The direc-
tion of wave propagation is from left to right. All buoys have diame-
ter 5m, and the area is 1.8 · 1.8km2. The overall power out is 4.147e+7
Watts. The q-factor value is 0.7476 (initially 0.6769) and the RCW value
is 1.183 (initially 1.071). The colours indicate the power generated by
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Chapter 5

On the Impact of the Renting Rate for
the Packing While Travelling Problem

Theoretical understanding of the TTP is not easily achievable, not only because of
the interdependence of the two components but also due to the nonlinearity of the
packing part. The overall gain of the packing component depends on the profit from
the collected items and the transportation costs. The transportation cost nonlinearly
depends on the weight of the collected items, as stated in Section 2.3 of Chapter 2.
This nonlinearity distinguishes the KP component from the usual knapsack prob-
lems that are characterised by the constraint of weight (namely the capacity of the
knapsack), which introduces an additional complexity. In order to understand more
of this nonlinear KP component, Polyakovskiy et al. [140] propose a simplified ver-
sion of the TTP: the packing while travelling (PWT) problem, as introduced in Sec-
tion 2.3.4, in which the tour ⇡ is a predefined constant. Their research shows that
the problem is NP-hard even without the capacity constraint usually imposed on
the knapsack (i.e. any combination of items is feasible).

On the other hand, it has been shown in [56] that good approaches for the TTP
instances can be obtained by finding a near-optimal TSP tour for the underlying TSP
part first, and then selecting a subset of items via a simple (1 + 1) EA. This might
suggest that the knapsack part is easy once a route is fixed. However, Polyakovskiy
and Neumann [140] have shown that the underlying packing while travelling prob-
lem is already NP-hard even when the capacity constraint is not imposed, i.e. any
combination of items is feasible.

In this chapter, we carry out additional studies for the PWT problem. We pay
special attention to an important parameter called the renting rate (R), which essen-
tially is a factor that connects two subcomponents of the TTP. Therefore the choice of
the values of this parameter may significantly influence the traits of the PWT/TTP
problem. Based on the input of other parameters of the problem, such as the profits
and weights of given items, we derive upper and lower bounds of R so that the sim-
ple pre-processing scheme presented in [140] cannot reduce the size of the problem
instances. Furthermore, we use an evolutionary algorithm to create instances that
allow us to remove as few items as possible for a fixed value of R. These studies give
us additional insights into the importance of R and show the range where difficult
instances for simple (1 + 1) EA or the mixed-integer programming approach [140]
should be found. Motivated by the success of the simple evolutionary algorithms for
the packing component of the TTP, we then investigate what the difficult instances
of PWT for (1 + 1) EA should look like. We do this in two ways. First, we construct
an instance based on the insights from rigorous runtime analysis for the classic 0-1
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knapsack problem where the (1 + 1) EA fails with a constant probability to obtain
an optimal solution. Second, we evolve an instance for PWT using an evolutionary
algorithm where the empirical failure rate of the instance is maximised.

This chapter is based on a conference paper published at the Genetic and Evolu-
tionary Computation Conference (GECCO) [173]. In the remainder of the chapter,
we explain our investigations in detail. In Section 5.1, we study the impact of the
renting rate. Section 5.2 proposes a mechanism to increase the hardness of instances.
The theoretical elements and the evolutionary algorithm for finding hard PWT in-
stances are given in Section 5.3. Finally, we draw a conclusion in Section 5.4.

5.1 Impact of the Renting Rate
As stated in Section 2.3.4 of Chapter 2, the PWT problem can mainly be defined as

Z⇡(⇢) = P(⇢)�R · T (⇢), (5.1)

where P(⇢) is a total profit of selected items and T (⇢) is a total travelling time. We
let T (⇢) = T⇡(⇢) for the sake of conciseness. It can be seen here that the renting rate
R has significant impact on the overall benefit. From one hand, if R is small enough
(i.e. R ! 0), then R·T (⇢) ! 0, which implies that the total transportation cost of any
set of items becomes negligible. Specifically, for any value of R chosen from [0, RL),
the optimal solution is to select all the items, i.e. ⇢ = {1}m. On the other hand, when
R ! 1, a solution tends to have no item selected. So, for any value of R chosen
from (RU ,1] the solution ⇢ = {0}m becomes optimal. Let the interval (RL, RU) be
named as a non-trivial range of the renting rate. Then we use it to search for hard
instances of PWT. Indeed, any value of R other than those in the interval (RL, RU)
makes the problem trivial. In this sense, RL and RU act as a lower and an upper
bound on R, respectively. Our work shows that (i) hard PWT instances should be
found when R 2 (RL, RU) and (ii) a ratio related to R named as a non-trivial items
rate may be used to evaluate the hardness of instances. In the rest of sections in this
chapter, we elaborate on the both propositions.

5.1.1 General Bounds
The solution ⇢ = {1}m means the situation when the profit of any item e✓k 2 M is
large enough to cover the cost of its transportation from city ✓ to the last city n + 1
along with any possible subset of items. That is p✓k � R · (T (S) � T (S \ {e✓k})) for
any item e✓k 2 S and for any subset of items S ✓ M . In order to find lower bound
RL, we define an auxiliary problem where R needs to be maximised:

RL = max R

s.t. p✓k � R · (T (S)� T (S \ {e✓k})), 8e✓k 2 S, 8S ✓ M (5.2)

In (2.12), vi depends linearly on the weight of collected items while each of
the travelling times contributing to (2.15) depends inversely on vi. This gives us
(T (M) � T (M \ {e✓k})) � (T (S) � T (S \ {e✓k})) as shown in [140]. Therefore, (5.2)
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can be replaced by p✓k � R · (T (M)� T (M \ {e✓k})), which results in a bound on R
as follows:

R 
p✓k

T (M)� T (M \ {e✓k})
(5.3)

We now consider the worst case scenario by assuming that all the items are lo-
cated in the first city and have the maximum possible weight. Therefore, to derive
RL, we set ✓ = 1, p✓k = PL, and wik = WU for any item eik 2 M . This setting
corresponds to the smallest value of the right-hand side in (5.3), where T (M) and
T (M \ {e✓k}) get the form:

T (M) =
nX

i=1

di
vmax � ⌫mWU

T (M \ {e✓k}) =
nX

i=1

di
vmax � ⌫(m� 1)WU

Finally, RL is computed as follows:

RL=PL

� nX

i=1

di⌫WU

(vmax � ⌫mWU)(vmax � ⌫(m� 1)WU)
(5.4)

We proceed similarly to find RU . In fact, the solution ⇢ = {0}m means the situa-
tion when the profit of any item e✓k 2 M is too small to cover its transportation cost
from city ✓ along with any subset of items. That is p✓k  R · (T (S [ {e✓k}) � T (S))
for any item e✓k 2 M and for any subset of items S ✓ M \ {e✓k}. In order to find the
upper bound RU , we define an auxiliary problem where R is to be minimised:

RU = min R

s.t. p✓kR · (T (S [ {e✓k})�T (S)), 8e✓k 2 M, 8S✓M \{e✓k} (5.5)

Given that (T ({e✓k}) � T (;))  (T (S [ {e✓k}) � T (S)) in [140], we replace (5.5)
by p✓k  R · (T ({e✓k})� T (;)), which bounds R as follows:

R � p✓k

� nX

i=✓

di

✓
1

vmax � ⌫w✓k

�
1

vmax

◆
(5.6)

Here, we consider the best case scenario by assuming that item e✓k is placed into
city n, i.e. ✓ = n, and has p✓k = PU and w✓k = WL. This corresponds to the maximum
value of the right-hand side in (5.6). Finally, RU is to be computed as follows:

RU =
PUvmax(vmax � ⌫WL)

⌫WLdn
(5.7)

As an example, let us consider the instance eil51 with 51 cities from TSPLIB
[145]. We assume that each but the last city contains 5 items with weights and profits
bounded by PL = WL = 1 and PU = WU = 1000, respectively. We also set vmax = 1
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n: 50 m: 250
PL: 1 PU : 1,000
WL: 1 WU : 1,000
vmax: 1 vmin: 0.1
C: 250,000 ⌫: 3.60e�06

TABLE 5.1: Input parameters for generating PWT instances

and vmin = 0.1 to limit the velocity of the thief, and set capacity C = 250, 000 so
that all the items can be selected. The set of input parameters to generate the PWT
instance is given in Table 5.1. Having the route as shown in Table 5.2, we calculate
the bounds on R to be RL = 6.85e�2 and RU = 4.63e+7 according to equations (5.4)
and (5.7). However, being restricted to these bounds, the non-trivial range looks
tremendous without much guarantee whether the instance is easy or hard to solve.

Route# From To Distance Route# From To Distance
1 1 22 7 26 42 19 9
2 22 8 12 27 19 40 11
3 8 26 7 28 40 41 12
4 26 31 10 29 41 13 9
5 31 28 6 30 13 25 13
6 28 3 9 31 25 14 6
7 3 36 12 32 14 24 11
8 36 35 6 33 24 43 12
9 35 20 7 34 43 7 12
10 20 2 12 35 7 23 6
11 2 29 9 36 23 48 9
12 29 21 7 37 48 6 9
13 21 16 10 38 6 27 9
14 16 50 6 39 27 51 8
15 50 34 6 40 51 46 2
16 34 30 7 41 46 12 7
17 30 9 8 42 12 47 6
18 9 49 6 43 47 18 8
19 49 10 8 44 18 4 8
20 10 39 10 45 4 17 8
21 39 33 14 46 17 37 5
22 33 45 7 47 37 5 11
23 45 15 7 48 5 38 7
24 15 44 6 49 38 11 7
25 44 42 10 50 11 32 6

TABLE 5.2: A tour generated by Lin-Kernighan TSP heuristic [101] for
the Eil51 instance of TSPLIB
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5.1.2 Item-Specific Bounds
We further investigate how the value of renting rate R within the non-trivial range
influences the hardness of the problem. Now, instead of focusing on the range of R
generally, we investigate whether each item e✓k 2 M may have its own item-specific
non-trivial range. If such an item-specific range exists for each of the items, we
calculate the rate between the number of items whose range includes the value of
R and the total number of items m. We then use this rate as a measure of hardness.
In general, item e✓k being trivial means that it should be either selected or discarded
(i.e. as a compulsory or unprofitable item [140]). Specifically, we define item e✓k as
a non-trivial item if there is a range (RL

✓k
, RU

✓k
) such that R 2 (RL

✓k
, RU

✓k
). According to

Propositions 1 and 2 in [140], we calculate the range (RL

✓k
, RU

✓k
) of e✓k as follows.

RL

✓k
= p✓k/(T (M)� T (M \ {e✓k})) (5.8)

RU

✓k
= p✓k/(T ({e✓k})� T (;)) (5.9)

We can now define non-trivial items rate as follows.

Definition 1. Non-trivial items rate � is a fraction of the number of non-trivial items in the
total number of items m in an instance.

Figure 5.1 illustrates the item-specific non-trivial ranges for the items of the in-
stance presented in Table 5.2. Here, we assume that each city but the last one con-
tains a single item only with a profit and a weight as uniformly random values in
[PL, PU ] and [WL,WU ], respectively. The non-trivial ranges of the items are repre-
sented by bars. Interestingly, the bars are distributed logarithmically in the figure.

Now, to compute the non-trivial items rate, one needs to set a particular value
for R. It can be done by selecting R corresponding to one of the vertical lines in the
Figure 5.1. Usually, such a line only crosses some of the bars. For example, assuming
R = 10+2, we have 19 out of 50 items having their bars crossed by the related line. In
fact, those items whose bars are crossed by the line are non-trivial. The non-trivial
items rate � therefore equals 0.38 in this case. Similarly, if we set R = 10+4, then �
becomes 0.02.

Observing the Figure 5.1 further, one can see that a better non-trivial items rate
� can be obtained by setting R to be around 2.0e+2. However, it still remains be-
low 0.5. In fact, finding the high values of �, for example 0.8, is not possible for
this instance. Indeed, we would like to have instances with � as large as possible,
because such instances are intuitively hard to solve than ones with low �. We there-
fore design a simple evolutionary algorithm to generate instances with maximised
non-trivial items rate.

5.2 Maximising Non-Trivial Items Rate
In order to obtain PWT instances with large non-trivial items rate �, we propose a
simple evolutionary algorithm named �EA, in which each weight or profit value
is mutated with probability 1/m. In each iteration, the selection procedure of �EA
chooses an offspring instance as the best solution if its corresponding � is larger
than one that the parent solution has. �EA runs mutation and selection operations
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FIGURE 5.1: Illustrating the non-trivial ranges of the items for the in-
stance of Table 5.2
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iteratively until the limit on the number of iterations is reached. The detailed pseu-
docode of �EA is listed in Algorithm 10.

We use the same TSP instance described in Table 5.2 with the input parameters
provided in Table 5.1 to illustrate the work of our algorithm. In order to understand
how the particular values of renting rate R within the non-trivial range influence
the non-trivial items rate, we run each experiment on a given set of R 2 {10k :
k 2 {�3,�2, ..., 8}}, which covers the known non-trivial range (6.85e�2, 4.63e+7)
calculated in the previous section. We rerun the algorithm 5 times for each specific
value of R setting the maximal number of iterations to 100,000.

The results of �EA are presented in Figure 5.2. The graph corresponding to the
different values of the non-trivial items rate obtained by �EA is drawn by red. For a
comparison purpose, we use the result of random generation of items. Specifically,
we generate one million random instances for each of the values of R and select the
instance with maximal �. The corresponding graph is drawn by blue. The horizontal
axis of Figure 5.2 represents the particular values of the renting rate. In the red
graph, each point is provided with a bar depicting the standard deviation of the
non-trivial items rate. The vertical axis of the figure represents the resulting values
of �.
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FIGURE 5.2: Non-trivial items rate computed by �EA

According to the Figure 5.2, � is strongly positive for both �EA and the random
generator when R 2 {1, ..., 107}. By contrast, the results for R 2 {10�3, 10�2, 10�1

}

and R 2 {10+7, 10+8
} are very close to zero. When R 2 {1, ..., 10+6

}, the values
of � obtained by �EA are significantly larger than those produced by the random
generator, yet the standard deviation is small.
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Algorithm 10 �EA to maximise the non-trivial items rate
1: procedure �EA(Maximal number of iterations)
2: INITIALISATION
3: repeat
4: SELECTION
5: MUTATION
6: until the maximal number of iterations is reached
7: Exit
8: end procedure
9: procedure INITIALISATION

10: Initialise an PWT instance with a set of items M
11: Set the value of renting rate R
12: Set pik 2 [PL, PU ] and wik 2 [WL,WU ] uniformly at random for each item

eik 2 M
13: � = FITNESS(initial instance)
14: end procedure
15: procedure MUTATION
16: for each item eik 2 M do
17: Set b 2 [0, 1] uniformly at random
18: if b  1

m
then

19: Set wik 2 [WL,WU ] uniformly at random
20: end if
21: Set b 2 [0, 1] uniformly at random
22: if b  1

m
then

23: Set pik 2 [PL, PU ] uniformly at random
24: end if
25: end for
26: end procedure
27: procedure SELECTION
28: �0 = FITNESS(new instance)
29: if �0 > � then
30: Choose the new instance
31: end if
32: end procedure
33: function FITNESS(instance)
34: Calculate non-trivial items rate �
35: return �
36: end function
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Establishing a threshold for �, say 0.8, we see that only some values of R, i.e.
10+1, 10+2 and 10+3, produce those values of � which are expected to give hard
instances. In fact, the range of R producing high values of � is much smaller than
the general non-trivial range. When �EA reaches large values of �, the item-specific
ranges of items become close or they include the predefined value of R. This can be
seen through the comparison of Figures 5.3(a) and 5.3(b). Specifically, Figure 5.3(a)
depicts the initial random instance for which � is only equal to 0.12. In this case,
the item-specific ranges are widely distributed around the line corresponding to
R = 10+2. The results of �EA are shown on the Figure 5.3(b), where the best found
instance has � = 1, i.e. all the items are non-trivial. It gets all the item-specific ranges
concentrated around the line corresponding to R = 10+2.

Our computational experiments presented in Section 5.3.2 confirm that �EA al-
gorithm produces hard instances for PWT. In fact, more items are getting the value
of R included into their item-specific ranges, the less items can be excluded by the
pre-processing in [140] and the harder the instance becomes. In other words, it turns
out to be hard to define which items are to be selected in the optimal solution when
most of the items contain the value of R in their item-specific ranges.

5.3 Hard Instances for the (1+1) EA
We now carry out theoretical and experimental investigations for the classical (1+1)
EA on instances of the packing while travelling problem. Our goal is to provide ad-
ditional insights on which instances are hard to be solved by simple evolutionary al-
gorithms. The (1+ 1) EA is a standard algorithm investigated in the area of runtime
analysis of evolutionary computation [6, 130], and therefore well suited for under-
standing of working behaviour of evolutionary computing techniques for PWT. The
description of the (1 + 1) EA considered in this section is given in Algorithm 11. It
starts with a solution chosen uniformly at random and uses mutation flipping each
bit with probability 1/m in order to produce an offspring. Being not worse than it’s
parent according to the fitness function, the offspring replaces it.

5.3.1 Theoretically Constructed Instance
In this section, we present an PWT problem instance where (1 + 1)EA fails with
a constant probability. The instance is motivated by an instance for the classical
knapsack problem for which it has been shown that the (1+1) EA has an exponential
expected optimisation time [180]. Furthermore, it has been used for investigations
of utility functions in the area of evolutionary multi-objective optimisation [128].

Our instance consists of two cities only. The distance between the cities is set
to 1. The first city contains m = r + 1 items while the second city is a destination
point free of items. We give r items of the first city the same profit and weight such
that cost ck = p1k = w1k = 1, 1  k  r. Similarly, item m = r + 1 gets its profit
and weight as cost cm = p1m = w1m = r + 1. We call the former items simple and
the later one unique. To establish the unconstrained settings, we specify C = 2r + 1.
Subsequently, we set vmax = 2 and vmin = 1 which implies ⌫ = 1/C. Finally, we
define R⇤ = C · (2� (r + 1) /C)2.
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(a) Initial instance (� = 0.12)
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(b) The best instance found by �EA (� = 1)

FIGURE 5.3: Comparing the distribution of item-specific ranges of the
instance generated randomly and one obtained by �EA
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Algorithm 11 (1 + 1) EA to solve an PWT instance
1: procedure INITIALISATION
2: Generate ⇢ 2 {0, 1}m uniformly at random
3: end procedure
4: repeat
5: procedure MUTATION
6: for each yik in ⇢ do
7: Set b 2 [0, 1] uniformly at random
8: if b  1

m
then

9: Flip the value of yik
10: end if
11: end for
12: end procedure
13: procedure SELECTION
14: Select the instance with better result
15: end procedure
16: until the maximal number of iterations is reached

In order to show why the (1 + 1) EA fails to find the optimal solution in polyno-
mial time, we use arguments similar to ones discussed in [180, 128]. The basic idea
is that with probability 1/2 the item m + 1 is not included into the population. Fur-
thermore, the expected number of simple items in the initial solution is r/2 and at
least (1/2� ✏)r, ✏ > 0 a constant, with probability 1� e�⌦(m) using Chernoff bounds.
The waiting time for such a step is exponentially small in the number of bits that
have to be flipped. This implies an exponential optimisation time of the (1+1) EA
when starting with an initial solution that has not chosen item r+1 and many simple
items.

We relate the previous ideas to our instance of PWT. Taking into account the
given properties, we now specify the objective function (2.13) as

fR⇤ (w) = w �
R

⇤

2� w/C
, (5.10)

where the input w =
P

r+1
k=1 ckyk is restricted to discrete integer values respecting the

packing plan ⇢ 2 {0, 1}m. When defined on the interval [0, C], fR⇤ (w) reaches its
unique maximum in the point w⇤ = C · (2 �

p
R⇤/C) = r + 1. In our particular

settings, achieving w⇤ = r + 1 is possible when the unique item is solely selected in
the packing plan ⇢. In other words, selecting item r + 1 only results in the unique
global optima for the given class of instances.

