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Abstract. The primary aim of this original work is to provide a more in-depth 
insight into the relations between control parameters adjustments, learning tech-
niques, inner swarm dynamics and possible hybridization strategies for popular 
swarm metaheuristic Firefly Algorithm (FA). In this paper, a proven method, or-
thogonal learning, is fused with FA, specifically, with its hybrid modification 
Firefly Particle Swarm Optimization (FFPSO). The parameters of the proposed 
Orthogonal Learning Firefly Algorithm (OLFA) are also initially thoroughly ex-
plored and tuned. The performance of the developed algorithm is examined and 
compared with canonical FA and above mentioned FFPSO. Comparisons have 
been conducted on well-known CEC 2017 benchmark functions, and the results 
have been evaluated for statistical significance using the Friedman rank test. 
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1 Introduction 

The swarm-based algorithms, besides the other algorithms like nature-inspired or non-
swarm algorithms, are quite popular among researchers interested in heuristic optimi-
zation. The most popular amongst them is probably the Particle Swarm Optimization 
(PSO) algorithm. The PSO was developed in 1995 by Eberhart and Kennedy [1]. Since 
the PSO introduction, it still attracts the attention of many researchers. Many extensive 
studies have been performed so far, for example studying the impact of several possible 
configurations or parameter settings of PSO [2, 3]. Even more complex studies have 
been carried out investigating velocity clamping [4], population restart [5, 6], various 
hybridizations [7 - 9], and boundary strategies [10, 11]. All the studied features have 
some performance impact on the PSO in general. As one could imagine, similar studies 
are provided for other swarm-based algorithms. Because of the mutual similarity of 
particular groups of swarm algorithms, some findings or conclusions for one algorithm 
could be re-applied to others. One of the possible and popular adjustment is based on 
orthogonal learning [12]. The basic idea behind orthogonal learning lies in the identifi-
cation either of combinations or inherent parts of solutions in particular dimensions 
offering the best results and using them in the next optimization steps. The principle of 
orthogonal learning will be explained in details within the relevant section of this paper. 
For several years, another swarm-based algorithm proves its applicability and is be-
coming quite popular among researchers. The Firefly Algorithm (FA) was introduced 



in 2008 [13]. Since then, like for the PSO, many extensions and modifications were 
proposed for this effective optimization algorithm [14 - 19]. The FA was successfully 
used for various optimization problems; for example, the design of antenna [20], job 
scheduling [21], and solving the traveling salesman problem [22]. The relative novelty 
of the FA, compared to the PSO, is the reason that there are still only a few studies 
published about its various features and inner dynamic [23] (again compared to the 
PSO). The popularity and versatility of both algorithms, PSO and FA, has led to the 
creation of a hybrid algorithm, which is called Firefly Particle Swarm Optimization 
(FFPSO) [24]. The overall popularity of FA and PSO can be derived based on the num-
ber of recent papers that use one of the algorithms [38 - 42]. 
Nowadays [25], instead of developing new heuristic optimization algorithms, the smart 
improvements of existing ones are more favorable. Several modern techniques were 
designed to improve overall performance. For example, the ensemble method [26, 27], 
the above-mentioned hybridization [28, 29], or adaptive control [30, 31] were already 
adopted. Generally speaking, all the mentioned methods are aimed at either the analyses 
and improvements of the inner dynamic of a particular algorithm or on the combination 
of the various strategies borrowed from different optimization algorithms. The basic 
idea behind the hybridization of several different metaheuristic algorithms is that the 
resulting hybrid approach should combine the advantages of all donor algorithms, 
hence to eliminate their disadvantages. However, achieving this ideal state is a difficult 
task, and it is a clear motivation behind the presented research. 
The effective technique already used with PSO algorithm, the orthogonal learning [32], 
could secure a possible performance improvement of FA. However, the enhancement 
of the canonical FA may be a difficult task, due to its nature. Nevertheless, thanks to 
the above-mentioned hybrid FFPSO, the advantages of orthogonal learning could be 
accessible, and the application is much more simplified.  
The motivation and the originality of the presented research can be summarized as fol-
lows: 

 To present a comprehensive review of the control parameter adjustments schemes, 
possible hybridization of FA and orthogonal learning technique, so that the readers 
can easily navigate between different parameter settings/hybridization strategies, 
and to see the direct comparisons of performances and deeper insight into swarm 
dynamics. 

 The proposed optimization algorithm is tested and statistically evaluated on well-
known benchmark CEC 2017 [33].  

 The extensive parameters tuning for the new proposed algorithm are also present 
here, evaluated on the very same benchmark suite and conclusions are supported by 
Friedman rank test [34].  

 The comparisons with original hybridized algorithm FFPSO and with the original 
version of the FA, PSO and Orthogonal Learning Particle Swarm Optimization 
(OLPSO) are presented here and statistically evaluated as well. 

In this extended version of the original paper [43], the comprehensive motivation of 
proposed research is presented with more detailed results of the proposed algorithm's 
performance. The section with tunning of algorithm parameters is also included.  The 



part, parameter tunning, contains explanations of how each of the settings influences 
the overall performance of the proposed algorithm. Finally, this extended paper revised 
the description of the covered algorithms, and the pseudocodes are added. 
The rest of the paper is structured as follows; the brief backgrounds of PSO, OLPSO, 
FA, and FFPSO are given in sections II and III. These sections also cover a description 
of the proposed novel hybrid approach based on orthogonal learning together with the 
results of the influence of its parameters on the overall performance. In section IV, the 
experiment design is given, i.e., CEC benchmark setup, and the parameter adjustment 
for all compared algorithms. The results and conclusion sections follow afterward. 

