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On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour, Aneta Neumann, Frank Neumann

Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Australia

Abstract. Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single-
and multi-objective baseline evolutionary algorithms for the classical
knapsack problem where the capacity of the knapsack varies over time.
We establish different benchmark scenarios where the capacity changes
every τ iterations according to a uniform or normal distribution. Our
experimental investigations analyze the behavior of our algorithms in
terms of the magnitude of changes determined by parameters of the cho-
sen distribution, the frequency determined by τ and the class of knapsack
instance under consideration. Our results show that the multi-objective
approaches using a population that caters for dynamic changes have a
clear advantage on many benchmarks scenarios when the frequency of
changes is not too high.

1 Introduction

Evolutionary algorithms [1] have been widely applied to a wide range of combi-
natorial optimization problems. They often provide good solutions to complex
problems without a large design effort. Furthermore, evolutionary algorithms and
other bio-inspired computing have been applied to many dynamic and stochastic
problems [2,3] as they have the ability to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions [4]. However, in real-world applications the optimization goal, such as max-
imizing profit or minimizing costs, often does not change. Instead, resources to
achieve this goal change over time and influence the quality of solutions that can
be obtained. In the context of continuous optimization, dynamically changing
constraints have been investigated in [2,5]. Theoretical investigations for com-
binatorial optimization problems with dynamically changing constraints have
recently been carried out [6,7]. The goal of this paper is to contribute to this
research direction from an experimental perspective.

In this paper, we investigate evolutionary algorithms for the knapsack prob-
lem where the capacity of the knapsack changes dynamically. We design a bench-
mark set for the dynamic knapsack problem. This benchmark set builds on clas-
sical static knapsack instances and varies the constraint bound over time. The
change in the constraint bound is done randomly every τ iterations, where τ is
a parameter determining the frequency of changes. The magnitude of a change



is either chosen according to a uniform distribution in an interval [−r, r], where
r determines the magnitude of changes. Furthermore, we examine changes ac-
cording to the normal distribution N (0, σ2) with mean 0 and standard deviation
σ. Here σ is used to determine the magnitude of changes and large values of σ
make larger changes more likely. We investigate different approaches analyzed
theoretically with respect to their runtime behavior in [7]. The algorithms that
we consider are a classical (1+1) EA and multi-objective approaches that are
able to store infeasible solutions as part of the population in addition to feasible
solutions. Furthermore, the range of feasible and infeasible solutions stored in
the multi-objective algorithms can be set based on the anticipated change of the
constraint bound.

In our experimental investigations, we start by examining the knapsack prob-
lem where all weights are set to one and vary the constraint bound. This matches
the setting of the optimization of a linear function with a dynamic uniform
constraint analyzed in [7]. Our experimental results match the theoretical ones
obtained in this paper and show that the multi-objective approaches using a
population to cater for dynamic changes significantly reduce the offline error
that occurred during the run of the algorithms. For the general setting, we
investigate different classes of knapsack problem, such as with uniformly cho-
sen weights and profits and bounded strongly correlated instances. We examine
the behaviour of the algorithms while varying the frequency and magnitude of
changes. Our results show that the (1+1) EA has an advantage over the multi-
objective algorithms when the frequency of changes is high. In this case, the
population of the multi-objective approaches is slower to adapt to the changes
that occur. On the other hand, a lower frequency of changes plays in favor of
the multi-objective approaches, if the weights and profits are not correlated to
make the instances particularly difficult to solve.

The outline of the paper is as follows: Section 2 introduces the problem def-
inition and three algorithms we studied; the dynamic knapsack problem and
experimental setting is presented in Section 3; in Section 4 we analyze the ex-
perimental results in detail, and a conclusion follows in Section 5.

2 Preliminaries

In this section, we define the Knapsack Problem (KP) and further notations
used in the rest of this paper. We present (1+1) EA and two multi-objective
algorithms called MOEA and MOEA D that are considered in this paper.