For a given real ✏ � 0, we can establish that fR⇤ (w) > fR⇤ (w + r + 1) holds for
w � (1/2� ✏) r starting with a certain value of r, r ! 1. This implies that flipping
the bit corresponding to item r + 1 is not accepted. To give a formal proof for the
(1+1) EA we would need to consider multiple bit flips in addition. This can be done
by a more detailed analysis.
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5.3.2 Evolving Hard Instances
In this section, we study one more qualitative method to produce and evaluate hard
instances for PWT. Indeed, the running time of an algorithm is one of traditional
ways to measure hardness of instances. It is applicable for exact approaches like
the MIP approach introduced by Polyakovskiy et al. [140]. However, for our aims
we are interested in a method that provides additional insights on which instances
are hard to be solved by (1 + 1) EA. We introduce a failure rate � that measures the
number of times (1 + 1) EA fails to obtain a result which is better than one with a
predefined objective value. Therefore, we propose another evolutionary algorithm
(�EA) to search for hard instances with a given renting rate. It is similar to �EA
described in Algorithm 10 with only a difference that the failure rate measure is
employed instead of the non-trivial items rate as a fitness procedure. Algorithm 12
sketches the fitness function used to compute � in �EA.

Algorithm 12 Fitness function to calculate failure rate �

1: function FITNESS(an PWT instance)
2: Call the MIP approach to solve the instance
3: Set counter i = 0
4: for 20 times do
5: Call the (1 + 1) EA to solve the instance
6: if the result of the (1 + 1) EA is worse than the one of the MIP approach

then
7: Increment counter i = i+ 1
8: end if
9: end for

10: return i / 20
11: end function

To calculate failure rate �, �EA employs the solution returned by the the exact
MIP approach [140] to set the desired objective value, i.e. the total benefit. It applies
(1+1) EA to solve an PWT instance as given in Algorithm 11. Specifically, the fitness
function restarts (1 + 1) EA 20 times setting the maximum number of iterations to
be 20,000. Each time the outcome of the (1 + 1) EA is worse than the result of the
MIP approach, the function counts it as a fail. It then calculates the failure rate as
the fraction of the total number of fails in the total number of runs.

We use the same values of R as defined in Section 5.2 so that the results of �EA
and �EA can be compared. We run �EA 5 times for each given value of R setting
the maximal number of iterations to be 10,000. Figure 5.4 plots the failure rates
obtained, while Figures 5.5 and 5.6 show the average runtimes of the MIP approach
and ones of the (1 + 1) EA, respectively. All the three figures have bars to illustrate
the average values and standard deviations. The horizontal axes for each of the
three have identical renting rate same to the one in the Figure 5.2 for �EA. In such a
method, we can study whether and how changing the value of renting rate R may
influence the hardness of the instance to be solved by (1 + 1) EA, as we assume
that the larger the failure rate becomes, the harder the instance is. In addition, we
expect that our assumption can be supported by the running time of the exact MIP
approach.
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In Figure 5.4, one can observe that only 3 out of 12 values of R, i.e. {101, 102, 103}
have the values of the failure rate greater than zero. This exactly matches the results
of �EA in Section 5.2, where instances with high � have been found for the same val-
ues of R. In fact, �EA finds instances with large failure rate � when �EA does this for
large values of �. Moreover, Figure 5.5 reports that runtimes of the MIP approach
are significantly larger when R takes one of these three values. This implies that
hard instances for the MIP approach correspond to these values of R. In contrast,
the running time of the (1 + 1) EA solver seems not to be much influenced by the
hardness of an instance, which might be partially because that the (1 + 1) EA is ter-
minated according to the maximal number of iterations instead of the convergence.

The results of Figure 5.4 and 5.5 to some extents confirm our conjecture that the
values of the non-trivial items rate � may be used as an indicator of hard and easy
instances. In practice, we may calculate the non-trivial range of R first and then use
�EA to explore it to search for largest values of � with respect to particular values
of R. Furthermore, one may analyse a set of instances with respect to the value of �.
Then a threshold on the value of � may be defined and employed as a mechanism
to eliminate easy instances from a benchmark.
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5.4 Conclusion
Through this chapter, we contributed to the knowledge and understanding of multi-
component combinatorial optimisation problems that arise frequently in real-world
applications, such as logistics and supply chain management. We investigated the
packing while travelling (PWT) problem, motivated by the recently-introduced the
travelling thief problem (TTP) and studied the impact of the renting rate, which
connects the profit and the transportation costs of the problem. We have shown
through theoretical and experimental investigations, how the renting rate affects
the number of items that can be eliminated by the simple pre-processing scheme
and therefore the hardness of the particular instances. Furthermore, we have con-
structed instances in a theoretical and experimental way, where a simple baseline
(1 + 1) EA fails to obtain an optimal solution. In the next chapter, we will continue
our study of the PWT problem in terms of the exact approach and corresponding
approximation.
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Chapter 6

A Dynamic Programming and
Corresponding Fully Polynomial Time
Approximation Scheme for the
Packing While Traveling Problem

In the previous chapter (Chapter 5) we have conducted a study on the packing while
travelling (PWT) problem, in which we show that by adjusting a single parameter
we can influence the overall hardness of a PWT/TTP instance. In this chapter, we
continue our investigations into the PWT problem. We introduce a dynamic pro-
gramming approach and the corresponding fully polynomial time approximation
scheme for it.

The key idea of our dynamic programming is to consider the items in the order
they appear on the route that needs to be travelled and apply dynamic program-
ming similar to the process undertaken for the classical knapsack problem (KP, Sec-
tion 2.3.2). When considering an item, the decision has to be made as to whether or
not to pack the item. The dynamic programming approach computes for the first i,
1  i  m, items, and for each possible weight w, the maximal objective value that
can be obtained. As the programming table that is used depends on the number of
different possible weights, the algorithm runs in pseudo-polynomial time.

After having obtained the exact approach based on dynamic programming, we
consider the design of a fully polynomial approximation scheme (FPTAS) [75]. We
designed an FPTAS for the amount that can be gained over the travel costs, when the
vehicle travels empty (which is the minimal possible travel cost). Our FPTAS makes
use of the observation that the item with the largest reward leads to an objective
value of at least OPT/m and uses appropriate rounding in the previously-designed
dynamic programming approach.

We evaluate our two approaches on a wide range of instances from the TTP
benchmark set [139] and compare them with the exact and approximative approaches
given in [140]. Our results show that a large majority of the instances that can be
handled by exact methods, are actually solved much more quickly by dynamic pro-
gramming than the previously-developed mixed integer programming and branch-
infer-and-bound approaches. Considering instances with a larger profit and weight
range, we show that the choice of the approximation guarantee significantly impacts
the runtime behaviour.

This chapter is based on a paper submitted to a journal [129]. The remainder
is structured as follows: we present the exact dynamic programming approach in
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Section 6.1 and design an FPTAS in Section 6.2. Our experimental results are shown
in Section 6.3. Finally, we finish this chapter with some conclusions drawn from our
investigations.

6.1 Dynamic Programming
We introduce a dynamic programming approach for solving the PWT defined in
Section 2.3.4. Dynamic programming is one of the traditional approaches for the
classical 0-1 knapsack problem [165], which composes a 2-dimensional table con-
sisting of at most W columns and m rows to compute the optimality. In the 0-1
knapsack problem, W is the capacity of the knapsack and m is the number of items.
Similarly in our problem, W is either the capacity of the knapsack or the total weight

of all items whichever is smaller, i.e. W = min(C,
nP

i=1

miP
j=1

wij), and m is the number

of items as well. Items are processed in the order they appear along the path N and
we consider them in the lexicographic order with respect to their indices, i.e.

eab � eij, iff ((a < i) _ (a = i ^ b  j)).

Note that � is a total strict order and we process the items in this order starting
with the smallest element. The entry ⇣i,j,k represents the maximal reward that can
be obtained by considering all combinations of items eab with eab � eij leading to
weight exactly k. We let ⇣(i, j, ·) denote the column containing the entries ⇣i,j,k. In
the case that a combination of weight k doesn’t exist, we set ⇣i,j,k = �1. We let

din =
nX

l=i

dl

denote the distance from city i to the last city n+ 1.
We let Z(;) denote the reward of the empty set which is equivalent to the travel

cost when the vehicle travels empty. Furthermore, Z(eij) denotes the reward when
only item eij is chosen.

For the first item eij according to �, we set

⇣(i, j, 0) = Z(;),

⇣(i, j, wij) = Z(eij),

and
⇣(i, j, k) = �1 iff k 62 {0, wij}.

Let ei0j0 be the predecessor of item eij in �. Based on ⇣(i0, j0, ·) we compute for
⇣(i, j, ·) each entry ⇣i,j,k as

max

⇢
⇣i0,j0,k
⇣i0,j0,k�wij+pij�Rdin(

1
vmax�⌫k

�
1

vmax�⌫(k�wij)
)
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Let est be the last element according to �, then maxk ⇣(s, t, k) is reported as the
value of an optimal solution. We now investigate the runtime for this dynamic pro-
gram. If din has been computed for each i, 1  i  n � 1, which takes O(n) time in
total, then each entry can be compute in constant time.

To speed up the computation of our DP approach, we only store an entry for
⇣(i, j, k) if it is not dominated by any other entry in ⇣(i, j, ·), i.e. there is no other entry
⇣(i, j, k0) with ⇣(i, j, k0) � ⇣(i, j, k) and k0 < k. This does not affect the correctness of
the approach as an item eij can be added to any entry of ⇣(i0, j0, ·) and therefore
we obtain for each dominated entry at least one entry in the last column having at
least the same reward but potentially smaller weight. The algorithm is illustrated in
Algorithm 13.

Algorithm 13 Dynamic Programming for the PWT problem
• Set L = maxeij2M Z(eij), and din =

P
n

l=i
dl, 1  i  n.

• Compute order � on the items eij by sorting them in lexicographic order with
respect to their indices (i, j).

• For the first item eij according to �, set ⇣(i, j, 0) = Z(;) and ⇣(i, j, wij) = Z(eij).

• Consider the remaining items of M in the order of � and do for each item eij
and its predecessor ei0j0 :

– In increasing order of k do for each ⇣(i0, j0, k) with ⇣(i0, j0, k) 6= �1

* If there is no ⇣(i, j, k0) with (⇣(i, j, k0) � ⇣(i0, j0, k) and k0 < k),
set ⇣(i, j, k) = max{⇣(i, j, k), ⇣(i0, j0, k)}.

* If there is no ⇣(i, j, k0) with (⇣(i, j, k0) � ⇣(i0, j0, k+wij) and k0 < k+wij),
set ⇣(i, j, k+wij) = max{⇣(i, j, k+wij), ⇣(i0, j0, k)+pij+Rdin(

1
vmax�⌫k

�

1
vmax�⌫(k+wij)

)}.

6.2 Fully Polynomial Time Approximation
We consider the amount that can be gained over the cost when the vehicle travels
empty as the new objective Z

0 in order to avoid the situation that both positive and
negative value of Z possibly exist. This is motivated by the scenario where the
vehicle has to travel along the given route and the goal is to maximise the gain over
this baseline cost. Note that an optimal solution for this objective is also an optimal
solution for PWT. However, approximation results do not carry over to PWT as the
objective values are “shifted” by the cost when travelling empty.

Let

Z(;) = �R ·

nX

i=1

di/vmax
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Algorithm 14 FPTAS for Z 0(x)

• Set L = maxeij2M Z
0(eij), r = ✏L/m, and din =

P
n

l=i
dl, 1  i  n.

• Compute order � on the items eij by sorting them in lexicographic order with
respect to their indices (i, j).

• For the first item eij according to �, set ⇣(i, j, 0) = Z
0(;) and ⇣(i, j, wij) =

Z
0(eij).

• Consider the remaining items of M in the order of � and do for each item eij
and its predecessor ei0j0 :

– In increasing order of k do for each ⇣(i0, j0, k) with ⇣(i0, j0, k) 6= �1

* If there is no ⇣(i, j, k0) with (b⇣(i, j, k0)/rc � b⇣(i0, j0, k)/rc and k0 < k),
set ⇣(i, j, k) = max{⇣(i, j, k), ⇣(i0, j0, k)}.

* If there is no ⇣(i, j, k0) with (b⇣(i, j, k0)/rc � b⇣(i0, j0, k + wij)/rc and
k0 < k + wij),
set ⇣(i, j, k+wij) = max{⇣(i, j, k+wij), ⇣(i0, j0, k)+pij+Rdin(

1
vmax�⌫k

�

1
vmax�⌫(k+wij)

)}.

be the travel cost (or reward) for the empty truck. Z(;) can be seen as the set up cost
that we have to pay at least. We consider the objective

Z
0(⇢) = Z(⇢)� Z(;),

i. e. for the amount that we can gain over this setup cost, and give an FPTAS. Note,
that we have �R · T (⇢)  Z(;) for any ⇢ 2 {0, 1}m and P(⇢)�R · T (⇢)�Z(;) = 0 if
⇢ = {0}m.

We now give a FPTAS for the amount that can be gained over the cost when the
vehicle travels empty and denoted by OPT the optimal value for this objective, i.e.

OPT = max
⇢2{0,1}m

Z
0(⇢).

Considering the dynamic program for Z 0(⇢) instead of Z(⇢) increases each entry
by |Z(;)| and therefore obtains an optimal solution for Z 0(⇢) in pseudo-polynomial
time. In order to obtain an FPTAS, we round the values of Z 0(⇢) and store for each
rounded value only the minimal achievable weight.

Let
t(w) =

1

vmax � ⌫w

denote the travel time per unit distance when travelling with weight w. Further-
more, let w � 0 be the weight of an item. We have t(x + w) � t(x) � t(w) � t(0) for
any x � 0 as t is a convex increasing function.

The pseudocode of the FPTAS is listed in Algorithm 14, from which we can state
the following theorem.

Theorem 1. Algorithm 14 is a fully polynomial time approximation scheme (FPTAS) for
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the objective Z 0. It obtains for any ✏, 0 < ✏  1, a solution x with Z
0(x) � (1 � ✏) · OPT

in time O(m3/✏).

The construction of the FPTAS only used the fact that the travel time per unit
distance is monotonically increasing and convex. Hence, the FPTAS holds for any
PWT problem where the travel time per unit distance has this property. The detailed
proof of the theorem is listed in [129].

6.3 Experiments and Results
In this section, we investigate the effectiveness of the proposed DP and FPTAS ap-
proaches based on our implementations in Java. We mainly focus on two issues:
1) studying how the DP and FPTAS perform compared to the state-of-the-art ap-
proaches; 2) investigating how the performance and accuracy of the FPTAS change
when the parameter ✏ is altered.

In order to be comparable to the mixed integer programming (MIP) and the
branch-infer-and-bound (BIB) approaches presented in [140], we conduct our ex-
periments on the same families of test instances. Our experiments are carried out on
a computer with 4GB RAM and a 3.06GHz Intel Dual Core processor, which is also
the same as the machine used in the paper mentioned above.

We compare the DP to the exact MIP (exactMIP) and the branch-infer-and-bound
approaches as well as the FPTAS to the approximate MIP (approxMIP), as the for-
mer three are all exact approaches and the latter two are all approximations. Ta-
ble 6.1 demonstrates the results for a route of 101 cities and various types of packing
instances. For this particular family, we consider three types of instances: uncor-
related (uncorr), uncorrelated with similar weights (uncorr-s-w) and bounded strongly
correlated (b-s-corr), which are further distinguished by the different correlations be-
tween profits and weights. In combination with three different numbers of items
and three settings of the capacity, we have 27 instances in total, as shown in the col-
umn called “Instance”. Similarly to the settings in [140], every instance with “_01”
postfix has a relatively small capacity. We expect such instances to be potentially
easy to solve by DP and FPTAS due to the nature of the algorithms. The OPT col-
umn shows the optimum of each instance and the RT(s) columns illustrate the run-
ning time for each of the approaches in the time unit of a second. To demonstrate
the quality of an approximate approach applied to the instances, we use the ratio
between the objective value obtained by the algorithm and the optimum obtained
for an instance as the approximation rate AR(%) = 100⇥ OZJ

OPT
.

In the comparison of exact approaches, our results show that the DP is much
quicker than the exact MIP and BIB in solving the majority of the instances. The
exact MIP is slower than the DP in every case and this dominance is mostly signifi-
cant. For example, it spends around 35 minutes to solve the instance uncorr-s-w_10
with 1, 000 items, where the DP needs around 15 seconds only. On the other hand,
the BIB slightly beats the DP on three instances, but the DP is superior for the rest
24 instances. An extreme case is b-s-corr_01 with 1, 000 items where the BIB spends
above 1.5 hours while the DP solves it in 11 seconds only. Concerning the running
time of the DP, it significantly increases only for the instances having large amount
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of items with strongly correlated weights and profits, such as b-s-corr_06 and b-s-
corr_10 with 1, 000 items. However, b-s-corr_01 seems exceptional due to the limited
capacity assigned to the instance.

Our comparison between the approximation approaches shows that the FPTAS
has significant advantages as well. The approximation ratios remain 100% when
✏ equals 0.0001 and 0.01. Only when ✏ is set to 0.25, the FPTAS starts to output
the results having similar accuracies as the ones of approxMIP. With regard to the
performance, the FPTAS takes less running time than approxMIP on the majority of
the instances despite the setting of ✏. As an extreme case, approxMIP requires hours
to solve the uncorr-s-w_01 instance with 1, 000 items, but the FPTAS takes less than
a second. However, the approxMIP performs much better on b-s-corr_06 and b-s-
corr_10 with 1, 000 items. This somehow indicates that the underlying factors that
make instances hard to solve by approximate MIP and FPTAS have different nature.
Understanding these factors more and using them wisely should help to build a
more powerful algorithm with mixed features of MIP and FPTAS.

In our second experiment, we use test instances which are slightly different to
those in the benchmark used in [140]. This is motivated by our findings that relax-
ing ✏ from 0.0001 to 0.75 improves the runtime performance of FPTAS by around 50%
for the b-s-corr instances, while it does not degrade the accuracy noticeably. At the
same time, there is no significant improvement for other instances. It’s surprising
as it shows that the performance improvement can be easily achieved on complex
instances. Therefore, we study how the FPTAS performs if the instances are more
complicated. The idea is to use instances with large weights, which are known to be
difficult regarding dynamic programming based approaches for the classical knap-
sack problem. We follow the same way to create TTP instances as proposed in [139]
and generate the knapsack component of the problem as discussed in [138]. Specif-
ically, we extend the range to generate potential profits and weights from [1, 103] to
[1, 107] and focus on uncorrelated (uncorr), uncorrelated with similar weights (uncorr-
s-w), and multiple strongly correlated (m-s-corr) types of instances. Additionally, in
the stage of assigning the items of a knapsack instance to particular cities of a given
TSP tour, we sort the items in descending order of their profits and the second city
obtains k, k 2 {1, 5, 10}, items of the largest profits, the third city then has the next k
items, and so on. We expect that such assignment should force the algorithms to se-
lect items in the first cities of a route making the instances more challenging for the
DP and FPTAS. In reality, these instances indeed are harder than the ones in the first
experiment, which forces us to switch to the 128GB RAM and 8 ⇥ (2.8GHz AMD 6
core processors) cluster machine to carry out the second experiment.

Table 6.2 illustrates the results of running the DP and FPTAS on the instances
with the large range of profits and weights. Generally speaking, we can observe
that the instances are significantly harder to solve than those ones from the first
experiment, that is they take comparably more time. Similarly, the instances with
large number of items, larger capacity, and strong correlation between profits and
weights are now hard for the DP as well. Oppositely to the results of the previous
experiment, the FPTAS performs much better when dealing with such instances in
the case when ✏ is relaxed. For example, its performance is improved by 95% for the
instance m-s-corr_10 with 1, 000 items when ✏ is raised from 0.0001 to 0.75 while the
approximation rate remains at 100%.



6.3. Experiments and Results 81

TA
B

L
E

6.
1:

R
es

ul
ts

on
Sm

al
lR

an
ge

In
st

an
ce

s

In
st

an
ce

m
O

PT

Ex
ac

tA
pp

ro
ac

he
s

A
pp

ro
xi

m
at

io
n

A
pp

ro
ac

he
s

ex
ac

tM
IP

BI
B

D
P

ap
pr

ox
M

IP
FP

TA
S

✏
=

0
.0
0
0
1

✏
=

0
.0
1

✏
=

0
.1

✏
=

0
.2
5

✏
=

0
.7
5

RT
(s

)
RT

(s
)

RT
(s

)
A

R
(%

)
RT

(s
)

A
R

(%
)

RT
(s

)
A

R
(%

)
RT

(s
)

A
R

(%
)

RT
(s

)
A

R
(%

)
RT

(s
)

A
R

(%
)

RT
(s

)
in

st
an

ce
fa

m
ily

e
i
l
1
0
1

un
co

rr
_0

1
10

0
16

51
.6

97
0

1.
21

7
5.

