1,274 research outputs found

    A Hybrid Firefly and Multi-Strategy Artificial Bee Colony Algorithm

    Get PDF
    Many hard optimization problems have been efficiently solved by two notable swarm intelligence algorithms, artificial bee colony (ABC) and firefly algorithm (FA). In this paper, a collaborative hybrid algorithm based on firefly and multi-strategy artificial bee colony, abbreviated as FA-MABC, is proposed for solving single-objective optimization problems. In the proposed algorithm, FA investigates the search space globally to locate favorable regions of convergence. A novel multi-strategy ABC is employed to perform local search. The proposed algorithm incorporates a diversity measure to help in the switch criteria. The FA-MABC is tested on 40 benchmark functions with diverse complexities. Comparative results with the basic FA, ABC and other recent state-of-the-art metaheuristic algorithms demonstrate the competitive performance of the FA-MABC

    Development of a Dynamic Cuckoo Search Algorithm

    Get PDF
    This research is aimed at the developing a modified cuckoo search algorithm called dynamic cuckoo search algorithm (dCSA). The standard cuckoo search algorithm is a metaheuristics search algorithm that mimic the behavior of brood parasitism of some cuckoo species and Levy flight behavior of some fruit flies and birds. It, however uses fixed value for control parameters (control probability and step size) and this method have drawbacks with respect to quality of the solutions and number of iterations to obtain optimal solution. Therefore, the dCSA is developed to address these problems in the CSA by introducing random inertia weight strategy to the control parameters so as to make the control parameters dynamic with respect to the proximity of a cuckoo to the optimal solution. The developed dCSA was compared with CSA using ten benchmark test functions. The results obtained indicated the superiority of dCSA over CSA by generating a near global optimal result for 9 out of the ten benchmark test functions

    Image multi-level-thresholding with Mayfly optimization

    Get PDF
    Image thresholding is a well approved pre-processing methodology and enhancing the image information based on a chosen threshold is always preferred. This research implements the mayfly optimization algorithm (MOA) based image multi-level-thresholding on a class of benchmark images of dimension 512x512x1. The MOA is a novel methodology with the algorithm phases, such as; i) Initialization, ii) Exploration with male-mayfly (MM), iii) Exploration with female-mayfly (FM), iv) Offspring generation and, v) Termination. This algorithm implements a strict two-step search procedure, in which every Mayfly is forced to attain the global best solution. The proposed research considers the threshold value from 2 to 5 and the superiority of the result is confirmed by computing the essential Image quality measures (IQM). The performance of MOA is also compared and validated against the other procedures, such as particle-swarm-optimization (PSO), bacterial foraging optimization(BFO), firefly-algorithm(FA), bat algorithm (BA), cuckoo search(CS) and moth-flame optimization (MFO) and the attained p-value of Wilcoxon rank test confirmed the superiority of the MOA compared with other algorithms considered in this wor

    On metaheuristics for solving the parameter estimation problem in dynamic systems: A comparative study

    Get PDF
    This paper presents an experimental study that aims to compare the practical performance of well-known metaheuristics for solving the parameter estimation problem in a dynamic systems context. The metaheuristics produce good quality approximations to the global solution of a finite small-dimensional nonlinear programming problem that emerges from the application of the sequential numerical direct method to the parameter estimation problem. Using statistical hypotheses testing, significant differences in the performance of the metaheuristics, in terms of the average objective function values and average CPU time, are determined. Furthermore, the best obtained solutions are graphically compared in relative terms by means of the performance profiles. The numerical comparisons with other results in the literature show that the tested metaheuristics are effective in achieving good quality solutions with a reduced computational effort.The authors would like to acknowledge the financial support of CIDEM, R&D Unit, funded by the Portuguese Foundation for the Development of Science and Technology (FCT), Ministry of Science, Technology and Higher Education, under the Project UID/EMS/0615/2016, and of COMPETE: POCI-01-0145-FEDER-007043 and FCT within the Projects UID/CEC/00319/2013 and UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    An Efficient High-Dimensional Gene Selection Approach based on Binary Horse Herd Optimization Algorithm for Biological Data Classification