2.1 Problem Definition

We investigate the performance of different evolutionary algorithms on the KP
under dynamic constraint. There are n items with profits {p1, . . . , pn} and weights
{w1, . . . , wn}. A solution x is a bit string of {0, 1}n which has the overall weight
w(x) =

∑n
i=1 wixi and profit p(x) =

∑n
i=1 pixi. The goal is to compute a solu-

tion x∗ = argmax{p(x) | x ∈ {0, 1}n ∧ w(x) ≤ C} of maximal profit which has
weight at most C.



Algorithm 1: (1+1) EA

1 x← previous best solution;
2 while stopping criterion not met do
3 y ← flip each bit of x independently with probability of 1

n
;

4 if f1+1(y) ≥ f1+1(x) then
5 x← y;

We consider two types of this problem based on the consideration of the
weights. Firstly, we assume that all the weights are one and uniform dynamic
constraint is applied. In this case, the limitation is on the number of items chosen
for each solution and the optimal solution is to pick C items with the highest
profits. Next, we consider the general case where the profits and weights are
linear integers under linear constraint on the weight.

2.2 Algorithms

We investigate the performance of three algorithms in this paper. The initial
solution for all these algorithms is a solution with items chosen uniformly at
random. After a dynamic change to constraint C happens, all the algorithms
update the solution(s) and start the optimization process with the new capacity.
This update is addressing the issue that after a dynamic change, current solu-
tions may become infeasible or the distance of its weight from the new capacity
become such that it is not worth to be kept anymore. (1+1) EA (Algorithm 1)
flips each bit of the current solution with the probability of 1

n as the mutation
step. Afterward, the algorithm chooses between the original solution and the
mutated one using the value of the fitness function. Let pmax = maxni=1 pi be
the maximum profit among all the items. The fitness function that we use in
(1+1) EA is as follows:

f1+1(x) = p(x)− (n · pmax + 1) · ν(x)

where ν(x) = max {0, w(x)− C} is the constraint violation of x. If x is a feasible
solution, then w(x) ≤ C and ν(x) = 0. Otherwise, ν(x) is the weight distance of
w(x) from C.

The algorithm aims to maximize f1+1 which consists of two terms. The first
term is the total profit of the chosen items and the second term is the applied
penalty to infeasible solutions. The amount of penalty guarantees that a fea-
sible solution always dominates an infeasible solution. Moreover, between two
infeasible solutions, the one with weight closer to C dominates the other one.

The other algorithm we consider in this paper is a multi-objective evo-
lutionary algorithm (Algorithm 2), which is inspired by a theoretical study
on the performance of evolutionary algorithms in the reoptimization of lin-
ear functions under dynamic uniform constraints [7]. Each solution x in the
objective space is a two-dimensional point fMOEA(x) = (w(x), p(x)). We say



Algorithm 2: MOEA

1 Update C;
2 S+ ← {z ∈ S+ ∪ S−|C < w(z) ≤ C + δ};
3 S− ← {z ∈ S+ ∪ S−|C − δ ≤ w(z) ≤ C};
4 if S+ ∪ S− = ∅ then
5 q ← best previous solution;

6 if C < w(q) ≤ C + δ then
7 S+ ← {q} ∪ S+;
8 else if C − δ ≤ w(q) ≤ C then
9 S− ← {q} ∪ S−;

10 while a change happens do
11 if S+ ∪ S− = ∅ then
12 Initialize S+ and S− by Repair(q,δ,C);
13 else
14 choose x ∈ S+ ∪ S− uniformly at random;
15 y ← flip each bit of x independently with probability 1

n
;

16 if (C < w(y) ≤ C + δ) ∧ (@p ∈ S+ : p <MOEA y) then
17 S+ ← (S+ ∪ {y}) \ {z ∈ S+|y �MOEA z};
18 if (C − δ ≤ w(y) ≤ C) ∧ (@p ∈ S− : p <MOEA y) then
19 S− ← (S− ∪ {y}) \ {z ∈ S−|y �MOEA z};

solution y dominates solution x w.r.t. fMOEA, denoted by y <MOEA x, if
w(y) = w(x) ∧ f(1+1)(y) ≥ f(1+1)(x).