69
4

0.
02

7
10

0.
00

00
3.

83
8

10
0.

00
00

0.
00

1
10

0.
00

00
0.

00
1

10
0.

00
00

0.
00

1
10

0.
00

00
0.

00
1

10
0.

00
00

0.
02

5
un

co
rr

_0
6

10
0

10
15

5.
49

42
12

.6
05

3.
69

8
0.

06
5

10
0.

00
00

4.
96

1
10

0.
00

00
0.

01
2

10
0.

00
00

0.
01

1
10

0.
00

00
0.

01
1

10
0.

00
00

0.
01

1
99

.9
92

8
0.

06
3

un
co

rr
_1

0
10

0
10

29
7.

71
34

3.
52

5
0.

79
5

0.
03

6
10

0.
00

00
0.

62
4

10
0.

00
00

0.
01

7
10

0.
00

00
0.

01
7

99
.9

93
9

0.
01

6
99

.9
93

9
0.

01
6

99
.9

65
3

0.
03

7
un

co
rr

-s
-w

_0
1

10
0

21
52

.6
18

8
0.

32
8

7.
56

6
0.

00
1

10
0.

00
00

3.
97

8
10

0.
00

00
0.

00
0

10
0.

00
00

0.
00

0
10

0.
00

00
0.

00
0

10
0.

00
00

0.
00

0
10

0.
00

00
0.

00
3

un
co

rr
-s

-w
_0

6
10

0
43

33
.8

51
2

12
.5

90
2.

21
5

0.
01

2
10

0.
00

00
2.

69
9

10
0.

00
00

0.
00

8
10

0.
00

00
0.

00
7

10
0.

00
00

0.
00

7
99

.9
56

9
0.

00
8

99
.9

56
9

0.
01

7
un

co
rr

-s
-w

_1
0

10
0

90
48

.4
90

8
37

.1
44

1.
10

7
0.

02
2

10
0.

00
00

1.
76

3
10

0.
00

00
0.

01
2

10
0.

00
00

0.
01

2
10

0.
00

00
0.

01
2

10
0.

00
00

0.
01

3
99

.9
35

5
0.

02
0

b-
s-

co
rr

_0
1

10
0

44
41

.9
85

2
1.

42
0

12
5.

95
4

0.
01

4
10

0.
00

00
5.

36
6

10
0.

00
00

0.
01

0
10

0.
00

00
0.

00
9

10
0.

00
00

0.
00

9
10

0.
00

00
0.

00
8

10
0.

00
00

0.
01

3
b-

s-
co

rr
_0

6
10

0
10

26
0.

97
67

4.
50

9
22

.5
41

0.
10

1
10

0.
00

00
2.

76
1

10
0.

00
00

0.
05

8
10

0.
00

00
0.

05
7

10
0.

00
00

0.
04

8
10

0.
00

00
0.

04
3

10
0.

00
00

0.
08

7
b-

s-
co

rr
_1

0
10

0
13

63
0.

61
53

11
.0

13
27

.0
81

0.
18

7
99

.9
97

1
3.

71
3

10
0.

00
00

0.
10

3
10

0.
00

00
0.

10
1

99
.9

97
1

0.
08

1
99

.9
60

6
0.

06
5

99
.8

14
3

0.
11

3
un

co
rr

_0
1

50
0

17
60

8.
57

81
19

.5
94

27
.5

81
0.

24
7

10
0.

00
00

5.
75

7
10

0.
00

00
0.

17
1

10
0.

00
00

0.
16

1
10

0.
00

00
0.

15
3

10
0.

00
00

0.
16

3
10

0.
00

00
0.

37
7

un
co

rr
_0

6
50

0
56

29
4.

52
39

38
4.

21
3

13
.3

54
2.

82
9

10
0.

00
00

7.
80

0
10

0.
00

00
2.

37
0

10
0.

00
00

2.
34

4
10

0.
00

00
2.

30
0

10
0.

00
00

2.
21

2
10

0.
00

00
2.

34
0

un
co

rr
_1

0
50

0
66

14
1.

48
40

21
1.

30
2

2.
32

5
4.

01
0

10
0.

00
00

0.
71

8
10

0.
00

00
3.

72
0

10
0.

00
00

3.
64

5
10

0.
00

00
3.

44
6

10
0.

00
00

3.
53

1
10

0.
00

00
3.

63
2

un
co

rr
-s

-w
_0

1
50

0
13

41
8.

84
06

4.
33

7
34

.8
66

0.
09

0
10

0.
00

00
50

.3
10

10
0.

00
00

0.
08

5
10

0.
00

00
0.

09
0

10
0.

00
00

0.
08

4
10

0.
00

00
0.

08
7

99
.9

91
0

0.
08

5
un

co
rr

-s
-w

_0
6

50
0

34
28

0.
47

30
34

6.
43

0
7.

28
5

1.
04

0
10

0.
00

00
9.

60
9

10
0.

00
00

0.
96

4
10

0.
00

00
0.

93
3

10
0.

00
00

0.
90

5
10

0.
00

00
0.

93
6

10
0.

00
00

0.
92

0
un

co
rr

-s
-w

_1
0

50
0

50
83

6.
65

88
51

9.
90

2
3.

33
8

2.
02

2
10

0.
00

00
3.

35
4

10
0.

00
00

2.
00

5
10

0.
00

00
1.

78
3

10
0.

00
00

1.
75

3
10

0.
00

00
1.

78
4

10
0.

00
00

2.
14

7
b-

s-
co

rr
_0

1
50

0
21

30
6.

91
58

40
.4

82
62

4.
20

4
1.

53
4

10
0.

00
00

13
.3

38
10

0.
00

00
1.

37
3

10
0.

00
00

1.
27

9
10

0.
00

00
1.

11
6

10
0.

00
00

0.
94

9
10

0.
00

00
0.

71
6

b-
s-

co
rr

_0
6

50
0

69
37

0.
23

67
23

6.
38

7
97

.3
13

14
.6

16
99

.9
99

6
7.

84
7

10
0.

00
00

13
.3

93
10

0.
00

00
12

.9
75

10
0.

00
00

11
.6

42
99

.9
99

6
9.

74
1

99
.9

99
6

6.
01

8
b-

s-
co

rr
_1

0
50

0
82

03
3.

94
52

37
6.

56
9

21
8.

72
8

22
.0

11
10

0.
00

00
2.

30
9

10
0.

00
00

21
.3

72
10

0.
00

00
20

.8
29

10
0.

00
00

18
.5

73
10

0.
00

00
15

.3
13

99
.9

94
3

8.
84

0
un

co
rr

_0
1

10
00

36
17

0.
91

09
21

8.
30

6
11

4.
56

7
1.

87
2

99
.9

99
3

11
.9

18
10

0.
00

00
1.

89
1

10
0.

00
00

1.
87

5
10

0.
00

00
1.

83
2

10
0.

00
00

1.
84

5
10

0.
00

00
1.

76
4

un
co

rr
_0

6
10

00
93

94
9.

19
81

12
61

.9
49

36
.8

47
20

.9
44

10
0.

00
00

17
.9

71
10

0.
00

00
17

.0
24

10
0.

00
00

16
.6

15
10

0.
00

00
16

.5
45

10
0.

00
00

16
.3

78
10

0.
00

00
15

.7
13

un
co

rr
_1

0
10

00
12

29
63

.6
61

7
62

0.
89

6
4.

82
1

30
.1

16
10

0.
00

00
2.

18
4

10
0.

00
00

27
.3

05
10

0.
00

00
26

.7
83

10
0.

00
00

26
.5

41
10

0.
00

00
26

.0
51

10
0.

00
00

23
.9

05
un

co
rr

-s
-w

_0
1

10
00

27
80

0.
96

14
24

1.
95

7
39

9.
15

8
0.

80
2

10
0.

00
00

49
85

.5
66

10
0.

00
00

0.
73

0
10

0.
00

00
0.

69
0

10
0.

00
00

0.
68

8
10

0.
00

00
0.

72
4

10
0.

00
00

0.
68

7
un

co
rr

-s
-w

_0
6

10
00

61
76

4.
45

99
11

52
.6

24
12

.7
92

9.
87

2
10

0.
00

00
19

.0
63

10
0.

00
00

8.
68

6
10

0.
00

00
8.

81
2

10
0.

00
00

8.
56

0
10

0.
00

00
8.

74
0

10
0.

00
00

8.
39

6
un

co
rr

-s
-w

_1
0

10
00

10
35

72
.4

07
4

21
46

.4
08

7.
64

4
15

.0
47

10
0.

00
00

9.
68

8
10

0.
00

00
14

.0
30

10
0.

00
00

13
.9

12
10

0.
00

00
13

.7
97

10
0.

00
00

13
.9

82
10

0.
00

00
13

.4
92

b-
s-

co
rr

_0
1

10
00

46
88

6.
10

94
37

8.
55

1
61

29
.5

31
11

.7
83

99
.9

98
8

46
.3

94
10

0.
00

00
11

.7
14

10
0.

00
00

11
.3

58
10

0.
00

00
10

.7
93

10
0.

00
00

9.
59

2
10

0.
00

00
6.

53
6

b-
s-

co
rr

_0
6

10
00

12
58

30
.6

88
7

64
3.

53
3

91
9.

20
1

94
.5

23
99

.9
99

9
10

.3
11

10
0.

00
00

92
.4

11
10

0.
00

00
91

.0
39

10
0.

00
00

83
.0

02
99

.9
99

9
71

.0
78

10
0.

00
00

45
.4

33
b-

s-
co

rr
_1

0
10

00
16

19
90

.5
01

5
86

2.
57

2
16

46
.5

20
15

1.
60

1
10

0.
00

00
7.

16
0

10
0.

00
00

15
0.

27
9

10
0.

00
00

14
9.

72
2

10
0.

00
00

13
4.

76
4

10
0.

00
00

11
3.

04
9

99
.9

98
1

70
.1

35



82Chapter 6. A Dynamic Programming and Corresponding Fully Polynomial Time
Approximation Scheme for the Packing While Traveling Problem

TA
B

L
E

6.
2:

R
es

ul
ts

of
D

P
an

d
FP

TA
S

on
La

rg
e

R
an

ge
In

st
an

ce
s

In
st

an
ce

m
D

P
FP

TA
S

✏
=

0
.0
0
0
1

✏
=

0
.0
0
1

✏
=

0
.0
1

✏
=

0
.1

✏
=

0
.2
5

✏
=

0
.5

✏
=

0
.7
5

O
PT

RT
(s

)
A

R
(%

)
RT

(s
)

A
R

(%
)

RT
(s

)
A

R
(%

)
RT

(s
)

A
R

(%
)

RT
(s

)
A

R
(%

)
RT

(s
)

A
R

(%
)

RT
(s

)
A

R
(%

)
RT

(s
)

in
st

an
ce

fa
m

ily
e
i
l
1
0
1
_
l
a
r
g
e
-
r
a
n
g
e

un
co

rr
_0

1
10

0
69

80
28

02
.2

80
1

0.
03

0
10

0.
00

00
0.

00
2

10
0.

00
00

0.
00

2
10

0.
00

00
0.

00
2

10
0.

00
00

0.
00

2
10

0.
00

00
0.

00
2

10
0.

00
00

0.
00

2
10

0.
00

00
0.

02
9

un
co

rr
_0

6
10

0
20

48
13

76
5.

69
33

0.
05

3
10

0.
00

00
0.

01
9

10
0.

00
00

0.
02

0
10

0.
00

00
0.

01
9

10
0.

00
00

0.
01

9
10

0.
00

00
0.

01
9

10
0.

00
00

0.
01

9
10

0.
00

00
0.

04
9

un
co

rr
_1

0
10

0
17

21
76

18
2.

12
49

0.
04

1
10

0.
00

00
0.

02
8

10
0.

00
00

0.
02

8
10

0.
00

00
0.

02
8

10
0.

00
00

0.
02

8
10

0.
00

00
0.

02
7

10
0.

00
00

0.
02

6
99

.9
62

8
0.

03
7

un
co

rr
-s

-w
_0

1
10

0
36

42
05

30
.5

75
3

0.
00

6
10

0.
00

00
0.

00
3

10
0.

00
00

0.
00

3
10

0.
00

00
0.

00
3

10
0.

00
00

0.
00

3
10

0.
00

00
0.

00
3

10
0.

00
00

0.
00

2
10

0.
00

00
0.

00
4

un
co

rr
-s

-w
_0

6
10

0
14

80
58

92
8.

29
52

0.
09

8
10

0.
00

00
0.

07
2

10
0.

00
00

0.
50

2
10

0.
00

00
0.

07
2

10
0.

00
00

0.
06

9
10

0.
00

00
0.

06
5

10
0.

00
00

0.
05

9
10

0.
00

00
0.

07
0

un
co

rr
-s

-w
_1

0
10

0
14

25
38

51
6.

46
02

0.
13

6
10

0.
00

00
0.

10
1

10
0.

00
00

0.
10

4
10

0.
00

00
0.

10
3

99
.9

97
8

0.
09

6
99

.9
97

8
0.

08
6

99
.9

97
8

0.
07

3
99

.9
97

8
0.

08
9

m
-s

-c
or

r_
01

10
0

19
54

96
02

.2
67

1
0.

00
3

10
0.

00
00

0.
00

2
10

0.
00

00
0.

00
2

10
0.

00
00

0.
00

2
10

0.
00

00
0.

00
2

10
0.

00
00

0.
00

2
10

0.
00

00
0.

00
1

10
0.

00
00

0.
00

2
m

-s
-c

or
r_

06
10

0
13

72
03

17
5.

19
21

0.
14

7
10

0.
00

00
0.

11
5

10
0.

00
00

0.
11

8
10

0.
00

00
0.

11
3

10
0.

00
00

0.
08

9
10

0.
00

00
0.

06
3

10
0.

00
00

0.
04

0
10

0.
00

00
0.

04
3

m
-s

-c
or

r_
10

10
0

22
55

84
27

8.
60

04
0.

42
4

10
0.

00
00

0.
32

6
10

0.
00

00
0.

32
9

10
0.

00
00

0.
31

2
10

0.
00

00
0.

20
0

10
0.

00
00

0.
17

9
10

0.
00

00
0.

08
6

10
0.

00
00

0.
07

3
un

co
rr

_0
1

50
0

38
56

92
66

2.
09

30
0.

47
0

10
0.

00
00

0.
45

1
10

0.
00

00
0.

45
4

10
0.

00
00

0.
61

9
10

0.
00

00
0.

50
8

10
0.

00
00

0.
44

5
10

0.
00

00
0.

43
0

10
0.

00
00

0.
51

7
un

co
rr

_0
6

50
0

95
80

13
93

4.
61

72
3.

53
9

10
0.

00
00

3.
74

9
10

0.
00

00
7.

43
1

10
0.

00
00

3.
94

7
10

0.
00

00
3.

69
0

99
.9

99
6

3.
67

7
99

.9
99

6
3.

48
6

99
.9

99
3

3.
02

1
un

co
rr

_1
0

50
0

84
49

49
83

8.
43

89
4.

87
0

10
0.

00
00

5.
39

3
10

0.
00

00
5.

71
6

10
0.

00
00

5.
48

3
10

0.
00

00
5.

13
5

10
0.

00
00

4.
85

1
99

.9
99

2
4.

60
9

99
.9

99
2

4.
29

5
un

co
rr

-s
-w

_0
1

50
0

18
24

18
88

8.
93

64
1.

15
7

10
0.

00
00

1.
15

7
10

0.
00

00
1.

19
9

10
0.

00
00

1.
14

5
99

.9
99

5
1.

11
2

99
.9

99
5

1.
06

3
99

.9
99

5
0.

97
7

99
.9

90
4

0.
92

9
un

co
rr

-s
-w

_0
6

50
0

78
04

32
25

3.
01

87
22

.3
90

10
0.

00
00

25
.0

40
10

0.
00

00
26

.2
76

10
0.

00
00

24
.0

24
10

0.
00

00
23

.2
82

99
.9

99
7

21
.7

56
99

.9
99

7
18

.2
93

99
.9

99
7

18
.4

11
un

co
rr

-s
-w

_1
0

50
0

71
44

33
35

3.
79

57
30

.9
59

10
0.

00
00

34
.4

58
10

0.
00

00
39

.0
04

10
0.

00
00

34
.3

08
10

0.
00

00
32

.3
08

99
.9

99
6

28
.7

92
99

.9
99

0
26

.3
92

99
.9

99
0

25
.9

71
m

-s
-c

or
r_

01
50

0
96

46
39

41
.1

27
5

2.
33

5
10

0.
00

00
2.

47
8

10
0.

00
00

2.
78

2
10

0.
00

00
2.

69
5

10
0.

00
00

1.
50

9
10

0.
00

00
0.

96
3

10
0.

00
00

0.
54

6
10

0.
00

00
0.

40
8

m
-s

-c
or

r_
06

50
0

66
67

01
00

0.
14

88
10

8.
70

5
10

0.
00

00
12

6.
83

3
10

0.
00

00
13

9.
63

0
10

0.
00

00
12

2.
75

0
10

0.
00

00
62

.4
79

10
0.

00
00

33
.5

47
10

0.
00

00
17

.9
59

10
0.

00
00

10
.6

42
m

-s
-c

or
r_

10
50

0
10

82
00

98
80

.5
88

6
26

2.
99

9
10

0.
00

00
29

9.
86

2
10

0.
00

00
31

7.
35

2
10

0.
00

00
27

4.
28

4
10

0.
00

00
14

5.
08

7
10

0.
00

00
78

.4
70

99
.9

99
4

41
.8

16
99

.9
99

4
25

.9
24

un
co

rr
_0

1
10

00
77

73
86

33
6.

96
60

4.
22

2
10

0.
00

00
4.

39
7

10
0.

00
00

4.
34

7
10

0.
00

00
4.

30
9

10
0.

00
00

4.
34

1
10

0.
00

00
4.

37
7

10
0.

00
00

4.
28

0
10

0.
00

00
4.

24
0

un
co

rr
_0

6
10

00
19

33
31

92
97

.4
24

8
46

.0
43

10
0.

00
00

51
.3

83
10

0.
00

00
53

.0
87

10
0.

00
00

48
.8

61
10

0.
00

00
52

.9
57

99
.9

99
9

52
.0

62
99

.9
99

7
50

.2
86

99
.9

99
6

51
.4

88
un

co
rr

_1
0

10
00

16
93

79
74

90
.1

70
4

64
.4

85
10

0.
00

00
76

.7
44

10
0.

00
00

78
.8

47
10

0.
00

00
74

.1
28

10
0.

00
00

82
.7

54
10

0.
00

00
77

.0
57

10
0.

00
00

72
.2

83
10

0.
00

00
72

.5
67

un
co

rr
-s

-w
_0

1
10

00
36

19
91

31
1.

83
36

14
.2

54
10

0.
00

00
15

.0
72

10
0.

00
00

15
.6

70
10

0.
00

00
14

.5
23

10
0.

00
00

14
.1

10
10

0.
00

00
14

.0
39

10
0.

00
00

12
.0

88
10

0.
00

00
11

.1
29

un
co

rr
-s

-w
_0

6
10

00
15

74
46

94
59

.3
16

3
28

6.
84

3
10

0.
00

00
31

8.
09

6
10

0.
00

00
33

0.
50

8
10

0.
00

00
33

7.
28

9
10

0.
00

00
33

4.
31

8
10

0.
00

00
30

7.
58

8
99

.9
99

8
27

0.
01

3
99

.9
99

6
24

5.
92

7
un

co
rr

-s
-w

_1
0

10
00

14
39

41
06

96
.3

69
5

39
3.

79
3

10
0.

00
00

43
8.

77
5

10
0.

00
00

45
5.

83
0

10
0.

00
00

46
4.

52
7

10
0.

00
00

44
1.

95
5

10
0.

00
00

43
3.

67
2

99
.9

99
4

37
8.