    Full text link
    The Horse Herd Optimization Algorithm (HOA) is a new meta-heuristic algorithm based on the behaviors of horses at different ages. The HOA was introduced recently to solve complex and high-dimensional problems. This paper proposes a binary version of the Horse Herd Optimization Algorithm (BHOA) in order to solve discrete problems and select prominent feature subsets. Moreover, this study provides a novel hybrid feature selection framework based on the BHOA and a minimum Redundancy Maximum Relevance (MRMR) filter method. This hybrid feature selection, which is more computationally efficient, produces a beneficial subset of relevant and informative features. Since feature selection is a binary problem, we have applied a new Transfer Function (TF), called X-shape TF, which transforms continuous problems into binary search spaces. Furthermore, the Support Vector Machine (SVM) is utilized to examine the efficiency of the proposed method on ten microarray datasets, namely Lymphoma, Prostate, Brain-1, DLBCL, SRBCT, Leukemia, Ovarian, Colon, Lung, and MLL. In comparison to other state-of-the-art, such as the Gray Wolf (GW), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), the proposed hybrid method (MRMR-BHOA) demonstrates superior performance in terms of accuracy and minimum selected features. Also, experimental results prove that the X-Shaped BHOA approach outperforms others methods

    EECLA: A Novel Clustering Model for Improvement of Localization and Energy Efficient Routing Protocols in Vehicle Tracking Using Wireless Sensor Networks

    Get PDF
    Due to increase of usage of wireless sensor networks (WSN) for various purposes leads to a required technology in the present world. Many applications are running with the concepts of WSN now, among that vehicle tracking is one which became prominent in security purposes. In our previous works we proposed an algorithm called EECAL (Energy Efficient Clustering Algorithm and Localization) to improve accuracy and performed well. But are not focused more on continuous tracking of a vehicle in better aspects. In this paper we proposed and refined the same algorithm as per the requirement. Detection and tracking of a vehicle when they are in larges areas is an issue. We mainly focused on proximity graphs and spatial interpolation techniques for getting exact boundaries. Other aspect of our work is to reduce consumption of energy which increases the life time of the network. Performance of system when in active state is another issue can be fixed by setting of peer nodes in communication. We made an attempt to compare our results with the existed works and felt much better our work. For handling localization, we used genetic algorithm which handled good of residual energy, fitness of the network in various aspects. At end we performed a simulation task that proved proposed algorithms performed well and experimental analysis gave us faith by getting less localization error factor

    Orthogonal Learning Firefly Algorithm

    Get PDF
    The primary aim of this original work is to provide a more in-depth insight into the relations between control parameters adjustments, learning techniques, inner swarm dynamics and possible hybridization strategies for popular swarm metaheuristic Firefly Algorithm (FA). In this paper, a proven method, orthogonal learning, is fused with FA, specifically with its hybrid modification Firefly Particle Swarm Optimization (FFPSO). The parameters of the proposed Orthogonal Learning Firefly Algorithm are also initially thoroughly explored and tuned. The performance of the developed algorithm is examined and compared with canonical FA and above-mentioned FFPSO. Comparisons have been conducted on well-known CEC 2017 benchmark functions, and the results have been evaluated for statistical significance using the Friedman rank test. © 2020 The Author(s).Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the Project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2020/001]; COST (European Cooperation in Science & Technology) under Action, Improving Applicability of NatureInspired Optimisation by Joining Theory and Practice (ImAppNIO) [CA15140]IGA/CebiaTech/2020/001; European Cooperation in Science and Technology, COST: CA15140; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: LO1303, MSMT-7778/2014; European Regional Development Fund, ERDF: CZ.1.05/2.1.00/03.008
    • …
    corecore