According to the definition of <MOEA, two solutions are comparable only if
they have the same weight. Note that if x and y are infeasible and comparable,
then the one with higher profit dominates. MOEA uses a parameter denoted by
δ, which determines the maximum number of individuals that the algorithm is
allowed to store around the current C. For any weight in [C − δ, C + δ], MOEA
keeps a solution. The algorithm prepares for the dynamic changes by storing
nearby solutions, even if they are infeasible as they may become feasible after
the next change. A large δ, however, causes a large number of solutions to be
kept, which reduces the probability of choosing anyone. Since the algorithm
chooses only one solution to mutate in each iteration, this affects the MOEA’s
performance in finding the optimal solution.

After each dynamic change, MOEA updates the sets of solutions. If a change
occurs such that all the current stored solutions are outside of the storing range,
namely [C − δ, C + δ], then the algorithm consider the previous best solution as
the initial solution and uses the Repair function (Algorithm 3), which behaves
similar to (1+1) EA, until a solution with weight distance δ from C is found.

To address the slow rate of improvement of MOEA caused by a large δ, we
defined a new dominance procedure. We use the standard definition of dominance
in multi-objective optimization and say that solution y dominates solution x,
denoted by <MOEA D, if w(y) ≤ w(x)∧ p(y) ≥ p(x). This new algorithm, called



Algorithm 3: Repair

input : Initial solution q, δ, C
output: S+ and S− such that |S+ ∪ S−| = 1

1 while |S+ ∪ S−| = 0 do
2 y ← flip each bit of q independently with probability of 1

n
;

3 if f1+1(y) ≥ f1+1(q) then
4 q ← y;
5 if C < w(q) ≤ C + δ then
6 S+ ← {q} ∪ S+;
7 else if C − δ ≤ w(q) ≤ C then
8 S− ← {q} ∪ S−;

Algorithm 4: MOEA D (Dominance and Selection)

14 choose x ∈ S+ ∪ S− uniformly at random;
15 y ← flip each bit of x independently with probability 1

n
;

16 if (C < w(y) ≤ C + δ) ∧ (@p ∈ S+ : p <MOEA D y) then
17 S+ ← (S+ ∪ {y}) \ {z ∈ S+|y �MOEA D z};
18 if (C − δ ≤ w(y) ≤ C) ∧ (@p ∈ S− : p <MOEA D y) then
19 S− ← (S− ∪ {y}) \ {z ∈ S−|y �MOEA D z};

MOEA D, is obtained by replacing lines 14-19 of Algorithm 2 with Algorithm 4.
It should be noticed that if y is an infeasible solution then it is only compared
with other infeasible solutions and if y is feasible it is only compared with other
feasible solutions. MOEA D keeps fewer solutions than MOEA and overall the
quality of the kept solutions is higher, since they are not-dominated by any other
solution in the population.

3 Benchmarking for the Dynamic Knapsack Problem

In the following section, the dynamic version of KP used for the experiments
is described, and we explain how the dynamic changes occur during the opti-
mization process. In addition, the dynamic benchmarks and the experimental
settings are presented.

3.1 The Dynamic Knapsack Problem

In the dynamic version of KP considered in this paper, the capacity dynamically
changes during the optimization with a preset frequency factor denoted by τ .
A change happens every τ generations, i.e., the algorithm has τ generations to
find the optimum of the current capacity and to prepare for the next change.
In the case of uniformly random alterations, the capacity of next interval is
achieved by adding a uniformly random value in [−r, r] to C. Moreover, we
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Fig. 1: Examples for constraint bound C over 10000 generations with τ = 100 using
uniform and normal distributions. Initial value C = 4815.

consider another case in which the amount of the changes is chosen from the
Gaussian distribution N (0, σ2). Figure 1 illustrates how dynamic changes from
different distributions affect the capacity.Note that the scales of the subfigures
are not the same. For example, the total change after 100 dynamic changes under
N (0, 1002) is less than 1000 (Figure 1a) while the capacity reached almost 45000
with dynamic changes under U(−10000, 10000) (Figure 1d). This indicates that
there are different types of challenges, resulting from the dynamic changes that
the algorithms must consider.