91
7

99
.9

99
4

34
0.

81
3

m
-s

-c
or

r_
01

10
00

19
11

70
30

9.
56

84
46

.8
58

10
0.

00
00

58
.0

31
10

0.
00

00
59

.9
87

10
0.

00
00

58
.1

01
10

0.
00

00
31

.7
03

10
0.

00
00

18
.7

71
10

0.
00

00
10

.7
28

10
0.

00
00

6.
83

1
m

-s
-c

or
r_

06
10

00
13

15
70

81
61

.7
72

0
23

93
.2

05
10

0.
00

00
25

12
.2

81
10

0.
00

00
26

06
.4

12
10

0.
00

00
19

21
.5

73
10

0.
00

00
66

6.
74

9
10

0.
00

00
36

4.
45

2
10

0.
00

00
20

8.
96

9
10

0.
00

00
15

0.
06

0
m

-s
-c

or
r_

10
10

00
21

63
71

30
55

.3
75

9
67

61
.4

90
10

0.
00

00
66

68
.5

35
10

0.
00

00
64

41
.9

06
10

0.
00

00
45

26
.6

53
10

0.
00

00
13

34
.8

82
10

0.
00

00
70

3.
25

8
10

0.
00

00
39

7.
52

7
10

0.
00

00
28

2.
21

1



6.4. Conclusion 83

6.4 Conclusion
This and the previous chapter cover our studies of the packing while travelling
(PWT) problem, which is a simplified travelling thief problem (TTP) that focus on
the nonlinearity of transportation costs in the TTP. In this chapter, we designed a dy-
namic programming algorithm that solves the problem in pseudo-polynomial time.
Furthermore, we have shown that the original objective of the problem is hard to ap-
proximate and have given an FPTAS for optimising the amount that can be gained
over the smallest possible travel cost. It should be noted that the FPTAS applies to
a wider range of problems as our proof only assumes that the travel cost per unit of
distance in terms of weight w is monotone increasing and convex. Our experimental
results on different types of knapsack instances show the advantage of the dynamic
programming over the previous approach, based on mixed integer programming
and branch-infer-and-bound concepts. Furthermore, we have demonstrated the ef-
fectiveness of the FPTAS on instances with a large weight and profit range. From
the next chapter onwards, we will start to focus on the TTP, especially on extending
our investigations on the PWT back to the TTP.
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Chapter 7

Exact Approaches for the Travelling
Thief Problem

We have learned in the previous chapter (Chapter 6) that the packing while travel-
ling (PWT, in Section 2.3.4) problem, the simplified version of the TTP, can be solved
via dynamic programming (DP), taking into account the fact that the weights are
integers. By following the traditional scheme and sequentially examining every
possible weights instead of every possible combination of items to the point of ex-
haustion, the DP can solve the PWT problem within pseudo-polynomial time. In
this chapter, we extend our findings from the PWT problem, in order to form the
exact approaches needed for the TTP.

Our first algorithm is a DP for the TTP. By combining the DP for the PWT prob-
lem and the classical Held-Karp algorithm for the TSP [72] organically, we have our
first approach. Even though the algorithm improves the time complexity of solving
the TTP from brute-force to O(2nn (n+mC)), its memory consumption is still ex-
pensive and this ultimately becomes a major obstruction. We therefore introduce an
upper bound on the value of a feasible solution that can be derived from the partial
solutions, which then significantly reduces the search space. Furthermore, a branch
and bound search (BnB), taking the advantage of the upper bound, and a constraint
programming (CP) adopting the existing state-of-the-art paradigm are introduced
for comparison with the DP method.

As introduced in Section 3.5, many approximate approaches have been intro-
duced for addressing the TTP. Most of them are either evolutionary or heuristic.
Although such approximate approaches seem to perform well in the majority of
the instances in the benchmark library of TTP Polyakovskiy et al. [139], none of
the methods can be evaluated with respect to their accuracy, even for small TTP
instances, due to the lack of exact methods or known upper bounds. Our exact tech-
niques address this issue well on the small size instances that we propose, based
on the reduction of the existing problem instances in the benchmark library. Our
approaches thus help to build a more comprehensive review of the approximate
approaches.

This chapter is based on a conference paper published at the Simulated Evolu-
tion and Learning International Conference (SEAL) [176]. In the remainder of this
chapter, we introduce our exact approaches from Section 7.1. In Section 7.2, we elab-
orate on the setup of our experiments and compare our exact and hybrid approaches
with the best approximate ones, which forms an incomplete overview of the accu-
racy of the state-of-the-art approximate approaches. The conclusions are drawn in
Section 7.3.
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7.1 Exact Approaches to the TTP
This section describes the DP and then continues with a branch and bound approach
(BnB) and with a constraint programming (CP) technique adopted for the TTP.

The DP algorithm introduced in our previous chapter (Chapter 6) can solve the
PWT problem in pseudo-polynomial time by considering the fact that the weights
are integer. This means that the DP maps every possible weight w 2 [0, C] to a
packing plan ⇢, i.e. f : w 7! ⇢, which guarantees a certain profit. Then the opti-
mal packing plan ⇢⇤ is to be selected among all the plans that have been obtained.
Herein, two of our exact approaches are based on these findings. For the consistency
in the following paragraphs, we let Z(⇡, ⇢) denote the objective function of TTP with
respect to a solution (⇡, ⇢), ⇡ and ⇢ are the tour and the packing plan respectively, as
defined in Section 2.3. And let · denote all possible weights for a given TTP instance.

7.1.1 Dynamic Programming
Our DP is based on the Held-Karp algorithm for the TSP [72] augmented by the
dynamic programming routine [129] applied to resolve low level PWT subproblems.
We consider a subset of cities S ✓ N and a city j 2 S. Let A (S, j, w) be the maximum
reward of the path visiting each city in S exactly once, starting at the home city and
ending at j with the total knapsack’s weight of w. Please notice that we exclude the
travel from the last city back to the start city in this setting, which means if |S| > 1,
we let A (S, 1, w) = �1 for any w 2 [0, C].

Our base case consists of A ({1} , 1, 0) = 0 and of A ({1} , 1, w) = �1 for 0 < w 

C. Our general case for A (S, j, w) is based on A
�
S \ {j} , i, w �Wj

�
, which is the

path from city 1 to city i 2 S, plus the reward gained from visiting j right after i. In
fact, i must be the best choice:

A (S, j, w) = max
i2S:i 6=j

⇢
A
�
S \{j}, i, w �Wj (S \{j}, i)

�
+ Pj (S \{j}, i)�

Rdij
vmax � ⌫w

�
.

Here, W j (S \{j}, i) and P j (S \{j}, i) represent the total weight and the total profit
of the items chosen in city j. They both result from the best solution of the PWT
subproblem, where a subset of items in Mj must be optimally chosen with respect
to the set of partial solutions corresponding to A (S\{j} , i, w), w 2 [0, C]. In fact, the
sub-problem considers only the items of city j and can be solved via the dynamic
programming approach for the PWT [129].

We start computing solutions with all subsets of size s = 2 and calculate A (S, j, w)
sequentially for all possible knapsack’s weights w and subsets S ✓ N subject to S
containing city 1. We iteratively increment s and continue until s = n. Finally, we
compute the value of an optimal solution for the complete tour as

max
i2S:i 6=1

⇢
A (N, i, w)�

Rdi1
vmax � ⌫w

�
.

The pseudocode of our DP to the TTP is listed in Algorithm15.
There are at most 2nn subproblems, and each of them takes the time of O(n+mC).

Therefore, the total running time is O(2nn (n+mC)). The dynamic programming is
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Algorithm 15 Dynamic programming to the TTP
1: set A ({1} , 1, 0) = 0
2: for w = 1 to C do
3: set A ({1} , 1, w) = �1

4: end for
5: for s = 2 to n do
6: for any S ✓ N : |S| = s, 1 2 S do
7: for w = 0 to C do
8: set A (S, 1, w) = �1

9: for any j 2 S, j 6= 1 do
10: compute A (S, j, w) =

11: max
i2S:i 6=j

⇢
A
�
S \{j}, i, w �Wj (S \{j}, i)

�
+ Pj (S \{j}, i)�

Rdij
vmax � ⌫w

�

12: end for
13: end for
14: end for
15: end for
16: return max

i2S:i 6=1

⇢
A (N, i, w)�

Rdi1
vmax � ⌫w

�

also rather expensive in terms of the memory consumption, which reaches O(2nnC).
In order to speed up computations, let us define an upper bound on the value of a
feasible solution that can be derived from the partial solutions corresponding to
A (S \ {j} , i, w), for any w 2 [0, C], as follows:

EU(A (S, j, ·)) = max
0wW

A (S, j, w) +
X

k2N\S

mkX

l=1

pkl �
Rdj1
vmax

It estimates the maximal profit that the thief may obtain by passing the remain-
ing part of the tour with the maximal speed; that is, generating the minimal possi-
ble cost of travelling. Obviously, an optimal solution must not exceed this bound.
Therefore, if an incumbent solution Z(⇡0, ⇢0) exists, those partial solutions whose
EU (A (S, j, w)) < Z (⇡0, ⇢0) can be ignored. In practice, we can obtain an incumbent
solution in two stages. First, a feasible solution ⇡0 for the TSP part of the problem
can be computed by a TSP solver such as Concorde [4] or by the Lin-Kernighan
algorithm [101]. Second, the dynamic programming for PWT can be applied to de-
termine the best packing plan ⇢0 for ⇡0.

7.1.2 Branch and Bound Search
Now, we introduce a branch and bound search for the TTP employing the upper
bound EU defined in Section 7.1.1, which is adapted from the generic Branch and
Bound Search introduced in Section 3.2.2. Algorithm 16 depicts the pseudocode,
where ⇡i, i 2 {1, ..., n} denotes a sub-permutation of ⇡ with the cities 1 to i visited,
and fi is the mapping f : w 7! ⇢ calculated for ⇡i by the dynamic programming for
the PWT.
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Algorithm 16 Branch and Bound Search for the TTP
1: procedure BNB SEARCH
2: Create an initial solution to gain the benefit best and an tour permutation ⇡
3: Create an empty mapping M
4: Set l = 0
5: SEARCH(⇡, l,M, best)
6: end procedure
7: function SEARCH(⇡, l,M, best)
8: if l == n then
9: calculate Z(⇡, fn(·)) from Z(⇡n�1, fn�1(·)) in M

10: return max{maxZ(⇡, fn(·)), best}
11: else
12: for i = l + 1 to n do
13: Swap cities l + 1 and i in ⇡
14: Set M’ = Calculate Z(⇡l+1, fl+1(·)) from Z(⇡l, fl(·)) in M
15: if maxEU(⇡l+1, fl+1(·)) > best then
16: best = max{best, SEARCH(⇡, l + 1,M 0, best) }
17: end if
18: Swap cities l + 1 and i in ⇡
19: end for
20: return best
21: end if
22: end function

A way to tighten the upper bound EU is by providing a better estimation of the
remaining distance from the current city k to the last city of the tour. Currently, the
shortest distance from k to 1, i.e. dk1, is used. The following two ways can improve
the estimation: (i) the use of distance df1 from city f to city 1, where f is the farthest
unvisited city from 1; (ii) the use of distance d⇤�dt, where d⇤ is the shortest path that
can be pre-calculated and dt is the distance passed so far to achieve city k in the tour
⇡. These two ideas can be joined together by using the max{df , (d⇤� dt)} to enhance
the result.

7.1.3 Constraint Programming
Now, we present our third exact approach adopting the existing state-of-the-art con-
straint programming (CP) paradigm [78]. Our model employs a simple permutation
based representation of the tour which allows the use of the AllDifferent filter-
ing algorithm [15]. Similarly to the Section 2.3, a vector W = (W1, . . . ,Wn) is used
to refer to the total weights accumulated in the cities of tour ⇡. Specifically, Wi is
the weight of the knapsack when the thief departs from city i. The model bases the
search on two types of decision variables:

• x denotes the particular positions of the cities in tour ⇡. Variable xi takes the
value of j 2 N to indicate that j is the ith city to be visited. The initial variable
domain of x1 is D (x1) = {1} and it is D (xi) = N \ {i} for any subsequently
visited city i = 2, . . . , n.
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max
nX

i=1

miX

j=1

pijyij

�R

 
n�1X

i=1

Element(d, n (xi � 1) + xi+1)

vmax � ⌫Element(W,xi)
+
Element(d, n (xn � 1) + 1)

vmax � ⌫Element(W,xn)

!
(7.1)

AllDifferent[x1, . . . , xn] (7.2)

Wi = Wi�1 +
X

j2Mi

wijyij, i 2 {2, . . . , n} (7.3)

Wn  C (7.4)

FIGURE 7.1: Constraint programming model to the TTP

• y signals on the selection of an item in the packing plan ⇢. Variable yik, i 2 N ,
k 2 Mi, is binary, therefore D (yik) = {0, 1}.

Furthermore, an integer-valued vector d is used to express the distance matrix so
that its element n (xi � 1)+ xi+1 equals the distance dxixi+1 between two consecutive
cities xi and xi+1 in ⇡.

The model relies on the AllDifferent[x1, . . . , xn] constraint, which ensures
that the values of x1, . . . , xn are distinct. It also involves the Element(g, h) expres-
sion, which returns the hth variable in the list of variables g. In total, the model
(CPTTP) consists of the objective function and constraints as depicted in the Fig-
ure (7.1). Expression (7.1) calculates the objective value according to function (2.11).
Constraint (7.2) verifies that all the cities are assigned to different positions, and thus
are visited exactly once. This is a sub-tour elimination constraint. Equation (7.3) cal-
culates the weight Wi of all the items collected in the cities 1, . . . , i. Equation (7.4) is
a capacity constraint.

The performance of a CP model depends on its solver; specifically, on the fil-
tering algorithms and on the search strategies it applies. Here, we use IBM ILOG
CP OPTIMISER 12.6.2 with its searching algorithm set to the restart mode. This mode
adopts a general purpose search strategy [143] inspired from integer programming
techniques and is based on the concept of the impact of a variable. The impact mea-
sures the importance of a variable in reducing the search space. The impacts, which
are learned from the observation of the domains’ reduction during the search, help
the restart mode dramatically improve the performance of the search. Within the
search, the cities are assigned to the positions first and then the items are decided
on. Therefore, the solver instantiates x1, . . . , xn prior to y21, . . . , ynmn variables ap-
plying its default selection strategy. Our extensive study shows that such an order
gives the best results fast.

7.2 Computational Experiments
In this section, we first compare the performance of the exact approaches to TTP
in order to find the best one for setting the baseline for the subsequent comparison
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of the approximate approaches. Our experiments run on the CPU cluster of the
Phoenix HPC at the University of Adelaide, which contains 3072 Intel(R) Xeon(R)
2.30GHz CPU cores and 12TB of memory. We allocate one CPU core and 32GB of
memory to each individual experiment.

7.2.1 Computational Set Up

Running time (in seconds)
Instance n m DP BnB CP
eil51_n05_m4_uncorr_01 5 4 0.018 0.023 0.222
eil51_n06_m5_uncorr_01 6 5 0.07 0.079 0.24
eil51_n07_m6_uncorr_01 7 6 0.143 0.195 0.497
eil51_n08_m7_uncorr_01 8 7 0.343 0.505 4.594
eil51_n09_m8_uncorr_01 9 8 0.633 1.492 63.838
eil51_n10_m9_uncorr_01 10 9 0.933 5.188 776.55
eil51_n11_m10_uncorr_01 11 10 2.414 23.106 12861.181
eil51_n12_m11_uncorr_01 12 11 3.938 204.786 -
eil51_n13_m12_uncorr_01 13 12 14.217 2007.074 -
eil51_n14_m13_uncorr_01 14 13 13.408 36944.146 -
eil51_n15_m14_uncorr_01 15 14 89.461 - -
eil51_n16_m15_uncorr_01 16 15 59.526 - -
eil51_n17_m16_uncorr_01 17 16 134.905 - -
eil51_n18_m17_uncorr_01 18 17 366.082 - -
eil51_n19_m18_uncorr_01 19 18 830.18 - -
eil51_n20_m19_uncorr_01 20 19 2456.873 - -

TABLE 7.1: Columns ‘n’ and ‘m’ denote the number of cities and the
number of items, respectively. Running times are given in seconds for
DP, BnB and CP for different numbers of cities and items. ‘-’ denotes
the case when an approach failed to achieve an optimal solution in the

given time limit.

To run our experiments, we generate an additional set of small-sized instances
following the way proposed in [139]1. We use only a single instance of the original
TSP library [145] as the starting point for our new subset. It is entitled as eil51 and
contains 51 cities. Out of these cities, we select uniformly at random cities that we
removed in order to obtain smaller test problems with n = 5, . . . , 20 cities. To set
up the knapsack component of the problem, we adopt the approach given in [138]
and use the corresponding problem generator available in [137]. As one of the in-
put parameters, the generator asks for the range of coefficients, which we set to
1000. In total, we create knapsack test problems containing k(n � 1), k 2 {1, 5, 10}
items and which are characterised by a knapsack capacity category Q 2 {1, 6, 10}.
Our experiments focus on uncorrelated (uncorr), uncorrelated with similar weights
(uncorr-s-w), and multiple strongly correlated (m-s-corr) types of instances. At

1All instances are available online:
http://cs.adelaide.edu.au/~optlog/research/ttp.php

http://cs.adelaide.edu.au/~optlog/research/ttp.php
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the stage of assigning the items of a knapsack instance to the particular cities of a
given TSP tour, we sort the items in descending order of their profits and the second
city obtains k, k 2 {1, 5, 10}, items of the largest profits, the third city then has the
next k items, and so on. All the instances use the “CEIL_2D” for intra-city distances,
which means that the Euclidean distances are rounded up to the nearest integer. We
set vmin and vmax to 0.1 and 1.

Tables 7.1 and 7.3 illustrate the results of the experiments. The test instances’
names should be read as follows. First, eil51 stays for the name of the original
TSP problem. The values succeeding n and m denote the actual number of cities and
the total number of items, respectively, which are further followed by the generation
type of a knapsack problem. Finally, the postfixes 1, 6 and, 10 in the instances’ names
describe the knapsack’s capacity C.

7.2.2 Comparison of the exact approaches
We compare the three exact algorithms by allocating each instance a generous 24-
hour time limit. Our aim is to analyse the running time of the approaches influ-
enced by the increasing number of cities. Table 7.1 shows the running time of the
approaches, which illustrates the leading performance of the DP among the three al-
gorithms. The DP managed to solve the instance with 20 cities in less than one hour,
while BnB and CP can only handle the instances with 13 and 10 cities respectively
in such time frame.

7.2.3 Comparison between DP and Approximate Approaches
With the exact approaches being introduced, approximate approaches can be evalu-
ated with respect to their accuracy to the optima. In the case of the TTP, most state-
of-the-art approximate approaches are evolutionary algorithms and local searches,
such as Memetic Algorithm with 2-OPT and Bit-flip (MA2B), CoSolver-based with
2-OPT, and Simulated Annealing (CS2SA) in [50], CoSolver-based with 2-OPT and
Bit-flip (CS2B) in [49], and S1, S5, and C5 in [56].

In addition to existing heuristics, we introduce enhanced approaches of S1 and
S5, which are hybrids of the two and that one of dynamic programming for the
PWT [129]. The original S1 and S5 work as follows. First, a single TSP tour is com-
puted using the Chained Lin-Kernighan-Heuristic [5], then a fast packing heuristic
is applied. S1 performs these two steps only once and only in this order, while S5
repeats S1 until the time budget is exhausted. Our hybrids DP-S1 and DP-S5 are
equivalent to these two algorithms, however, they use the exact dynamic program-
ming to the PWT as a packing solver. This provides better results as we can now
compute the optimal packing for the sampled TSP tours.

We start by showing a performance summary of 10 algorithms on 432 instances
in Table 7.2. In addition, Table 7.3 shows detailed results for a subset of the best
approaches on a subset of instances. Figure 7.2 shows the results of the entire com-
parison. We include trend lines2 for two selected approaches, which we will explain
in the following.