The combination of different distributions and frequencies brings interesting
challenges for the algorithms. In an environment where the constraint changes
with a high frequency, the algorithms have less time to find the optimal solution,
hence, it is likely that an algorithm which tries to improve only one solution will
perform better than another algorithm that needs to optimize among several
solutions. Furthermore, the uniform distribution guarantees upper and lower
bounds on the magnitude of the changes. This property could be beneficial for
the algorithms which keep a number of solutions in each generation, which they
do get ready and react faster after a dynamic change. If the changes happen
under a normal distribution, however, there is no strict bound on the value of
any particular change, which means it is not easy to predict which algorithms
will perform better in this type of environment.



3.2 Benchmark and Experimental Setting

In this experiment we use eli101 benchmarks, which were originally generated
for Traveling Thief Problem [8], ignoring the cities and only using the items.
The weights and profits are generated in three different classes. In Uncorre-
lated (uncorr) instances, the weights and profits are integers chosen uniformly
at random within [1, 1000]. Uncorrelated Similar Weights (unc-s-w) instances
have uniformly distributed random integers as the weights and profits within
[1000, 1010] and [1, 1000], respectively. Finally, there is the Bounded Strongly
Correlated (bou-s-c) variations which result in the hardest instances and comes
from the bounded knapsack problem. The weights of this instance are chosen uni-
formly at random within [1, 1000] and the profits are set according to the weights
within the weights plus 100. In addition, in Section 4.1, where the weights are
one, we set all the weights to one and consider the profits as they are in the
benchmarks. The initial capacity in this version is calculated by dividing the
original capacity by the average of the profits. Dynamic changes add a value
to C each τ generations. Four different situations in terms of frequencies are
considered: high frequent changes with τ = 100, medium frequent changes with
τ = 1000, τ = 5000 and low frequent changes with τ = 15000.

In the case that weights are 1, the value of dynamic changes are chosen
uniformly at random within the interval [−r, r], where r = 1 are r = 10. In
the case of linear weights, when changes are uniformly random, we investigate
two values for r: r = 2000, 10000. Also, changes from normal distribution is
experimented for σ = 100, σ = 500.

We use the offline errors to compute the performance of the algorithms.
In each generation, we record error ei = p(x∗i ) − p(xi) where x∗i and xi are
the optimal solution and the best achieved feasible solution in generation i,
respectively. If the best achieved solution is infeasible, then we have ei = C −
w(x), which is negative. The final error for m generations would be

∑m
i=1 ei/m.

The benchmarks for dynamic changes are thirty different files. Each file con-
sists of 100000 changes, as numbers in [−r, r] generated uniformly at random.
Similarly, there are thirty other files with 100000 numbers generated under the
normal distribution N (0, σ2). The algorithms start from the beginning of each
file and pick the number of change values from the files. Hence, for each setting,
we run the algorithms thirty times with different dynamic change values and
record the total offline error of each run.

In order to establish a statistical comparison of the results among different
algorithms, we use a multiple comparisons test. In particularity, we focus on the
method that compares a set of algorithms. For statistical validation we use the
Kruskal-Wallis test with 95% confidence. Afterwards, we apply the Bonferroni
post-hoc statistical procedures that are used for multiple comparisons of a control
algorithm against two or more other algorithms. For more detailed descriptions
of the statistical tests we refer the reader to [9].

Our results are summarized in the Tables 1, 2 and 3. The columns represent
the algorithms (1+1) EA, MOEA, MOEA D, with the corresponding mean value
and standard deviation. Note, X(+) is equivalent to the statement that the



Table 1: The mean, standard deviation values and statistical tests of the offline
error for (1+1) EA, MOEA, MOEA D based on the uniform distribution with
all the weights as one.

n r τ (1+1) EA (1) MOEA (2) MOEA D (3)
mean st stat mean st stat mean st stat

uncor 100 5 100 4889.39 144.42 2(−),3(−) 1530.00 120.76 1(+) 1486.85 123.00 1(+)