We would like to highlight the following observations:
2They are fitted polynomials of degree six used only for visualisation purposes.
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FIGURE 7.2: Showing a gap to an optimal solution when one has been
obtained by an exact approach. From left to right: the 432 instances first

sorted by the number of cities, then by the total number of items.

gap MA2B CS2B CS2SA S1 S5 C5 DP-S1 DP-S5
avg 0.3% 15.3% 11.5% 38.9% 15.7% 09.9% 30.1% 3.3%
stdev 2.2% 17.8% 16.7% 29.4% 24.6% 18.8% 20.1% 8.5%
#opt 312 70 117 3 42 193 5 85
#1% 265 100 132 10 160 193 9 245
#10% 324 161 206 27 203 240 33 288

TABLE 7.2: Performance summary of heuristic TTP solvers across all in-
stances for which the optimal result has been obtained. #opt is the num-
ber of times when the average of 10 independent repetitions is equal to
the optimum. #1% and #10% show the number of times the averages are

within 1% and 10%.

1. S1 performs badly across a wide range of instances. Its restart variant S5 per-
forms better, however, its lack of a local search becomes apart in its relatively
bad performance (compared to other approaches) on small instances.

2. C5 performs better than both S1 and S5, which is most likely due to its local
searches that differentiate it from S1 and S5. Still, we can see a “hump” in its
trend line for smaller instances, which flattens out quickly for larger instances.

3. The dynamic programming variants DP-S1 and DP-S5 perform slightly better
than S1 and S5, which shows the difference in quality of the packing strategy;
however, this is at times balanced out by the faster packing which allows more
TSP tours to be sampled. For small instances, DP-S5 lacks a local search on the
tours, which is why its gap to the optimum is relatively large, as shown by the
respective trend lines.
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4. MA2B dominates the field with outstanding performance across all instances,
independent of number of cities and number of items. What is remarkable is
the high reliability with which it reaches a global optimum.

Interestingly, all approaches seem to have difficulties solving instances with the
knapsack configuration multiple-strongly-corr_01 (see Table 7.3). Compared to the
other two knapsack types, TTP-DP takes the longest to solve the strongly correlated
ones. Also, these tend to be the only instances for which the heuristics rarely find
optimal solutions, if at all.

7.3 Conclusion
In this chapter, we extended our exact dynamic programming for the packing while
travelling problem back to the travelling thief problem (TTP). We have presented
and evaluated three exact approaches for the TTP based on dynamic programming,
branch and bound, and constraint programming. The dynamic programming of
the TTP, the best of the three, managed to achieve the optimal solutions for 432
instances, which facilitates further researches on evaluating the performance of cur-
rent state-of-the-art TTP solvers. Our empirical investigations show that they are
obtaining, in most cases, close to optimal solutions. However, for a small fraction of
tested instances we observe a gap in the optimal solution of more than 10%. In the
next chapter, we will extend our study to a multi-objective version of the TTP.
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TTP-DP MA2B C5 DP-S5
Instance OPT RT Gap Std RT Gap Std Gap Std
eil51_n05_m4_multiple-strongly-corr_01 619.227 0.02 29.1 12.1 2.71 35.5 1.20e-6 41.3 0.0
eil51_n05_m4_uncorr_01 466.929 0.02 0.0 0.0 3.22 0.0 2.20e-6 0.0 2.20e-6
eil51_n05_m4_uncorr-similar-weights_01 299.281 0.02 0.0 0.0 3.21 7.8 2.40e-6 7.8 1.20e-6
eil51_n05_m20_multiple-strongly-corr_01 773.573 0.08 13.4 0.0 1.44 14.3 0.0 12.8 0.0
eil51_n05_m20_uncorr_01 2144.796 0.07 0.0 0.0 3.35 7.4 0.0 6.6 2.30e-6
eil51_n05_m20_uncorr-similar-weights_01 269.015 0.04 0.0 0.0 3.51 0.0 2.30e-6 0.0 0.0
eil51_n10_m9_multiple-strongly-corr_01 573.897 1.21 0.0 0.0 6.07 0.0 0.0 0.0 0.0
eil51_n10_m9_uncorr_01 1125.715 0.93 0.0 0.0 6.06 0.0 1.30e-6 0.0 1.30e-6
eil51_n10_m9_uncorr-similar-weights_01 753.230 0.86 0.0 0.0 5.87 0.0 0.0 0.0 0.0
eil51_n10_m45_multiple-strongly-corr_01 1091.127 14.89 0.0 0.0 7.99 0.0 0.0 0.0 0.0
eil51_n10_m45_uncorr_01 6009.431 6.39 0.0 0.0 8.6 6.6 2.30e-6 0.0 0.0
eil51_n10_m45_uncorr-similar-weights_01 3009.553 8.87 0.0 0.0 6.78 0.0 2.30e-6 0.0 2.30e-6
eil51_n12_m11_multiple-strongly-corr_01 648.546 4.58 0.0 0.0 6.08 4.6 2.20e-6 4.6 2.20e-6
eil51_n12_m11_uncorr_01 1717.699 3.94 0.0 0.0 7.21 0.0 1.20e-6 0.0 1.20e-6
eil51_n12_m11_uncorr-similar-weights_01 774.107 3.36 0.0 0.0 7.03 0.0 2.30e-6 0.0 2.30e-6
eil51_n12_m55_multiple-strongly-corr_01 1251.780 117.99 0.0 0.0 9.19 0.0 0.0 0.0 0.0
eil51_n12_m55_uncorr_01 8838.012 35.79 0.0 0.0 9.76 0.0 0.0 0.0 0.0
eil51_n12_m55_uncorr-similar-weights_01 3734.895 38.36 12.3 0.0 8.34 12.3 0.0 0.2 0.0
eil51_n15_m14_multiple-strongly-corr_01 547.419 39.82 0.0 0.0 7.87 14.1 1.30e-6 13.3 1.30e-6
eil51_n15_m14_uncorr_01 2392.996 89.46 0.0 0.0 7.28 3.8 0.0 3.8 0.0
eil51_n15_m14_uncorr-similar-weights_01 637.419 16.35 0.0 0.0 6.86 0.0 1.60e-6 0.0 1.60e-6
eil51_n15_m70_multiple-strongly-corr_01 920.372 3984.29 2.1 1.1 12.11 0.0 2.70e-6 0.0 2.70e-6
eil51_n15_m70_uncorr_01 9922.137 740.22 0.0 0.0 9.67 7 1.20e-6 1.9 0.0
eil51_n15_m70_uncorr-similar-weights_01 4659.623 867.78 0.0 0.0 7.98 0.0 0.0 0.0 0.0
eil51_n16_m15_multiple-strongly-corr_01 794.745 105.5 0.0 0.0 7.7 18.9 1.6e-6 18.9 1.6e-6
eil51_n16_m15_multiple-strongly-corr_10 4498.848 623.4 0.0 0.0 9.1 12.9 0.0 16.6 1.3e-6
eil51_n16_m15_uncorr_01 2490.889 59.5 1.0 0.7 8.4 1.6 2.3e-6 1.6 2.3e-6
eil51_n16_m15_uncorr_10 3601.077 211.5 0.0 0.0 9.0 7.1 1.6e-6 7.1 1.6e-6
eil51_n16_m15_uncorr-similar-weights_01 540.897 36.4 0.0 0.0 8.5 0.0 3.0e-6 0.0 3.0e-6
eil51_n16_m15_uncorr-similar-weights_10 3948.211 245.4 0.0 0.0 8.7 5.8 1.5e-6 13.6 0.0
eil51_n17_m16_multiple-strongly-corr_01 685.565 248.6 0.0 0.0 8.4 0.2 1.5e-6 0.0 1.5e-6
eil51_n17_m16_multiple-strongly-corr_10 3826.098 2190.4 0.0 0.0 9.8 0.0 1.5e-6 0.0 1.5e-6
eil51_n17_m16_uncorr_01 2342.664 134.9 0.0 0.0 8.3 0.0 0.0 0.0 0.0
eil51_n17_m16_uncorr_10 2275.279 554.5 0.0 0.0 9.6 0.0 0.0 0.0 0.0
eil51_n17_m16_uncorr-similar-weights_01 556.851 70.8 0.0 0.0 8.1 0.0 0.0 0.0 0.0
eil51_n17_m16_uncorr-similar-weights_10 2935.961 787.7 0.0 0.0 9.7 0.0 0.0 0.0 0.0
eil51_n18_m17_multiple-strongly-corr_01 834.031 715.7 7.9 0.8 10.2 9.2 0.0 12.9 1.7e-6
eil51_n18_m17_multiple-strongly-corr_10 5531.373 6252.4 0.0 0.0 10.5 0.4 1.5e-6 0.4 1.5e-6
eil51_n18_m17_uncorr_01 2644.491 366.1 0.0 0.0 9.7 0.2 0.0 1.8 0.0
eil51_n18_m17_uncorr_10 3222.603 1462.7 0.0 0.0 10.3 0.0 1.3e-6 0.2 0.0
eil51_n18_m17_uncorr-similar-weights_01 532.906 148.3 0.0 0.0 8.5 0.0 1.3e-6 0.0 1.3e-6
eil51_n18_m17_uncorr-similar-weights_10 4420.438 1929.3 0.0 0.0 9.9 0.0 2.9e-6 0.3 1.8e-6
eil51_n19_m18_multiple-strongly-corr_01 910.229 1771.6 0.0 0.0 9.3 20.1 1.6e-6 20.1 1.6e-6
eil51_n19_m18_multiple-strongly-corr_10 - - - - 10.4 - - - -
eil51_n19_m18_uncorr_01 2604.844 830.2 0.0 0.0 9.7 0.0 0.0 0.0 0.0
eil51_n19_m18_uncorr_10 4048.408 3884.3 0.0 0.0 10.9 0.0 1.4e-6 0.0 1.4e-6
eil51_n19_m18_uncorr-similar-weights_01 472.186 412.3 0.0 0.0 9.2 0.0 1.5e-6 0.0 1.5e-6
eil51_n19_m18_uncorr-similar-weights_10 5573.695 5878.8 0.0 0.0 10.5 0.0 0.0 0.0 0.0
eil51_n20_m19_multiple-strongly-corr_01 518.189 4533.7 0.6 0.6 11.1 14.1 1.4e-6 12.3 0.0
eil51_n20_m19_multiple-strongly-corr_10 - - - - 12.1 - - - -
eil51_n20_m19_uncorr_01 2092.673 2456.9 0.0 0.0 8.7 0.0 0.0 0.0 0.0
eil51_n20_m19_uncorr_10 3044.391 12776.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0
eil51_n20_m19_uncorr-similar-weights_01 451.052 1007.7 0.0 0.0 7.9 0.0 0.0 0.0 0.0
eil51_n20_m19_uncorr-similar-weights_10 4169.799 15075.7 0.0 0.0 9.4 0.0 0.0 0.0 0.0

TABLE 7.3: Comparison between DP and the approximate approaches
running in 10 minutes limits. Each approximate algorithm runs 10
times for each instance and use the average as the objective Obj. Gap
is measured by OPT�Obj

OPT
% and runtime (RT) is in second. The results

of C5 and DP-S5 are obtained when they reach the time limit of 10 min-
utes per instance. Highlighted in blue are the best approximate results.

DP runs out of memory for the instances without results.
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Chapter 8

Evolutionary Computation plus
Dynamic Programming for the
Bi-Objective Travelling Thief Problem

In the previous chapter (Chapter 7), we introduced the exact approaches for the
travelling thief problem (TTP) based on the dynamic programming approach for
the packing while travelling (PWT, Section 2.3.4) problem introduced in Chapter 6.
In this chapter, we will further extend our study to evolutionary algorithms (EAs)
that take advantage of the exact approaches. As introduced in Section 3.5, many
approximate approaches have been introduced for addressing the TTP. However to
the best of our knowledge, all of the existing approaches are focusing on utilising
the existing heuristic approaches (such as local search, simulated annealing, tabu
search, genetic algorithms, memetic algorithm, swarm intelligence, etc.), incorpo-
rating either well-studied operators of the TSP and KP or slight variations of such
operators. The heuristic approaches or operators that take advantage of the exist-
ing exact algorithms of the TTP [129, 176] are still lacking. On the other hand, very
few investigations have been undertaken for the approaches of the multi-objective
formulations of the TTP, except by Blank et al. [20] and Yafrani et al. [178].

In this chapter, we consider a bi-objective version of the TTP, where the goal is to
minimise the weight as well as to maximise the overall benefit. We present a hybrid
approach for the bi-objective TTP that uses a dynamic programming approach for
the underlying PWT problem as a subroutine. The evolutionary component of our
approach constructs a tour ⇡ for the TTP. This tour is then fed into the dynamic pro-
gramming algorithm to compute a trade-off front for the bi-objective problem. Here
the tour ⇡ is kept fixed and the resulting packing solutions are Pareto optimal due
to the capability of the dynamic programming. A key aspect of the algorithm is to
take advantage of the different fronts belonging to different tours for the TTP com-
ponent, as presumably the global Pareto optimum may contain some segments from
the different fronts. Meanwhile, when the evolutionary approach evolves the tours
and the current general Pareto front consists of different tours (together with the
packing plans), the next challenge is to select tours for the mutations and crossovers
that lead to promising new tours. Such tours will result in new Pareto optimal so-
lutions for the overall bi-objective TTP problem, when running the dynamic pro-
gramming. In short, the selection mechanism will encourage the synergy of the
two sub-approaches. We introduce a novel indicator-based evolutionary algorithm
(IBEA [182]) that contains a series of customised indicators and parent selections
to achieve this goal. Our results show that this approach solves the problem well,
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and its by-product, which is the total reward of the single objective TTP, beats the
state-of-the-art approach in most cases.

This chapter is based on a paper submitted to a conference [174]. The remainder
of the chapter first of all records the bi-objective version of the TTP mathematically,
in Section 8.1. Then, Section 8.2 covers the prerequisites required for our approach,
which is subsequently introduced in Section 8.3. Section 8.4 provides the detailed
description of the computational setup and the analysis of computational experi-
ments. Finally, Section 8.5 draws conclusions from the results in the chapter.

8.1 The Bi-objective Travelling Thief Problem
As introduced in Section 2.3.3 of Chapter 2, the sole objective of the standard single-
objective TTP is to find the optimal total reward max⇡,⇢ Z(⇡, ⇢), where

Z(⇡, ⇢) =
nX

i=1

miX

k=1

pxikyxik �R ·

 
dxnx1

vmax � ⌫Wxn

+
n�1X

i=1

dxixi+1

vmax � ⌫Wxi

!
. (8.1)

(⇡, ⇢) represents a solution of the TTP, consisting of a tour ⇡ = (x1, . . . , xn), xi 2 N
and packing plan ⇢ = (y21, . . . , ynmn), yik 2 {0, 1}.

Here, we extend the standard formulation of the TTP by introduction of an ad-
ditional objective function. The new version, named as BO-TTP for short, becomes
a bi-objective optimisation problem, where the total accumulated weight

W (⇢) =
nX

i=1

miX

k=1

wikyik (8.2)

yields the second criterion. Such extension appears natural regarding the TTP as
one may either need to maximise the reward for a given weight of collected items,
or determine the least weight subject to bounds imposed on the reward. Note that
even if ⇡ is fixed, (8.1) is a non-monotone sub-modular function [140] that implies
possible deterioration of the reward as the number of selected items, and therefore
their total weight, increases. We formulate the BO-TTP as follows:

(⇡, ⇢) =

⇢
argmaxZ(⇡, ⇢)
argminW(⇢)

s.t. W (⇢)  C

As a bi-objective optimisation problem, BO-TTP asks for a set of Pareto-optimal
solutions where each feasible solution cannot be improved in a second objective
without degrading quality of the first one, and vice versa. In other words, the goal is
to find a set of all non-dominated feasible solutions X ✓ ⇧⇥P such that for any solu-
tion (⇡, ⇢) 2 X there is no solution (⇡0, ⇢0) 2 X such that either (Z (⇡, ⇢) < Z (⇡0, ⇢0))^
(W (⇢) � W (⇢0)) or (Z (⇡, ⇢) � Z (⇡0, ⇢0)) ^ (W (⇢) < W (⇢0)) holds, where ⇧ is a set
of feasible tours and P is a set of feasible packing plans.
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8.2 Prerequisites
As introduced in Section 2.3.4 of Chapter 2, the packing while travelling problem
(PWT) is a special case of the TTP, which maximises the total reward for a specific
tour ⇡. Thus, an optimal solution of the PWT defines a subset of items producing the
maximal gain. This yields a non-linear knapsack problem, which can be efficiently
solved via the dynamic programming (DP) approach proposed in Chapter 5. Most
importantly, we find that the DP yields not just a single optimal packing plan, but
a set of plans P ⇡ ✓ P , where (⇡, ⇢) and (⇡, ⇢0) do not dominate each other for any
⇢, ⇢0 2 P ⇡. We name the corresponding objective vectors of P ⇡ as a DP front. In
Section 8.3, we design our hybrid algorithm that takes advantage of the features of
a DP front.

8.2.1 DP Front for a Given Tour
The DP for the PWT introduced in Chapter 5 processes items in the lexicographic
order as they appear along a given tour ⇡; that is, item l 2 ⇡i strictly precedes item
k 2 ⇡j , to be written as l � k, if either ⇡i < ⇡j or (⇡i = ⇡j) ^ (l  k) holds. Its table
B is an m ⇥ C matrix, where entry �kw represents the maximal reward that can be
achieved by examining all combinations of items l with l � k leading to the weight
equal to w. The base case of the DP with respect to the first item k, according to the
precedence order, positioned in node ⇡i is as follows:

�kw =

8
>>>>>>><

>>>>>>>:

�
R

�max

 
n�1X

j=1
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!
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�⇡j

+
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�⇡n

!
, if w = w⇡ik

�1, if w /2 {0, w⇡ik}

Here, the first case relates to the empty packing when the thief collects no items at
all while travelling along ⇡, and the second computes the reward when only item k
is chosen. Where a combination yielding w doesn’t exist, �kw = �1. For the general
case, let item l be the predecessor of item k with regard to the precedence order. And
let �(k·) denote the column containing all the entries �kw for w 2 [0, C]. Then based
on �(l·) one can obtain �(k·) computing each entry �kw, assuming that item k is in
node ⇡i, as

max

8
>>>><

>>>>:

�lw

�lw�w⇡ik
+p⇡ik�R

n�1X

j=i

✓
d⇡j⇡j+1

vmax � ⌫w
�

d⇡j⇡j+1

vmax � ⌫(w � w⇡ik)

◆

�R
⇣

d⇡n⇡1
vmax�⌫w

�
d⇡n⇡1

vmax�⌫(w�w⇡ik
)

⌘

In order to reduce the search space, in each column the cells dominated by other
cells are to be eliminated, i.e. if �kw1 > �kw2 and w1  w2, then �kw2 = �1. An
optimal solution derived by the DP corresponds to the maximal reward stored in
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the last column of B. That is, maxw {�(s, w)} is the value of an optimal solution,
where s is the last item according to the precedence order.

The last column of B can be considered as a complete set of non-dominated pack-
ing plans P ⇡ ✓ P⇡ ✓ P , where P⇡ is the set of all feasible packing plans for a given
tour ⇡. The packing plans in P ⇡ are non-dominated exclusion of any dominated
solutions during the solution construction process.

Definition 2. Letting ⌧ and T⇡ be the corresponding objective vectors sets of P ⇡ and P⇡

respectively, ⌧ is the Pareto front of T⇡. We therefore name ⌧ as a DP front for the given
tour ⇡.

A DP front ⌧ for a tour ⇡ is a complete non-dominated set, as it contains all
non-dominated objective vectors in T⇡. We take advantage of this completeness to
generate the spread of solutions in our bi-objective approach in Section 8.3.

8.2.2 Generation of Multiple DP Fronts
As a single DP front ⌧ is produced for a single given tour ⇡, i.e. ⇡ 7! ⌧ , we could
generate multiple TSP tours to get a set of DP fronts. In practice, various algorithms
are capable of producing superior tours for the TSP, and therefore many approaches
to the TTP use this capability to succeed. High-performing TTP algorithms are com-
monly two-stage heuristic approaches, like those proposed by Polyakovskiy et al.
[139], Faulkner et al. [56], and El Yafrani et al. [50]. Specifically, their first step gener-
ates a near-optimal TSP tour and the second step completes solution by selection of
a subset of items. Most of the approaches utilise the Chained Lin-Kernighan heuris-
tic [5], because it is able to provide very tight upper bounds for TSP instances in
short time. The knapsack component then is often handled via constructive heuris-
tics or evolutionary approaches. However, the TTP is essentially structured in such
way that the importance of its both components is almost equal within the problem.
Although near-optimal TSP solutions can give good solutions to the TTP, most of
them are far away from being optimal [176]. This is the reason for our first exper-
imental study here, where we investigate the impact of several TSP algorithms on
TTP solutions. Note that owing to the DP we are able to solve the knapsack part to
optimality, which contributes to the validity of our findings.