100 5 1000 1194.23 86.52 2(−),3(−) 44.75 8.96 1(+) 46.69 8.51 1(+)

unc-s-w 100 5 100 4990.80 144.87 2(−),3(−) 1545.36 115.15 1(+) 1500.07 106.70 1(+)

100 5 1000 1160.23 130.32 2(−),3(−) 41.90 6.13 1(+) 43.06 7.22 1(+)

bou-s-c 100 5 100 13021.98 780.76 2(−),3(−) 4258.53 580.77 1(+) 4190.55 573.13 1(+)

100 5 1000 3874.76 911.50 2(−),3(−) 177.62 83.16 1(+) 175.14 80.73 1(+)

algorithm in the column outperformed algorithm X, and X(−) is equivalent
to the statement that X outperformed the algorithm in the given column. If
the algorithm X does not appear, this means that no significant difference was
observed between the algorithms.

4 Experimental Results

In this section we describe the initial settings of the algorithms and analyze
their performance using the mentioned statistical tests. The initial solution for
all the algorithms is a pack of items which are chosen uniformly at random. Each
algorithm initially runs for 10000 generations without any dynamic change. After
this, the first change is introduced, and the algorithms run one million further
generations with dynamic changes in every τ generations. For the multi-objective
algorithms, it is necessary to initially provide a value for δ. These algorithms keep
at most δ feasible solutions and δ infeasible solutions, to help them efficiently
deal with a dynamic change. When the dynamic changes come from U(−r, r), it
is known that the capacity will change at most r. Hence, we set δ = r. In case
of changes from N (0, σ2), δ is set to 2σ, since 95% of values will be within 2σ of
the mean value. Note that a larger δ value increases the population size of the
algorithms and there is a trade-off between the size of the population and the
speed of algorithm in reacting to the next change.

4.1 Dynamic Uniform Constraint

In this section, we validate the theoretical results against the performance of
(1+1) EA and Multi-Objective Evolutionary Algorithm. Shi et al. [7] state that
the multi-objective approach performs better than (1+1) EA in reoptimizing the
optimal solution of dynamic KP under uniform constraint. Although the MOEA
that we used in this experiment is not identical to the multi-objective algorithm
studied previously by Shi et al. [7] and they only considered the reoptimiza-
tion time, the experiments show that multi-objective approaches outperform
(1+1) EA in the case of uniform constraints (Table 1). An important reason for
this remarkable performance is the relation between optimal solutions in different



weights. In this type of constraint, the difference between the optimal solution
of weight w and w + 1 is one item. As a result of this, keeping non-dominated
solutions near the constrained bound helps the algorithm to find the current
optimum more efficiently and react faster after a dynamic change.

Furthermore, according to the results, there is no significant difference be-
tween using MOEA and MOEA D in this type of KP. Considering the experi-
ments in Section 4.2, a possible reason is that the size of population in MOEA
remains small when weights are one. Hence, MOEA D, which stores fewer items
because of its dominance definition, has no advantage in this manner anymore.
In addition, the constraint is actually on the number of the items. Thus, both
definitions for dominance result the same in many cases.

4.2 Dynamic Linear Constraint

In this section, we consider the same algorithms in more difficult environments
where weights are arbitrary under dynamic linear constraint. As it is shown in
Section 4.1, the multi-objective approaches outperform (1+1) EA in the case
that weights are one. Now we try to answer the question: Does the relationship
between the algorithms hold when the weights are arbitrary?

The data in Table 2 shows the experimental results in the case of dynamic
linear constraints and changes under a uniform distribution. It can be observed
that (as expected) the mean of errors decreases as τ increases. Larger τ values
give more time to the algorithm to get closer to the optimal solution. Moreover,
starting from a solution which is near to the optimal for the previous capacity,
can help to speed up the process of finding the new optimal solution in many
cases.

We first consider the results of dynamic changes under the uniform distribu-
tion. We observe in Table 2 that unlike with uniform constraint, in almost all the
settings, MOEA has the worst performance of all the algorithms. The first reason
for this might be that items selected in optimal solutions with close weights are
also close in terms of Hamming distance. In other words, when weights are one,
we can achieve the optimal solution for weight w by adding an item to the opti-
mal solution for weight w − 1 or by deleting an item from the optimal solution
for w+ 1. However, in case of arbitrary weights, the optimal solutions of weight
w and w + d could have completely different items, even if d is small. Another
reason could be the effect of having a large population. A large population may
cause the optimization process to take longer and it could get worse because
of the definition of <MOEA, which only compares solutions with equal weights.
If s is a new solution and there is no solution with w(s) in the set of existing
solutions, MOEA keeps s whether s is a good solution or not, i.e., regardless of
whether it is really a non-dominated solution or whether it would be dominated
by other solutions in the set. This comparison also does not consider if s has any
good properties to be inherited by the next generation. Moreover, putting s in
the set of solutions decreases the probability of choosing any other solution, even
those solutions that are very close to the optimal solution. As it can be seen in
the Table 2, however, there is only one case in which MOEA beat the (1+1) EA:



Table 2: The mean, standard deviation values and statistical tests of the offline
error for (1+1) EA, MOEA, MOEA D based on the uniform distribution.

n r τ (1+1) EA (1) MOEA (2) MOEA D (3)
mean st stat mean st stat mean st stat

uncor 100 2000 100 5564.37 463.39 2(+),3(−) 11386.40 769.77 1(−),3(−) 3684.26 525.50 1(+),2(+)

100 2000 1000 2365.56 403.64 2(+),3(−) 7219.17 587.50 1(−),3(−) 776.14 334.69 1(+),2(+)

100 2000 5000 1415.42 167.08 2(+),3(−) 3598.29 420.12 1(−),3(−) 270.90 121.43 1(+),2(+)

100 2000 15000 914.55 102.82 2(+),3(−) 2004.16 368.82 1(−),3(−) 88.80 43.98 1(+),2(+)

unc-s-w 100 2000 100 3128.43 188.36 2(+),3(−) 5911.11 534.24 1(−),3(−) 2106.45 249.28 1(+),2(+)

100 2000 1000 606.14 99.23 2(+),3(−) 1564.23 619.97 1(−),3(−) 302.34 24.60 1(+),2(+)

100 2000 5000 147.55 31.80 3(−) 174.23 95.98 3(−) 60.94 9.12 1(+),2(+)

100 2000 15000 64.65 17.13 2(−),3(−) 40.66 15.51 1(+),3(−) 19.26 4.04 1(+),2(+)

bou-s-c 100 2000 100 3271.07 266.54 2(+) 5583.53 337.81 1(−),3(−) 3036.97 297.33 2(+)

100 2000 1000 1483.01 85.14 2(+),3(−) 2639.16 106.47 1(−),3(−) 617.92 186.35 1(+),2(+)

100 2000 5000 796.77 89.80 2(+),3(−) 1256.62 118.27 1(−),3(−) 251.41 109.58 1(+),2(+)

100 2000 15000 538.45 66.98 2(+),3(−) 687.95 116.91 1(−),3(−) 104.27 61.06 1(+),2(+)

uncor 100 10000 100 10256.72 210.51 2(+),3(+) 16278.97 248.43 1(−),3(−) 11038.07 236.91 1(−),2(+)

100 10000 1000 3604.18 285.73 2(+) 13340.20 704.32 1(−),3(−) 3508.51 473.42 2(+)

100 10000 5000 1607.78 278.60 2(+),3(−) 10614.45 1660.32 1(−),3(−) 1183.52 411.83 1(+),2(+)

100 10000 15000 987.64 219.53 2(+),3(−) 8006.35 1612.20 1(−),3(−) 566.69 219.54 1(+),2(+)

unc-s-w 100 10000 100 7192.82 153.93 2(+),3(+) 12617.69 318.23 1(−),3(−) 8057.44 274.17 1(−),2(+)

100 10000 1000 1846.43 115.23 2(+) 6981.81 768.78 1(−),3(−) 1743.12 364.38 2(+)

100 10000 5000 539.39 65.39 2(+) 3488.28 819.51 1(−),3(−) 519.63 175.22 2(+)