We analysed five algorithms for the TSP: the Inver-over heuristic (INV) [164],
the exact solver Concorde (CON) [4], the ant colony-based approach (ACO) [45], the
Chained Lin-Kernighan heuristic (LKH) [5] and its latest implementation (LKH2) [73].
We ran each algorithm 10, 000 times on every instance of the eil76 series of the TTP
benchmark suite [139]. We computed 100 (capped due to practical reasons) distinct
tours by INV, 25 by CON, 24 by the both ACO and LKH, and 12 by LKH2. The
lengths of the tours generated by INV are narrowly distributed around the average
of 588.64 with the standard deviation being 2.55. By contrast, every other algorithm
generates tours having the identical tour length of 585, which beats INV.

We then applied the DP to every tour produced by each of the algorithms. Fig-
ure 8.1 depicts the resulted rewards on some sample TTP instances, where each box
with whiskers reports the distribution of the rewards for a certain instance and the
corresponding algorithm. The central mark of each box indicates the median of
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FIGURE 8.1: Exploring diversity of TSP tours on the eil76_n75 series of
the TTP instances.

rewards, and the bottom and top edges of the box indicate the 25th and 75th per-
centiles, respectively. The whiskers extend to the most extreme rewards without
considering outliers, and outliers are plotted individually as plus signs. From the
plot, we may observe that the tours generated by the CON, ACO, LKH and LKH2
have similar distributions of rewards. By contrast, the boxes of INV seem to be
more extreme on the both sides. This means that the distribution of rewards via
INV is more diverse and the best of the rewards outperform the others. In other
words, though the Inver-over heuristic may lose against modern TSP approaches, it
performs better in the role of generator of varied tours for the TTP. It may act as a
seeding algorithm for a population in evolutionary algorithms.

In Figure 8.2, we visualise the collection of the DP fronts produced by the DP
on the TTP instance eil76_n75_uncorr_01 [139]. The corresponding tours are the 100
tours generated by the Inver-over heuristic. Actually, the plot depicts 200 fronts
since the DP was applied to a tour and its reversed order.

Definition 3. Given n DP fronts ⌧1, . . . , ⌧n, let � denote a union of the fronts as � =
[

n

i=1⌧i. Then a subset ! ✓ � is the Pareto front of � called as the surface of �.

The surface ! is formed by the union of all superior points resulted from different
DP fronts in �. It is further used to guide evolution process in our approach.
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FIGURE 8.2: The visualisation of 200 DP fronts, generated accord-
ing to 100 TSP tours produced by Inver-over for the TTP instance

eil76_n75_uncorr_01.

8.3 A hybrid evolutionary approach
Multi-objective optimisation algorithms guided by evolutionary mechanisms ex-
plore the decision space iteratively in order to determine a set of Pareto-optimal
solutions. Indeed, many of them may act myopically as they sample the space
searching for individual solutions without clear vision of the whole picture in terms
of other solutions and their number. Therefore, achieving strong diversity in ex-
ploring the space plays an important role in evolutionary algorithm design. Herein
we discuss one way to overcome potential issues related to diversity and propose
a hybrid approach where evolutionary techniques and dynamic programming find
synergy in their combination.

One of the challenges of multi-objective optimisation is to keep the wide spread
of solutions, which has to be guaranteed by strong diversity. Modern approaches
normally incorporate additional processes to tackle this, such as the density estima-
tion and/or crowdedness-comparison operator in SPEA2 [183] and NSGA-II [42]. In
our approach, the DP is incorporated as a subroutine capable of producing at once
a series of possible decisions with regard to a given tour. Thus, when a tour is speci-
fied, the DP guarantees that a corresponding front will be built without missing any
of its points due to the completeness of the DP front, which thus also guarantees a
good spread of solutions.

On the other hand, due to the typically observed non-dominance of single DP
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fronts, the global Pareto optimality of the BO-TTP may be formed either by a sin-
gle DP front or by the combination of segments from different top DP fronts. In
Figure 8.2, we may observe that the DP fronts are all intertwined together, includ-
ing the ones at the surface of the fronts collection. This seems to indicate that the
Pareto-optimal set of solutions is more likely to be the result of multiple TSP tours
and their DP fronts. We would like our evolutionary mechanism to take advantage
of this and to keep the top DP fronts so as to improve the population further. In or-
der to achieve this as well as to overcome the drawback of existing multi-objective
evolutionary optimisation algorithms that focus on individual solutions, we design
our hybrid IBEA with particular indicators and selection mechanisms in orchestrat-
ing improvement of Pareto front guided by the information of the DP fronts for most
promising TSP tours.

Our hybrid approach reduces the search space to some extent by decomposing
the problem and thus transforming it. Evolutionary optimisation approaches tradi-
tionally depend on the choice of solution encoding (i.e. chromosome). Our approach
treats a single TSP tour as an individual. Thus, a set of tours yields a population.
Indeed, it operates on a reduced set of variables (implying shorter chromosomes),
thus decreasing memory consumption and the number of internally needed sort-
ing operations, comparisons and search operations, as it does not explicitly include
binary variables required for the packing part. This approach is in fact a type of
two-level encoding [177], by which the individuals are encoded in the upper-level
(tours), and evaluated by solving the lower-level (packing plan).

Algorithm 17 Hybrid IBEA Approach
Input: population size µ; limit on the number of generations ↵;
Initialisation:
set the iteration counter c = 0;
populate ⇧ with µ new tours produced by the TSP solver;
while (c  ↵) do

set c = c+ 1;
Indicator:
run the DP for every tour ⇡ 2 ⇧ to compute its DP front ⌧ ;
apply indicator function I(⌧) to calculate the indicator value for every indi-

vidual tour ⇡ 2 ⇧;
Survivor Selection:
repeatedly remove the individual with the smallest indicator value from the

population ⇧ until the population size is µ (ties are broken randomly);
Parent Selection:
apply parent selection procedure to ⇧ according to the indicator values to

choose a set ⇤ of � parent individuals;
Mating:
apply crossover and mutation operators to the parents of ⇤ to obtain a child

population ⇤0;
set the new population as ⇧ = ⇧ [ ⇤0;

end while

Algorithm 17 sketches the whole approach, which we adopted from the original
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IBEA introduced by Zitzler et al. [182]. It accepts µ as a control parameter for the size
of the population ⇧ ✓ ⇧ and ↵ as a limit on the number of iterations, which defines
its termination criterion. In order to utilise the information within the DP fronts to
guide the evolution of individual tours, we design new indicators to be computed
based on the DP fronts instead of directly on the individuals. Our specific selection
mechanisms then filter the individuals according to the indicator values in order to
find the tours with better DP fronts.

The rest of this section first introduces the indicator functions we apply to TSP
solutions. Next, it details a parent selection mechanism to mate existing individuals
from the population. It ends with a discussion of mutation and crossover operators
guiding the search.

8.3.1 Design of Indicators
The designs of our indicators are based on the idea of measuring how each DP front
contributes to the surface ! of the fronts’ union � corresponding to the population
⇧. The surface ! introduced in Definition 8.2.2 is the union of all best segments from
different DP fronts in �. Given a DP front ⌧ for a tour ⇡ 2 ⇧ and a measurement
function M of a front, we use the followed formula to calculate the indicator I:

I(⌧) = 1�
M(! \ ⌧)

M(!)
. (8.3)

This formula measures how much we could lose (expressed as a value from 0 to
1) if we did not include the segments of the front ⌧ to the surface !, i.e. ! \ ⌧ . In
the following, we study two types of the measurement functions: Surface Contribu-
tion (SC) and Hypervolume (HV), hence two corresponding indicators: the Loss of
Surface Contribution (LSC) and the Loss of Hypervolume (LHV).

Loss of Surface Contribution. Our first indicator is Surface Contribution (SC),
which is a novel and direct measure. Given the union of a set of fronts �, a front
⌧ ✓ � and the surface ! ✓ �, SC(⌧) counts the number of objective vectors that ⌧
contributes to !, as defined by:

SC(⌧) =
|! \ ⌧ |

|!|
. (8.4)

Using SC (8.4) to replace the M function in (8.3), we have the formula of LSC as
follows:

LSC(⌧) = 1� SC(! \ ⌧).

Loss of Hypervolume. In multi-objective optimisation, the hypervolume indi-
cator is a traditional indicator used to indicate the quality of a set of objective vec-
tors [184]. In the bi-criteria case, when a front is given as a set of points in two-
dimensional space, its value is computed as a sum of areas of rectangular regions.

Let (0, C) be the reference point for our problem, which implies that only the
range of non-negative objective values is taken into account. In addition, let p =
(u, v) 2 ⌧ be a bi-dimensional objective vector in a DP front ⌧ while u > 0 and
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v < C, HV (⌧) calculates the hypervolume for ⌧ as:

HV (⌧) =
X

p2⌧
up (vp � vp�1)

Putting HV (⌧) back to (8.3), we have the loss of hypervolume LHV (⌧) computed
as

LHV (⌧) = 1�
HV (! \ ⌧)

HV (!)
.

8.3.2 Parent Selection Mechanisms
With the individuals in the population ⇧ being measured by the defined indicators,
we can study strategies that shall efficiently select good individuals. There are five
parent selection schemes that we take into consideration due to their popularity or
previous theoretical findings. In comparison, we introduce two simple and arbitrary
selections as well as a traditional policy to be a baseline. In this study, we expect
to find a well-performing combination of indicator and selection to encourage the
synergy of the DP and evolutionary approach.

Rank-based Selection (RBS). In the rank-based selection policy, individuals are
first ranked with respect to the value of an indicator. The selection policy is based
then on a specific distribution law affecting the choice of a parent. Here, we study
three schemes introduced by Osuna et al. [135], namely exponential (EXP), inverse
quadratic (IQ) and Harmonic (HAR), and make them a part of our hybrid approach.
Given a population of size µ, the probability of selecting the ith ranked individual
according to EXP, IQ and HAR is, respectively,

2�i

P
µ

j=1 2
�j

,
i�2

P
µ

j=1 j
�2

,
i�1

P
µ

j=1 j
�1

. (8.5)

Fitness-Proportionate Selection (FPS). This rule estimates an individual ⇡ 2 ⇧
according to the indicator I(⌧) of its DP front ⌧ . It has the following form:

FPS (⇡i) =
I(⌧i)P
µ

j=1 I(⌧j)
. (8.6)

Tournament Selection (TS). This policy applies the tournament selection [121],
but employs indicators discussed in Section 8.3.1 to rank individuals.

Arbitrary Selection (AS). Here, we consider two different rules: the best arbi-
trary selection (BST) and another one, which we call extreme (EXT). The former
ranks individuals of a population with accordance to the value of an indicator and
selects the best half of the population. The latter proceeds similarly selecting 25% of
the best and 25% of the worst individuals.

Uniformly-at-random Selection (UAR). This traditional policy selects a parent
from a population with probability 1

µ
uniformly at random.
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8.3.3 Mutation and Crossover Operators
In our approach, we adopt a multi-point crossover operator that has already proved
its efficiency for the TTP in [50]. As an (un-optimised) rule, we perform the crossover
operation on a tour with 80% probability. It is always followed by the mutation pro-
cedure, which either applies the classical 2OPT mutation [38] or re-inserts a node to
another location. Both the node and the location are selected uniformly at random.
We name these two operators 2OPT and JUMP, respectively.

8.4 Computational Experiments

8.4.1 Computational Set Up
We examine the IBEA presented in Algorithm 17 by going through each of the two
indicators and the eight parent selections, resulting in a total of 16 settings. Each
setting represents a combination of one of the 2 indicators and one of the 8 parent
selections respectively. For example, FPS on LHV means the combination of the FPS
selection and the LHV indicator.

From the original set of TTP instances, we use three different types, namely
bounded-strongly-correlated (Bounded), uncorrelated (Uncorrelated) and uncorrelated-
with-similar-weights (SimilarWeights), selected from three instance series: eil51, eil76,
eil101 in the TTP benchmark [139]. We run our approach 30 times repetitively
on each selected instance. Each time, the algorithm runs 20,000 generations on a
population ⇧ in size of 50. Figure 8.3 demostrates the convergence curve on the
eil76_n75_uncorr_01 instance.

Due to the significant computing cost, our experiments run on the supercom-
puter in our university, which consists of 5568 Intel(R) Xeon(R) 2.30GHz CPU cores
and 12TB of memory. We allocate 16 CPU cores and 16GB of memory to each indi-
vidual experiment. In total, 69,120 CPU cores and the same number of GB memory
have been allocated for the experiments. Overall the experiments consumed around
170,000 CPU-hours.

8.4.2 Results and Analysis
To compare the outcomes of the different approaches based on the final popula-
tions ⇧ of tours, we calculate the hypervolumes for the surface of resulting non-
dominated solutions. We also store the corresponding total reward in order to com-
pare with the results from the state-of-the-art single-objective approach: MA2B [50]
(see comparison in [169]).

However, due to the varied mean values and unknown global optima of different
TTP instances, it is hard to analyse and compare across instances. Nevertheless, such
a comparison is desired because such analysis or comparison may provide a more
general view for our algorithm. We design a statistical comparison to overcome
this as follows. Firstly, we choose the uniformly-at-random (UAR) selection as the
baseline, which creates two baseline settings, namely UAR on LHV and UAR on
LSC. We secondly conduct Welch’s t-test [170] between the results of the others and
the baselines for two indicators respectively.
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FIGURE 8.3: Convergence curve on the eil76_n75_uncorr_01 instance.
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The results of the t-test are probability values (p-values), each of which measures
the likelihood of one selection to the corresponding baseline with respect to their
performance. For example, we have the p-value being 4.75 ⇥ 10�7 in the case of
comparing the hypervolume of the FPS and the UAR on LHV. This means that the
probability of the FPS performing identical to the UAR on LHV (as expressed by
having the same means) is less than 0.0000475%. In fact, the former performs much
better than the latter on average. In order to improve the readability, we use the
logarithm of the p-value in our plots. Thus, the measure of the FPS on LHV in our
little example is 6.32 (i.e. log10 (4.75⇥ 10�7)). In short, the larger the logarithmic
p-value is, the better the selection is against the UAR.

Figure 8.4 depicts the overall results of the Welch’s t-test, in which we cate-
gorise our results into three types of bars according to three types of TTP instances:
Bounded, Uncorrelated and SimilarWeights. Each bar in the plots represents the
mean of the logarithmic p-values of several instances in this category, for example
eil51_n50_bounded-strongly-corr_01.ttp, eil76_n75_bounded-strongly-corr_01.ttp and the
eil101_n100_bounded-strongly-corr_01.ttp. From it we may observe distinguishable
patterns between the selections running on the LHV and the LSC respectively. For
example, the three rank-based selection (RBS) schemes generally perform better on
LHV than on LSC, among which the HAR is the best. According to the definitions,
the HAR is the least aggressive scheme among the three, with a fat tail and rel-
atively small probability for selecting the best few individuals [135]. It seems to
imply that the LHV benefits more from the diversity of candidates. By contrast, the
AS-BST performs best on LSC, which might imply that the LSC relies more on a few
outstanding individuals for approximating, as the AS-BST only focuses on the best
ones.

In terms of different types of TTP instances, we may observe that the IBEA per-
forms best on the uncorrelated instances in all of the settings, while being worst on
the strongly bounded ones in most of the settings. This to some extent supports the
conjecture that strongly bounded TTP instances are the (relatively) hard ones and
uncorrelated instances are the easy ones [139].

With regard to the choice of the parent selections, besides the RBS-HAR and the
AS-BST which perform best on LHV and LSC respectively, we would like to recom-
mend the FPS as well. This selection seems to be the safest choice, as it performs
consistently well on different settings.

Overall, we may observe from Figure 8.4 that the figures of the hypervolume
generally agree with those of the total reward. This somewhat suggests that opti-
mising the bi-objective TTP brings good results for the single objective TTP as well.
We do further comparison between our approach and the state-of-art algorithm of
the single objective TTP, namely MA2B [50], to verify this conjunction. In order to
be more compellable, we choose safest parent selection, i.e. the FPS, instead of the
aggressive ones. For the MA2B, we run it 30 times repetitively for each case with the
identical time limits to our approach. The results in Table 8.1 show that in the ma-
jority of the test cases, our approach yields better rewards comparing to the MA2B
for the corresponding single objective TTP, while we are optimising the bi-objective
formula.
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FIGURE 8.4: The sum of the logarithm of the p-values of performing
Welch’s t-test for the selections each respectively against the UAR se-

lection.
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MA2B
Mean Max SD

eil51_n50 Uncorrelated 2805.000 2855 27.814
SimilarWeights 1416.348 1460 47.906
Bounded 4057.652 4105 25.841

eil76_n75 Uncorrelated 5275.067 5423 78.138
SimilarWeights 1398.867 1502 55.448
Bounded 3849.067 4109 139.742

eil101_n100 Uncorrelated 3339.600 3789 388.360
SimilarWeights 2215.500 2483 235.905
Bounded 4949.000 5137 139.285

FPS LHV
Mean Max SD

eil51_n50 Uncorrelated 2828.728 2854.543 15.357
SimilarWeights 1413.044 1459.953 17.780
Bounded 4229.149 4230.997 10.118

eil76_n75 Uncorrelated 5445.624 5514.666 58.992
SimilarWeights 1477.680 1513.404 24.494
Bounded 4042.449 4108.760 38.805

eil101_n100 Uncorrelated 3620.844 3943.425 222.815
SimilarWeights 2431.907 2482.462 52.265
Bounded 5094.246 5233.513 65.267

FPS LSC
Mean Max SD

eil51_n50 Uncorrelated 2810.509 2832.496 18.076
SimilarWeights 1426.135 1459.953 21.990
Bounded 4231.299 4241.199 1.881

eil76_n75 Uncorrelated 5392.575 5514.666 73.029
SimilarWeights 1474.803 1513.404 21.346
Bounded 4054.815 4102.167 21.440

eil101_n100 Uncorrelated 3664.369 3846.172 124.994
SimilarWeights 2436.374 2482.462 49.731
Bounded 5067.070 5233.513 55.587

TABLE 8.1: Comparison of the total reward between running the state-
of-art approach MA2B and the IBEA with the selection being FPS and
the indicator being LHV and LSC respectively. Each approach runs 30
times on the TTP instances. Highlighted are the results that are better

than MA2B.
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8.5 Conclusion
In this chapter, we have investigated a new bi-objective travelling thief problem
which optimises both the total reward and the total weight. We have proposed
a hybrid indicator-based evolutionary algorithm (IBEA) that utilises the exact dy-
namic programming algorithm for the underlying PWT problem as a subroutine to
evolve the individuals. This approach guarantees the spread of solutions, without
introducing additional spread mechanisms. Furthermore, we have designed and
studied novel indicators and selection schemes that take advantage of the infor-
mation in the Pareto fronts generated by the exact approach for evolving solutions
towards the global Pareto optimality. Our results show that this approach solves the
problem well, because its by-products, which are the results for the single-objective
travelling thief problem, beat the state-of-the-art approach.
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Chapter 9

Conclusions

In this thesis, we presented our investigations for complex and multi-component
optimisation problems, especially the travelling thief problem (TTP). The TTP is a
benchmark problem inspired by the multi-component optimisation in logistics and
supply chain management. Our focus of attention was on the motivations, insights
and approaches.

The context of our investigations is described in Chapters 2 and 3. We introduced
the general optimisation problems and motivation to solve the multi-component op-
timisation problems by using two real-world cases in Chapter 2. One of them is our
case-study for the renewable energy industry, and the other is one of the original
inspirations of the TTP. Furthermore, the mathematical definition of the TTP was
introduced, as well as state-of-the-art development of the TTP, including existing
approximate approaches for the TTP and a relevant problem: the packing while
travelling (PWT) problem. In Chapter 3, diverse approaches for optimisation prob-
lems were discussed and some examples were given in terms of exact and heuristic
approaches, as well as multi-objective optimisation.