100 10000 15000 208.73 36.91 2(+) 1525.23 306.72 1(−),3(−) 201.97 79.28 2(+)

bou-s-c 100 10000 100 7187.801 122.59 2(+),3(+) 15111.38 231.53 1(−),3(−) 12736.55 229.48 1(−),2(+)

100 10000 1000 2282.81 219.24 2(+),3(+) 8301.43 569.90 1(−),3(−) 3575.26 550.54 1(−),2(+)

100 10000 5000 1370.48 250.59 2(+) 5248.40 1045.78 1(−),3(−) 1472.19 493.88 2(+)

100 10000 15000 955.38 133.33 2(+) 3852.07 752.84 1(−),3(−) 977.41 397.75 2(+)

when the weights are similar, and the magnitude of changes are small (2000),
which means the population size is also small (in comparison to 10000), and
finally τ is at its maximum to let the MOEA to use its population to optimize
the problem.

Although MOEA does not perform very well in instances with general weights,
the multi-objective approach with a better defined dominance, MOEA D, does
outperform (1+1) EA in many cases. We compare the performance of (1+1) EA
and MOEA D below.

When changes are smaller, it can be seen in Table 2 that the mean of offline
errors of MOEA D is smaller than (1+1) EA. The dominance of MOEA D is
such that only keeps the dominant solutions. When a new solution is found, the
algorithm removes solutions that are dominated by it and keeps it only if it is
not dominated by the any other one. This process improves the quality of the
solutions by increasing the probability of keeping a solution beneficial to future
generations. Moreover, it reduces the size of the population significantly. Large
changes to the capacity, however, makes the MOEA D keep more individuals,
and it is in this circumstance that (1+1) EA may perform better than MOEA D.

When r = 10000, MOEA D does not have significantly better results in all
cases unlike in the case of r = 2000, and in most of the situations it performs as
well as (1+1) EA. In all high frequency conditions where τ = 100, the (1+1) EA
has better performance. It may be caused by MOEA D needing more time to op-
timize a population with a larger size. Moreover, when the magnitude of changes
is large, it is more likely that a new change will force MOEA D to remove all of
its stored individuals and start from scratch.



Table 3: The mean, standard deviation values and statistical tests of the offline
error for (1+1) EA, MOEA, MOEA D based on the normal distribution.

n σ τ (1+1) EA (1) MOEA (2) MOEA D (3)
mean st stat mean st stat mean st stat

uncor 100 100 100 2714.72 106.06 2(+),3(+) 9016.83 2392.48 1(−),3(−) 4271.09 789.94 1(−),2(+)

100 100 1000 1386.66 97.11 2(+),3(−) 3714.89 737.11 1(−),3(−) 412.89 27.25 1(+),2(+)

100 100 5000 801.54 73.67 2(+),3(−) 1266.35 119.25 1(−),3(−) 108.28 14.22 1(+),2(+)

100 100 15000 549.71 78.98 2(+),3(−) 749.86 148.03 1(−),3(−) 61.928 17.03 1(+),2(+)

unc-s-w 100 100 100 412.24 111.07 2(+),3(+) 1979.65 914.35 1(−) 1904.089 877.55 1(−)

100 100 1000 85.55 23.13 2(+),3(+) 1566.54 409.32 1(−) 1482.37 391.75 1(−)

100 100 5000 36.94 13.61 2(+),3(+) 1414.66 448.78 1(−) 1322.35 414.27 1(−)

100 100 15000 29.14 19.70 2(+),3(+) 1237.67 665.27 1(−) 1137.80 648.73 1(−)

bou-s-c 100 100 100 1491.36 260.72 2(+),3(+) 4625.49 1302.52 1(−),3(−) 2903.77 717.92 1(−),2(+)

100 100 1000 736.10 53.99 2(+),3(−) 1748.61 189.94 1(−),3(−) 312.88 35.52 1(+),2(+)

100 100 5000 446.94 39.36 2(+),3(−) 640.60 91.29 1(−),3(−) 101.21 17.47 1(+),2(+)