In Chapter 4, we elaborated the case-study in the renewable energy industry,
which provides insights into the arrays of submerged wave energy converters (WECs).
WECs capture energy from the movement of waves in order to generate electricity or
to pump water onshore to create potable water by reverse osmosis. The interactions
of each individual WEC in an array have a significant impact on the overall power
absorption of the farm, which demonstrates how complex or multi-component sys-
tems operate in the real-world. Hence optimising each WEC individually cannot
yield overall optimality. A second major obstruction to optimisation is that the
simulations of the interactions are computationally prohibitively expensive, taking
hours or even days to complete. Through model approximations and caching, we
achieved up to 350-fold speed-ups in the simulation times needed, which in turn
allowed us to optimise the interactions in WEC arrays iteratively. Our approach
for tackling this problem is particularly problem-specific, which, to some extent,
motivates a more general way of investigating the multi-component optimisation
problems.

Within Chapter 5, we have paid special attention to the PWT problem, which is a
simplified version of the TTP, with the tour predefined. The PWT problem is similar
to the classical 0-1 knapsack problem but is more complex due to the nonlinearity
introduced by the TTP. Hence the investigations into it also provide better insights
into the TTP. With regard to the study of the renting rate that connects the profit
and the cost part of the problem, we have shown through theoretical and experi-
mental investigations how the renting rate affects the number of items that can be
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eliminated by the simple pre-processing scheme. Furthermore, we have constructed
instances in a theoretical and experimental way where a simple baseline (1 + 1) EA
fails to obtain an optimal solution.

Our study and examination of the non-linear PWT problem continued in Chap-
ter 6. With a better understanding of the nonlinearity of the PWT problem, a dy-
namic programming algorithm has been designed to solve the problem in pseudo-
polynomial time. The algorithm later became the key to better understanding the
TTP and to form hybrid algorithms, combining with meta-heuristics, to solve the
TTP. We have shown that the original objective of the problem is hard to approxi-
mate and have given a fully polynomial approximation scheme (FPTAS) for optimis-
ing the amount that can be gained for the smallest possible travel cost. Our exper-
imental results on different types of instances show the advantage of the dynamic
programming over the previous approach, based on mixed integer programming
and branch-infer-and-bound concepts. On the other hand, the FPTAS demonstrated
its effectiveness for instances with a large weight and profit range in our specially
designed experiments.

Despite the fact that the TTP has attracted significant attention in recent years
within the Evolutionary Computation community and many approximate approaches
have been proposed for it, exact approaches are still lacking. In Chapter 7, we have
presented and evaluated our exact approaches for the TTP based on dynamic pro-
gramming, branch and bound method, and constraint programming. In addition,
the exact solutions provided by our DP approach have been used to evaluate the
performance of current state-of-the-art TTP approximate approaches. Our investi-
gations show that, in most cases, they are obtaining close to optimality, while for a
small fraction of tested instances, a gap to the optimal solutions of more than 10% is
observed.

In Chapter 8, we proposed a novel indicator-based hybrid evolutionary approach
that combines approximate and exact algorithms. We applied it to a new bi-criteria
formulation of the TTP. Our approach employs the exact dynamic programming
algorithm for the underlying PWT problem as a subroutine within a bi-objective
evolutionary algorithm. This design takes advantage of the data extracted from the
Pareto fronts generated by the dynamic program to achieve better solutions. Fur-
thermore, we developed a number of novel indicators and selection mechanisms to
strengthen the synergy between the two algorithmic components of our approach.
The results of the computational experiments show that the approach is capable of
outperforming the state-of-the-art results from the single-objective counterpart.

In general, our studies contribute theoretical insights of the TTP, which help
to form the exact and heuristic hybrid approaches. However, compared with the
TSP, our best exact approach can only solve very small instances, and more efficient
heuristic operator of TTP is yet to be found. The future work certainly lies on the
direction on finding better exact and approximate approaches or operators. Mean-
while, our study on dynamic programming and FPTAS demonstrate their efficiency
on the underlying knapsack problem of the TTP, which might be further investi-
gated in terms of the hybrid approaches with heuristics similar to our proposed
one.
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and T. Stützle. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 324–
335. ISBN: 978-3-642-15461-4.

[90] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA, USA: MIT Press, 1992. ISBN: 0-262-11170-
5.

[91] M. Lagoun, A. Benalia, and M. Benbouzid. “Ocean wave converters: State
of the art and current status”. In: IEEE International Energy Conference. 2010,
pp. 636–641.

[92] D. M. Lambert, M. C. Cooper, and J. D. Pagh. “Supply chain management:
implementation issues and research opportunities”. In: The international jour-
nal of logistics management 9.2 (1998), pp. 1–20.

[93] O. E. Landman**. “The inheritance of acquired characteristics”. In: Annual
Review of Genetics 25.1 (1991), pp. 1–20.

[94] W. B. Langdon, R. Poli, N. F. McPhee, and J. R. Koza. “Genetic Program-
ming: An Introduction and Tutorial, with a Survey of Techniques and Appli-
cations”. In: Computational Intelligence: A Compendium. Ed. by J. Fulcher and
L. C. Jain. Vol. 115. Studies in Computational Intelligence. Springer, 2008,
pp. 927–1028. ISBN: 978-3-540-78292-6. DOI: 10.1007/978-3-540-78293-
3_22. URL: https://doi.org/10.1007/978-3-540-78293-3_22.

[95] G. Laporte. “The Traveling Salesman Problem, the Vehicle Routing Prob-
lem, and Their Impact on Combinatorial Optimization”. In: IJSDS 1.2 (2010),
pp. 82–92. DOI: 10.4018/jsds.2010040104. URL: https://doi.org/
10.4018/jsds.2010040104.

[96] P. Larrañaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic. “Genetic Al-
gorithms for the Travelling Salesman Problem: A Review of Representations
and Operators”. In: Artificial Intelligence Review 13.2 (Apr. 1999), pp. 129–170.
ISSN: 1573-7462. DOI: 10.1023/A:1006529012972. URL: https://doi.
org/10.1023/A:1006529012972.

[97] C.-H. Lee. WAMIT Theory Manual. Massachusetts Institute of Technology,
1995.

[98] J. van Leeuwen, ed. Handbook of Theoretical Computer Science, Volume A: Algo-
rithms and Complexity. Elsevier and MIT Press, 1990. ISBN: 0-444-88071-2.

https://doi.org/https://doi.org/10.1016/S0377-2217(96)00170-1
http://www.sciencedirect.com/science/article/pii/S0377221796001701
http://www.sciencedirect.com/science/article/pii/S0377221796001701
https://doi.org/10.1007/978-3-540-78293-3_22
https://doi.org/10.1007/978-3-540-78293-3_22
https://doi.org/10.1007/978-3-540-78293-3_22
https://doi.org/10.4018/jsds.2010040104
https://doi.org/10.4018/jsds.2010040104
https://doi.org/10.4018/jsds.2010040104
https://doi.org/10.1023/A:1006529012972
https://doi.org/10.1023/A:1006529012972
https://doi.org/10.1023/A:1006529012972


Bibliography 121

[99] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin. Benchmark Functions for
the CEC’2013 Special Session and Competition on Large-Scale Global Optimization.
2013.

[100] C. Lin, K. Choy, G. Ho, S. Chung, and H. Lam. “Survey of Green Vehicle
Routing Problem: Past and future trends”. In: Expert Systems with Applications
41.4, Part 1 (2014), pp. 1118–1138. ISSN: 0957-4174. DOI: 10.1016/j.eswa.
2013.07.107.

[101] S. Lin and B. W. Kernighan. “An Effective Heuristic Algorithm for the Traveling-
Salesman Problem”. In: Operations Research 21.2 (1973), pp. 498–516. DOI: 10.
1287/opre.21.2.498. URL: https://doi.org/10.1287/opre.21.
2.498.

[102] C. Linton. “Radiation and diffraction of water waves by a submerged sphere
in finite depth”. In: Ocean Engineering 18.1 (1991), pp. 61–74.

[103] I. López, J. Andreu, S. Ceballos, I. Martínez de Alegría, and I. Kortabarria.
“Review of wave energy technologies and the necessary power-equipment”.
In: Renewable and Sustainable Energy Reviews 27 (2013), pp. 413–434.

[104] N. Lourenço, F. B. Pereira, and E. Costa. “An Evolutionary Approach to the
Full Optimization of the Traveling Thief Problem”. In: Evolutionary Compu-
tation in Combinatorial Optimization: 16th European Conference, EvoCOP 2016,
Porto, Portugal, March 30 – April 1, 2016, Proceedings. Ed. by F. Chicano, B.
Hu, and P. García-Sánchez. Cham: Springer International Publishing, 2016,
pp. 34–45. ISBN: 978-3-319-30698-8. DOI: 10.1007/978-3-319-30698-
8_3. URL: https://doi.org/10.1007/978-3-319-30698-8_3.

[105] P. A. Lynn. Electricity from Wave and Tide: An Introduction to Marine Energy.
John Wiley & Sons, 2013.

[106] L. D. Mann. “Application of ocean observations & analysis: The CETO wave
energy project”. In: Operational Oceanography in the 21st Century. Springer,
2011, pp. 721–729.

[107] L. Mann, A. Burns, and M. Ottaviano. “CETO, a carbon free wave power
energy provider of the future”. In: Proceedings of the 7th European Wave and
Tidal Energy Conference. 2007.

[108] S. Martello, D. Pisinger, and P. Toth. “Dynamic Programming and Strong
Bounds for the 0-1 Knapsack Problem”. In: Manage. Sci. 45.3 (Mar. 1999),
pp. 414–424. ISSN: 0025-1909. DOI: 10.1287/mnsc.45.3.414. URL: http:
//dx.doi.org/10.1287/mnsc.45.3.414.

[109] S. Martello and P. Toth. “A Note on 0.5-Bounded Greedy Algorithms for the
0/1 Knapsack Problem”. In: Inf. Process. Lett. 44.4 (1992), pp. 221–222. DOI:
10.1016/0020-0190(92)90089-E. URL: https://doi.org/10.
1016/0020-0190(92)90089-E.

[110] S. Martello and P. Toth. “An Exact Algorithm for the Two-Constraint 0 - 1
Knapsack Problem”. In: Operations Research 51.5 (2003), pp. 826–835. DOI: 10.
1287/opre.51.5.826.16757. URL: https://doi.org/10.1287/
opre.51.5.826.16757.

https://doi.org/10.1016/j.eswa.2013.07.107
https://doi.org/10.1016/j.eswa.2013.07.107
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1007/978-3-319-30698-8_3
https://doi.org/10.1007/978-3-319-30698-8_3
https://doi.org/10.1007/978-3-319-30698-8_3
https://doi.org/10.1287/mnsc.45.3.414
http://dx.doi.org/10.1287/mnsc.45.3.414
http://dx.doi.org/10.1287/mnsc.45.3.414
https://doi.org/10.1016/0020-0190(92)90089-E
https://doi.org/10.1016/0020-0190(92)90089-E
https://doi.org/10.1016/0020-0190(92)90089-E
https://doi.org/10.1287/opre.51.5.826.16757
https://doi.org/10.1287/opre.51.5.826.16757
https://doi.org/10.1287/opre.51.5.826.16757
https://doi.org/10.1287/opre.51.5.826.16757


122 Bibliography

[111] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. New York, NY, USA: John Wiley & Sons, Inc., 1990. ISBN: 0-471-92420-
2.

[112] S. Martello and P. Toth. “Upper Bounds and Algorithms for Hard 0-1 Knap-
sack Problems”. In: Operations Research 45.5 (1997), pp. 768–778. DOI: 10.
1287/opre.45.5.768. URL: https://doi.org/10.1287/opre.45.
5.768.

[113] M. S. R. Martins, M. El Yafrani, M. R. B. S. Delgado, M. Wagner, B. Ahiod, and
R. Lüders. “HSEDA: A Heuristic Selection Approach Based on Estimation of
Distribution Algorithm for the Travelling Thief Problem”. In: Proceedings of
the Genetic and Evolutionary Computation Conference. GECCO ’17. Berlin, Ger-
many: ACM, 2017, pp. 361–368. ISBN: 978-1-4503-4920-8. DOI: 10.1145/
3071178.3071235. URL: http://doi.acm.org/10.1145/3071178.
3071235.

[114] B. Mayoh, E. Tyugu, and J. Penjam. Constraint programming. Vol. 131. Springer
Science & Business Media, 2013.

[115] A. McCabe, G. Aggidis, and M. Widden. “Optimizing the shape of a surge-
and-pitch wave energy collector using a genetic algorithm”. In: Renewable
Energy 35.12 (2010), pp. 2767–2775.

[116] Y. Mei, X. Li, F. Salim, and X. Yao. “Heuristic evolution with Genetic Pro-
gramming for Traveling Thief Problem”. In: IEEE Congress on Evolutionary
Computation, CEC 2015, Sendai, Japan, May 25-28, 2015. IEEE, 2015, pp. 2753–
2760. ISBN: 978-1-4799-7492-4. DOI: 10.1109/CEC.2015.7257230. URL:
https://doi.org/10.1109/CEC.2015.7257230.

[117] Y. Mei, X. Li, and X. Yao. “Improving Efficiency of Heuristics for the Large
Scale Traveling Thief Problem”. In: Simulated Evolution and Learning: 10th
International Conference, SEAL 2014, Dunedin, New Zealand, December 15-18,
2014. Proceedings. Cham: Springer International Publishing, 2014, pp. 631–
643. ISBN: 978-3-319-13563-2. DOI: 10.1007/978-3-319-13563-2_53.

[118] Y. Mei, X. Li, and X. Yao. “On investigation of interdependence between
sub-problems of the Travelling Thief Problem”. In: Soft Comput. 20.1 (2016),
pp. 157–172. DOI: 10.1007/s00500-014-1487-2. URL: https://doi.
org/10.1007/s00500-014-1487-2.

[119] Z. Michalewicz. How to Solve It: Modern Heuristics 2e. Berlin, Heidelberg:
Springer-Verlag, 2010. ISBN: 3642061346.

[120] Z. Michalewicz. “Quo Vadis, Evolutionary Computation? - On a Growing
Gap between Theory and Practice”. In: Advances in Computational Intelligence
- IEEE World Congress on Computational Intelligence, WCCI 2012, Brisbane, Aus-
tralia, June 10-15, 2012. Plenary/Invited Lectures. Ed. by J. Liu, C. Alippi, B.
Bouchon-Meunier, G. W. Greenwood, and H. A. Abbass. Vol. 7311. Lecture
Notes in Computer Science. Springer, 2012, pp. 98–121. ISBN: 978-3-642-30686-
0. DOI: 10.1007/978-3-642-30687-7_6. URL: https://doi.org/
10.1007/978-3-642-30687-7_6.

https://doi.org/10.1287/opre.45.5.768
https://doi.org/10.1287/opre.45.5.768
https://doi.org/10.1287/opre.45.5.768
https://doi.org/10.1287/opre.45.5.768
https://doi.org/10.1145/3071178.3071235
https://doi.org/10.1145/3071178.3071235
http://doi.acm.org/10.1145/3071178.3071235
http://doi.acm.org/10.1145/3071178.3071235
https://doi.org/10.1109/CEC.2015.7257230
https://doi.org/10.1109/CEC.2015.7257230
https://doi.org/10.1007/978-3-319-13563-2_53
https://doi.org/10.1007/s00500-014-1487-2
https://doi.org/10.1007/s00500-014-1487-2
https://doi.org/10.1007/s00500-014-1487-2
https://doi.org/10.1007/978-3-642-30687-7_6
https://doi.org/10.1007/978-3-642-30687-7_6
https://doi.org/10.1007/978-3-642-30687-7_6


Bibliography 123

[121] B. L. Miller and D. E. Goldberg. “Genetic Algorithms, Tournament Selection,
and the Effects of Noise”. In: Complex Systems 9.3 (1995). URL: http://www.
complex-systems.com/abstracts/v09_i03_a02.html.

[122] M. Mitchell. An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT
Press, 1998. ISBN: 0262631857.

[123] M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998. ISBN: 978-
0-262-63185-3.

[124] M. Mohamed, G. Janiga, E. Pap, and D. Thévenin. “Multi-objective optimiza-
tion of the airfoil shape of Wells turbine used for wave energy conversion”.
In: Energy 36.1 (2011), pp. 438–446.

[125] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. “Branch-and-
bound Algorithms”. In: Discret. Optim. 19.C (Feb. 2016), pp. 79–102. ISSN:
1572-5286. DOI: 10.1016/j.disopt.2016.01.005. URL: http://dx.
doi.org/10.1016/j.disopt.2016.01.005.

[126] P. Moscato et al. “On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms”. In: Caltech concurrent computation
program, C3P Report 826 (1989), p. 1989.

[127] F. Neri, C. Cotta, and P. Moscato, eds. Handbook of Memetic Algorithms. Vol. 379.
Studies in Computational Intelligence. Springer, 2012. ISBN: 978-3-642-23246-
6. DOI: 10.1007/978-3-642-23247-3. URL: https://doi.org/10.
1007/978-3-642-23247-3.

[128] F. Neumann and A. Q. Nguyen. “On the Impact of Utility Functions in In-
teractive Evolutionary Multi-objective Optimization”. In: Simulated Evolu-
tion and Learning - 10th International Conference, SEAL 2014, Dunedin, New
Zealand, December 15-18, 2014. Proceedings. Ed. by G. Dick, W. N. Browne, P. A.
Whigham, M. Zhang, L. T. Bui, H. Ishibuchi, Y. Jin, X. Li, Y. Shi, P. Singh, K. C.
Tan, and K. Tang. Vol. 8886. Lecture Notes in Computer Science. Springer,
2014, pp. 419–430. ISBN: 978-3-319-13562-5. DOI: 10.1007/978-3-319-
13563-2_36. URL: http://dx.doi.org/10.1007/978-3-319-
13563-2_36.

[129] F. Neumann, S. Polyakovskiy, M. Skutella, L. Stougie, and J. Wu. “A Fully
Polynomial Time Approximation Scheme for Packing While Traveling”. In:
CoRR abs/1702.05217 (2017). arXiv: 1702.05217. URL: http://arxiv.
org/abs/1702.05217.

[130] F. Neumann and C. Witt. Bioinspired Computation in Combinatorial Optimiza-
tion:Algorithms and Their Computational Complexity. 1st. New York, NY, USA:
Springer-Verlag New York, Inc., 2010.

[131] J. Nocedal and S. J. Wright. Numerical Optimization. second. New York, NY,
USA: Springer, 2006.

[132] G. Nunes, D. Valério, P. Beirao, and J. S. Da Costa. “Modelling and control of
a wave energy converter”. In: Renewable Energy 36.7 (2011), pp. 1913–1921.

http://www.complex-systems.com/abstracts/v09_i03_a02.html
http://www.complex-systems.com/abstracts/v09_i03_a02.html
https://doi.org/10.1016/j.disopt.2016.01.005
http://dx.doi.org/10.1016/j.disopt.2016.01.005
http://dx.doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1007/978-3-642-23247-3
https://doi.org/10.1007/978-3-642-23247-3
https://doi.org/10.1007/978-3-642-23247-3
https://doi.org/10.1007/978-3-319-13563-2_36
https://doi.org/10.1007/978-3-319-13563-2_36
http://dx.doi.org/10.1007/978-3-319-13563-2_36
http://dx.doi.org/10.1007/978-3-319-13563-2_36
https://arxiv.org/abs/1702.05217
http://arxiv.org/abs/1702.05217
http://arxiv.org/abs/1702.05217


124 Bibliography

[133] M. N. Omidvar, X. Li, Y. Mei, and X. Yao. “Cooperative Co-Evolution With
Differential Grouping for Large Scale Optimization”. In: IEEE Trans. Evolu-
tionary Computation 18.3 (2014), pp. 378–393. DOI: 10.1109/TEVC.2013.
2281543. URL: https://doi.org/10.1109/TEVC.2013.2281543.

[134] M. N. Omidvar, X. Li, and K. Tang. “Designing benchmark problems for
large-scale continuous optimization”. In: Inf. Sci. 316 (2015), pp. 419–436. DOI:
10.1016/j.ins.2014.12.062. URL: https://doi.org/10.1016/j.
ins.2014.12.062.

[135] E. C. Osuna, W. Gao, F. Neumann, and D. Sudholt. “Speeding up evolution-
ary multi-objective optimisation through diversity-based parent selection”.
In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2017, Berlin, Germany, July 15-19, 2017. Ed. by P. A. N. Bosman. ACM, 2017,
pp. 553–560. ISBN: 978-1-4503-4920-8. DOI: 10.1145/3071178.3080294.
URL: http://doi.acm.org/10.1145/3071178.3080294.

[136] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1982. ISBN:
0-13-152462-3.

[137] D. Pisinger. Advanced Generator for 0-1 Knapsack Problem. URL: http://www.
diku.dk/~pisinger/codes.html.

[138] D. Pisinger. “Where Are the Hard Knapsack Problems?” In: Comput. Oper.
Res. 32.9 (Sept. 2005), pp. 2271–2284. ISSN: 0305-0548. DOI: 10.1016/j.
cor.2004.03.002.

[139] S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and F. Neu-
mann. “A comprehensive benchmark set and heuristics for the traveling thief
problem”. In: Genetic and Evolutionary Computation Conference, GECCO ’14,
Vancouver, BC, Canada, July 12-16, 2014. Ed. by D. V. Arnold. ACM, 2014,
pp. 477–484. ISBN: 978-1-4503-2662-9. DOI: 10.1145/2576768.2598249.
URL: http://doi.acm.org/10.1145/2576768.2598249.

[140] S. Polyakovskiy and F. Neumann. “The Packing While Traveling Problem”.
In: European Journal of Operational Research 258.2 (2017), pp. 424–439. DOI: 10.
1016/j.ejor.2016.09.035. URL: https://doi.org/10.1016/j.
ejor.2016.09.035.

[141] M. A. Potter and K. A. De Jong. “A cooperative coevolutionary approach
to function optimization”. In: Parallel Problem Solving from Nature — PPSN
III. Ed. by Y. Davidor, H.-P. Schwefel, and R. Männer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 249–257. ISBN: 978-3-540-49001-2.

[142] C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Perspectives: A
Guide to GA Theory. Norwell, MA, USA: Kluwer Academic Publishers, 2002.
ISBN: 1402072406.

[143] P. Refalo. “Principles and Practice of Constraint Programming – CP 2004”.
In: Springer, 2004. Chap. Impact-Based Search Strategies for Constraint Pro-
gramming, pp. 557–571.

https://doi.org/10.1109/TEVC.2013.2281543
https://doi.org/10.1109/TEVC.2013.2281543
https://doi.org/10.1109/TEVC.2013.2281543
https://doi.org/10.1016/j.ins.2014.12.062
https://doi.org/10.1016/j.ins.2014.12.062
https://doi.org/10.1016/j.ins.2014.12.062
https://doi.org/10.1145/3071178.3080294
http://doi.acm.org/10.1145/3071178.3080294
http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1145/2576768.2598249
http://doi.acm.org/10.1145/2576768.2598249
https://doi.org/10.1016/j.ejor.2016.09.035
https://doi.org/10.1016/j.ejor.2016.09.035
https://doi.org/10.1016/j.ejor.2016.09.035
https://doi.org/10.1016/j.ejor.2016.09.035


Bibliography 125

[144] C. Rego, D. Gamboa, F. Glover, and C. Osterman. “Traveling salesman prob-
lem heuristics: Leading methods, implementations and latest advances”. In:
European Journal of Operational Research 211.3 (2011), pp. 427–441. DOI: 10.
1016/j.ejor.2010.09.010. URL: https://doi.org/10.1016/j.
ejor.2010.09.010.

[145] G. Reinelt. “TSPLIB- a Traveling Salesman Problem Library”. In: ORSA Jour-
nal of Computing 3.4 (1991), pp. 376–384.

[146] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). New York, NY, USA: Elsevier Science Inc., 2006.
ISBN: 0444527265.

[147] F. Rothlauf. Design of Modern Heuristics: Principles and Application. 1st. Springer
Publishing Company, Incorporated, 2011. ISBN: 3540729615.

[148] G. Rozenberg, T. Bäck, and J. N. Kok, eds. Handbook of Natural Computing.
Springer, 2012. ISBN: 978-3-540-92909-3. DOI: 10 . 1007 / 978 - 3 - 540 -
92910-9. URL: https://doi.org/10.1007/978-3-540-92910-9.

[149] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 2nd ed.
Pearson Education, 2003. ISBN: 0137903952.

[150] S. H. Salter. “Wave power”. In: Nature 249.5459 (1974), pp. 720–724.

[151] A. Schrijver. Theory of Linear and Integer Programming. New York, NY, USA:
John Wiley & Sons, Inc., 1986. ISBN: 0-471-90854-1.

[152] J. T. Scruggs, S. M. Lattanzio, A. A. Taflanidis, and I. L. Cassidy. “Optimal
causal control of a wave energy converter in a random sea”. In: Applied Ocean
Research 42.2013 (2013), pp. 1–15. DOI: 10.1016/j.apor.2013.03.004.

[153] N. Y. Sergiienko, B. S. Cazzolato, B. Ding, and M. Arjomandi. Frequency do-
main model of the three-tether WECs array. [Online; accessed 2-February-2016].
2016. DOI: http://dx.doi.org/10.13140/RG.2.1.1917.0324.
URL: https://www.researchgate.net/publication/291972368_
Frequency_domain_model_of_the_three-tether_WECs_array.

[154] E. A. Silver. “An Overview of Heuristic Solution Methods”. In: IN PRO-
CEEDINGS OF THE 7TH ANNUAL INTERNATIONAL CONFERENCE ON
INDUSTRIAL ENGINEERING THEORY, APPLICATIONS AND PRACTICE.
2002.

[155] A. Sinha, P. Malo, and K. Deb. “A Review on Bilevel Optimization: From
Classical to Evolutionary Approaches and Applications”. In: IEEE Trans. Evo-
lutionary Computation 22.2 (2018), pp. 276–295. DOI: 10.1109/TEVC.2017.
2712906. URL: https://doi.org/10.1109/TEVC.2017.2712906.

[156] M. Sipser. Introduction to the theory of computation. PWS Publishing Company,
1997. ISBN: 978-0-534-94728-6.

[157] A. Sosa-Ascencio, G. Ochoa, H. Terashima-Marin, and S. E. Conant-Pablos.
“Grammar-based generation of variable-selection heuristics for constraint
satisfaction problems”. In: Genetic Programming and Evolvable Machines 17.2
(June 2016), pp. 119–144. ISSN: 1573-7632. DOI: 10.1007/s10710-015-
9249-1. URL: https://doi.org/10.1007/s10710-015-9249-1.

https://doi.org/10.1016/j.ejor.2010.09.010
https://doi.org/10.1016/j.ejor.2010.09.010
https://doi.org/10.1016/j.ejor.2010.09.010
https://doi.org/10.1016/j.ejor.2010.09.010
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1016/j.apor.2013.03.004
https://doi.org/http://dx.doi.org/10.13140/RG.2.1.1917.0324
https://www.researchgate.net/publication/291972368_Frequency_domain_model_of_the_three-tether_WECs_array
https://www.researchgate.net/publication/291972368_Frequency_domain_model_of_the_three-tether_WECs_array
https://doi.org/10.1109/TEVC.2017.2712906
https://doi.org/10.1109/TEVC.2017.2712906
https://doi.org/10.1109/TEVC.2017.2712906
https://doi.org/10.1007/s10710-015-9249-1
https://doi.org/10.1007/s10710-015-9249-1
https://doi.org/10.1007/s10710-015-9249-1


126 Bibliography

[158] M. A. Srokosz. “The submerged sphere as an absorber of wave power”. In:
Fluid Mechanics 95.4 (1979), pp. 717–741.

[159] J. Stolk, I. Mann, A. Mohais, and Z. Michalewicz. “Combining vehicle routing
and packing for optimal delivery schedules of water tanks”. In: OR Insight
26.3 (2013), pp. 167–190. DOI: 10.1057/ori.2013.1. URL: http://dx.
doi.org/10.1057/ori.2013.1.

[160] A. Strzeźek, L. Trammer, and M. Sydow. “DiverGene: Experiments on con-
trolling population diversity in genetic algorithm with a dispersion opera-
tor”. In: 2015 Federated Conference on Computer Science and Information Systems
(FedCSIS). Sept. 2015, pp. 155–162. DOI: 10.15439/2015F411.

[161] T. Stützle and H. H. Hoos. “MAX MIN Ant System”. In: Future Generation
Computer Systems 16.8 (2000), pp. 889–914.

[162] H. A. Taha. Operations Research: An Introduction (9th Edition). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2010. ISBN: 013255593x.

[163] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise. Benchmark functions
for the cec’2010 special session and competition on large-scale global optimization.
Tech. rep. Nature Inspired Computation and Applications Laboratory, 2009.

[164] G. Tao and Z. Michalewicz. “Inver-over Operator for the TSP”. In: Parallel
Problem Solving from Nature - PPSN V, 5th International Conference, Amster-
dam, The Netherlands, September 27-30, 1998, Proceedings. Ed. by A. E. Eiben, T.
Bäck, M. Schoenauer, and H. Schwefel. Vol. 1498. Lecture Notes in Computer
Science. Springer, 1998, pp. 803–812. ISBN: 3-540-65078-4. DOI: 10.1007/
BFb0056922. URL: https://doi.org/10.1007/BFb0056922.

[165] P. Toth. “Dynamic programming algorithms for the Zero-One Knapsack Prob-
lem”. In: Computing 25.1 (1980), pp. 29–45. DOI: 10.1007/BF02243880.
URL: https://doi.org/10.1007/BF02243880.

[166] E. P. K. Tsang. Foundations of constraint satisfaction. Computation in cognitive
science. Academic Press, 1993. ISBN: 978-0-12-701610-8.

[167] L. Vanneschi and R. Poli. “Genetic Programming - Introduction, Applica-
tions, Theory and Open Issues”. In: Handbook of Natural Computing. Ed. by
G. Rozenberg, T. Bäck, and J. N. Kok. Springer, 2012, pp. 709–739. ISBN: 978-
3-540-92909-3. DOI: 10.1007/978-3-540-92910-9_24. URL: https:
//doi.org/10.1007/978-3-540-92910-9_24.

[168] M. Wagner. “Stealing Items More Efficiently with Ants: A Swarm Intelligence
Approach to the Travelling Thief Problem”. In: Swarm Intelligence: 10th Inter-
national Conference, ANTS 2016, Brussels, Belgium, September 7-9, 2016, Proceed-
ings. Ed. by M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C.
Pinciroli, and T. Stützle. Springer, 2016, pp. 273–281.

[169] M. Wagner, M. Lindauer, M. Mısır, S. Nallaperuma, and F. Hutter. “A case
study of algorithm selection for the traveling thief problem”. In: Journal of
Heuristics (2017), pp. 1–26.

[170] B. L. Welch. “The Generalization of ‘Student’s’ Problem when Several Differ-
ent Population Variances are Involved”. In: Biometrika 34.1/2 (1947), pp. 28–
35. ISSN: 00063444. URL: http://www.jstor.org/stable/2332510.

https://doi.org/10.1057/ori.2013.1
http://dx.doi.org/10.1057/ori.2013.1
http://dx.doi.org/10.1057/ori.2013.1
https://doi.org/10.15439/2015F411
https://doi.org/10.1007/BFb0056922
https://doi.org/10.1007/BFb0056922
https://doi.org/10.1007/BFb0056922
https://doi.org/10.1007/BF02243880
https://doi.org/10.1007/BF02243880
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1007/978-3-540-92910-9_24
http://www.jstor.org/stable/2332510


Bibliography 127

[171] D. Wolpert and W. G. Macready. “No free lunch theorems for optimization”.
In: IEEE Trans. Evolutionary Computation 1.1 (1997), pp. 67–82. DOI: 10.1109/
4235.585893. URL: https://doi.org/10.1109/4235.585893.

[172] G. X. Wu. “Radiation and Diffraction by a Submerged Sphere Advancing
in Water Waves of Finite Depth”. In: Proceedings: Mathematical and Physical
Sciences 448.1932 (1995), pp. 29–54. DOI: 10.2307/52502.

[173] J. Wu, S. Polyakovskiy, and F. Neumann. “On the Impact of the Renting Rate
for the Unconstrained Nonlinear Knapsack Problem”. In: Proceedings of the
2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA,
July 20 - 24, 2016. 2016, pp. 413–419.

[174] J. Wu, S. Polyakovskiy, M. Wagner, and F. Neumann. “Evolutionary Com-
putation plus Dynamic Programming for the Bi-Objective Travelling Thief
Problem”. In: CoRR abs/1802.02434 (2018). arXiv: 1802.02434. URL: http:
//arxiv.org/abs/1802.02434.

[175] J. Wu, S. Shekh, N. Y. Sergiienko, B. S. Cazzolato, B. Ding, F. Neumann, and
M. Wagner. “Fast and Effective Optimisation of Arrays of Submerged Wave
Energy Converters”. In: Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference, Denver, CO, USA, July 20 - 24, 2016. 2016, pp. 1045–
1052.

[176] J. Wu, M. Wagner, S. Polyakovskiy, and F. Neumann. “Exact Approaches
for the Travelling Thief Problem”. In: Simulated Evolution and Learning - 11th
International Conference, SEAL 2017, Shenzhen, China, November 10-13, 2017,
Proceedings. 2017, pp. 110–121.

[177] J. Xie, Y. Mei, A. T. Ernst, X. Li, and A. Song. “A Bi-Level Optimization Model
for Grouping Constrained Storage Location Assignment Problems”. In: IEEE
Trans. Cybernetics 48.1 (2018), pp. 385–398. DOI: 10.1109/TCYB.2016.
2638820. URL: https://doi.org/10.1109/TCYB.2016.2638820.

[178] M. E. Yafrani, S. Chand, A. Neumann, B. Ahiod, and M. Wagner. “Multi-
objectiveness in the Single-objective Traveling Thief Problem”. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion. GECCO ’17.
Berlin, Germany: ACM, 2017, pp. 107–108. ISBN: 978-1-4503-4939-0. DOI: 10.
1145/3067695.3076010. URL: http://doi.acm.org/10.1145/
3067695.3076010.

[179] G. Yang and E. Nikolova. “Approximation Algorithms for Route Planning
with Nonlinear Objectives”. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. Ed. by D.
Schuurmans and M. P. Wellman. AAAI Press, 2016, pp. 3209–3217.

[180] Y. Zhou and J. He. “A Runtime Analysis of Evolutionary Algorithms for Con-
strained Optimization Problems”. In: IEEE Trans. Evolutionary Computation
11.5 (2007), pp. 608–619. DOI: 10.1109/TEVC.2006.888929. URL: http:
//dx.doi.org/10.1109/TEVC.2006.888929.

https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.2307/52502
https://arxiv.org/abs/1802.02434
http://arxiv.org/abs/1802.02434
http://arxiv.org/abs/1802.02434
https://doi.org/10.1109/TCYB.2016.2638820
https://doi.org/10.1109/TCYB.2016.2638820
https://doi.org/10.1109/TCYB.2016.2638820
https://doi.org/10.1145/3067695.3076010
https://doi.org/10.1145/3067695.3076010
http://doi.acm.org/10.1145/3067695.3076010
http://doi.acm.org/10.1145/3067695.3076010
https://doi.org/10.1109/TEVC.2006.888929
http://dx.doi.org/10.1109/TEVC.2006.888929
http://dx.doi.org/10.1109/TEVC.2006.888929


128 Bibliography

[181] E. Zitzler, K. Deb, and L. Thiele. “Comparison of Multiobjective Evolution-
ary Algorithms: Empirical Results”. In: Evolutionary Computation 8.2 (2000),
pp. 173–195. DOI: 10.1162/106365600568202. URL: https://doi.
org/10.1162/106365600568202.

[182] E. Zitzler and S. Künzli. “Indicator-Based Selection in Multiobjective Search”.
In: Parallel Problem Solving from Nature - PPSN VIII, 8th International Confer-
ence, Birmingham, UK, September 18-22, 2004, Proceedings. Ed. by X. Yao, E. K.
Burke, J. A. Lozano, J. Smith, J. J. M. Guervós, J. A. Bullinaria, J. E. Rowe, P.
Tiño, A. Kabán, and H. Schwefel. Vol. 3242. Lecture Notes in Computer Sci-
ence. Springer, 2004, pp. 832–842. ISBN: 3-540-23092-0. DOI: 10.1007/978-
3-540-30217-9_84. URL: https://doi.org/10.1007/978-3-540-
30217-9_84.

[183] E. Zitzler, M. Laumanns, and L. Thiele. “SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization”. In: (2002),
pp. 95–100.

[184] E. Zitzler and L. Thiele. “Multiobjective Optimization Using Evolutionary
Algorithms - A Comparative Case Study”. In: Parallel Problem Solving from
Nature - PPSN V, 5th International Conference, Amsterdam, The Netherlands, Septem-
ber 27-30, 1998, Proceedings. Ed. by A. E. Eiben, T. Bäck, M. Schoenauer, and
H. Schwefel. Vol. 1498. Lecture Notes in Computer Science. Springer, 1998,
pp. 292–304. ISBN: 3-540-65078-4. DOI: 10.1007/BFb0056872. URL: https:
//doi.org/10.1007/BFb0056872.

https://doi.org/10.1162/106365600568202
https://doi.org/10.1162/106365600568202
https://doi.org/10.1162/106365600568202
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1007/BFb0056872

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Real-World Multi-Component Optimisation Problems and the Travelling Thief Problem
	Optimisation Problem
	Single Objective Optimisation Problems
	Multi-objective Optimisation Problems

	Real-World Multi-Component Optimisation Problems
	The Wave Energy Converters Optimisation Problem
	The Transportation of Water Tanks Problem

	The Travelling Thief Problem
	The Travelling Salesman Problem
	The Knapsack Problem
	The Definition of the TTP
	The Packing While Travelling Problem
	The Benchmark Library of the TTP
	Single Objective and Multi-Objective

	Conclusion

	Exact and Heuristic Approaches for Optimisation Problems
	Search Algorithms
	Exact Approaches
	Dynamic Programming
	The Branch and Bound Method
	Constraint Programming

	Heuristics
	Local Search
	Simulated Annealing
	Evolutionary Algorithms
	Memetic Algorithm
	Swarm Intelligence

	Multi-objective Optimisation
	Non-dominated Sorting Genetic Algorithm II
	Strength Pareto Evolutionary Algorithm 2
	Indicator-based Evolutionary Algorithm

	Existing Approaches for the TTP
	Conclusion

	Fast and Effective Optimisation of Arrays of Submerged Wave Energy Converters
	Model of the Three-Tether WEC Array
	System description
	System dynamics
	Performance index
	Model specification

	Array Optimisation
	Model Approximation
	Model Speed-Up Through Caching

	Computational Study
	Radii Optimisation
	Placement Optimisation

	Conclusions

	On the Impact of the Renting Rate for the Packing While Travelling Problem
	Impact of the Renting Rate
	General Bounds
	Item-Specific Bounds

	Maximising Non-Trivial Items Rate
	Hard Instances for the (1+1) EA
	Theoretically Constructed Instance
	Evolving Hard Instances

	Conclusion

	A Dynamic Programming and Corresponding Fully Polynomial Time Approximation Scheme for the Packing While Traveling Problem
	Dynamic Programming
	Fully Polynomial Time Approximation
	Experiments and Results
	Conclusion

	Exact Approaches for the Travelling Thief Problem
	Exact Approaches to the TTP
	Dynamic Programming
	Branch and Bound Search
	Constraint Programming

	Computational Experiments
	Computational Set Up
	Comparison of the exact approaches
	Comparison between DP and Approximate Approaches

	Conclusion

	Evolutionary Computation plus Dynamic Programming for the Bi-Objective Travelling Thief Problem
	The Bi-objective Travelling Thief Problem
	Prerequisites
	DP Front for a Given Tour
	Generation of Multiple DP Fronts

	A hybrid evolutionary approach
	Design of Indicators
	Parent Selection Mechanisms
	Mutation and Crossover Operators

	Computational Experiments
	Computational Set Up
	Results and Analysis

	Conclusion

	Conclusions
	Bibliography