100 100 15000 337.85 40.44 2(+),3(−) 469.16 93.99 1(−),3(−) 70.16 22.26 1(+),2(+)

uncor 100 500 100 13400.88 305.14 2(+),3(+) 46395.44 4565.61 1(−),3(−) 19218.94 1035.72 1(−),2(+)

100 500 1000 6363.16 194.59 2(+),3(−) 25747.08 1181.11 1(−),3(−) 2387.61 151.73 1(+),2(+)

100 500 5000 3983.06 254.38 2(+),3(−) 18004.03 1243.66 1(−),3(−) 1467.58 152.77 1(+),2(+)

100 500 15000 3112.73 315.29 2(+),3(−) 17610.35 1265.50 1(−),3(−) 1348.25 194.71 1(+),2(+)

unc-s-w 100 500 100 2845.31 146.80 2(+),3(+) 11803.99 1256.99 1(−) 11438.04 1247.62 1(−)

100 500 1000 595.70 86.19 2(+),3(+) 8851.36 1488.59 1(−) 8478.21 1313.55 1(−)

100 500 5000 222.79 62.22 2(+),3(+) 7025.45 2639.34 1(−) 6488.47 2335.92 1(−)

100 500 15000 171.33 50.280 2(+),3(+) 7188.67 4184.84 1(−) 6278.10 4146.54 1(−)

bou-s-c 100 500 100 7444.23 290.00 2(+),3(+) 24462.58 1330.93 1(−),3(−) 15592.66 791.70 1(−),2(+)

100 500 1000 4062.63 210.49 2(+),3(−) 12291.63 589.18 1(−),3(−) 2781.20 317.88 1(+),2(+)

100 500 5000 3013.35 289.29 2(+),3(−) 9667.96 571.34 1(−),3(−) 1971.56 220.63 1(+),2(+)

100 500 15000 2722.29 342.39 2(+),3(−) 9308.28 719.25 1(−),3(−) 1760.51 251.51 1(+),2(+)

We now study the experimental results that came from considering the dy-
namic changes under the normal distribution (Table 3). The results confirm that
(1+1) EA is faster with more frequent changes. Skipping the case with uncorre-
lated similar weights and frequent changes, MOEA D has always been the best
algorithm in terms of performance and MOEA has been the worst.

The most notable results occur in the case with uncorrelated similar weights.
(1+1) EA outperforms both other algorithms in this instance. This happens
because of the value of δ and the weights of the instances. δ is set to 2σ in the
multi-objective approaches and the weights of items are integers in [1001, 1010]
in this type of instance. (1+1) EA is able to freely get closer to the optimal
solutions from both directions, while the multi-objective approaches are only
allowed to consider solutions in range of [C − δ, C + δ]. In other words, it is
possible that there is only one solution in that range or even no solution. Hence,
multi-objective approaches have no advantage in this type of instances according
to the value of δ and weights of the items, and in fact, may have a disadvantage.

5 Conclusions and Future Work

In this paper we studied the evolutionary algorithms for the KP where the ca-
pacity dynamically changes during the optimization process. In the introduced
dynamic setting, the frequency of changes is determined by τ . The magnitude
of changes is chosen randomly either under the uniform distribution U(−r, r)
or under the normal distribution N (0, σ2). We compared the performance of
(1+1) EA and two multi-objective approaches with different dominance defi-



nitions (MOEA, MOEA D). Our experiments in the case of weights set to one
verified the previous theoretical studies for (1+1) EA and MOEA [7]. It is shown
that the multi-objective approach, which uses a population in the optimization,
outperforms (1+1) EA. In addition, we considered the algorithms in the case of
general weights for different classes of instances with a variation of frequencies
and magnitudes. Our results illustrated that MOEA does not perform well in the
general case due to its dominance procedure. However, MOEA D, which bene-
fits from a population with a smaller size and non-dominated solutions, beats
(1+1) EA in most cases. On the other hand, in the environments with highly fre-
quent changes, (1+1) EA performs better than the multi-objective approaches.
In such cases, the population slows down MOEA D in reacting to the dynamic
change.
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