2 Particle Swarm Optimization 

The PSO is one of the most prominent representatives on the field of swarm intelligence 
based algorithms. It was first published by Eberhart and Kennedy in 1995 [1]. The al-
gorithm mimics the social behavior and movement patterns of swarming animals in 
nature. In this work, two variants of PSO are utilized, the original (canonical) PSO and 
the Orthogonal learning PSO.  

2.1 Canonical Particle Swarm Optimization 

The algorithm simulates a movement of a swarm of artificial particles in n-dimen-
sional space. The position of each particle represents a tentative solution for the opti-
mized problem. The iterative movement of the particles is driven by a velocity vector, 
labeled as v. Each particle remembers its best position (solution to the problem) ob-
tained so far. This solution is tagged as the pBest, personal best solution. Further, each 
particle has access to the global best solution, gBest, which is selected from all pBests.  

In every iteration of the algorithm, the new position of each particle is calculated 
based on the previous position and new velocity.  

The new position of the particle is calculated according to the formula (1). 

  (1) 

Where  is a new position of particle i, xi is the previous old position of a particle 
and  is the new velocity of a particle, calculated according to (2). 

  (2) 

Where w is inertia weight [35], vi is the old velocity, c1 and c2 are learning factors, 
and r1 and r2 are vectors of random numbers drawn from unimodal distribution in the 
range <0,1>.  

2.2 Orthogonal Learning Particle Swarm Optimization 

The Orthogonal Experimental Design (OED) mechanism was introduced to PSO to 
improve its learning strategy. This improvement led to the creation of Orthogonal 



Learning PSO (OLPSO) [12]. As the name suggests, the traditional learning mechanism 
of PSO was replaced by novel Orthogonal Learning, which should help construct an 
efficient and promising exemplar for a particle to learn from. Each corresponding di-
mension of an optimized problem is regarded as a factor. The factor means that the 

pBest and the pBests of its neighbor-
hoods to construct a guidance vector. The velocity equation (2) is then changed to (3). 

  (3) 

Where gVector is the guidance vector, the values of gVector are just pointers to 
particular pBest  components that should be used in corresponding dimensions. The 
guidance vector (learning exemplar) is used until it cannot improve the particles pBest 
solution for a certain number of iterations that is called reconstruction gap G. 

The brief process of the construction of the gVector is as follows: 

1. An orthogonal array (OA) , where  is created using the pro-
cedure which is clearly and more detailed described in [12]. 

2. According to the OA, the M trial solutions are created by selecting the corresponding 
value from pBests. Own pBest or pBest of a different particle can be selected for this 
operation. 

3. Each trial solution is evaluated, and the best solution is recorded as . 
4. Calculate the effect of each level on each factor and determine the best level for each 

factor. Based on these levels, the predictive solution XP is created and evaluated. 
5. The solution (Xb or XP) is selected as the guidance vector gVector based on the ob-

jective function value. 

3 Firefly Algorithm 

This nature-based optimization algorithm was developed and introduced by Yang in 
2008 [13]. The fundamental principle of this algorithm lies in simulating the mating 
behavior of fireflies at night when fireflies emit light to attract a suitable partner. The 
FA was also successfully used for many optimization problems [20 - 22].  

3.1 Canonical Firefly Algorithm 

The movement of one firefly towards another one is defined by equation (4), where 
is a new position of firefly i for dimension k, is the current position of firefly 

i and is a selected brighter firefly (with better objective function value). Parameter 
 is a randomization parameter (   0, 1 ). The original FA uses the random value 

drawn from the uniform distribution. Finally, sign provides random direction -1 or 1 to 
ensure that the firefly could travel in both directions. 

  (4) 



The brightness of a firefly is computed by the equation (5) where is the CF 
value of corresponding i-firefly, stands for the light absorption parameter of a media 
in which fireflies are and, m is another user-defined coefficient and, it should be set 

. The variable is the Euclidian distance (6) between the two compared fireflies 
(d stands for the dimension size of the optimized problem). The firefly xi could only fly 
towards the xj firefly if Ij < Ii. 

  (5) 

  (6) 

  (7) 

The attractiveness (7) is proportional to the brightness as mentioned in the rules 
above and, so these equations are quite similar to each other. The is the initial attrac-
tiveness defined by the user, the is again the light absorption parameter and the is 
once more the Euclidian distance.  

3.2 Hybrid of Firefly and Particle Swarm Optimization Algorithms 

Another more advanced version of the FA could be created by its hybridization with 
other successful metaheuristic algorithms. The basic idea behind such an approach is 
that the new hybrid strategy can share advantages from both algorithms and possibly 
eliminate their disadvantages. 

The typical example is a hybrid of the FA and PSO algorithms, the FFPSO [23] 
introduced in late 2015 by Padmavathi Kora and K. Sri Rama Krishna. The central 
principle remains the same as in the standard FA, but the equation for firefly motion 
(4) is slightly changed according to PSO movement and is newly computed as (8). 

  (8) 

Where w, c1, and c2 are control parameters transferred from PSO and their values 
often depends on the user. Similarly, the pBest and gBest are variables formerly 
belonging to the PSO algorithm. They both represent the memory of the best position 
where pBest is best position of each particle and gBest is globally achieved best position 
so far. The remaining variables rpx (9) and rgx (10) are distances between particle xi and 
both pBesti and gBest. 

  (9) 

  (10) 



3.3 Orthogonal Learning Firefly Algorithm 

Our proposed algorithm, OLFA, is based on FFPSO mentioned above and it uses the 
orthogonal learning technique. Our application of orthogonal learning is similar to the 
Orthogonal Learning Particle Swarm Optimization (OLPSO). The OLFA also gener-
ates the promising learning exemplar by adopting an orthogonal learning strategy for 
each particle to learn from. This means that the equation of firefly movement (8) is 
slightly changed and does not contain the pBest and gBest any longer. The new equa-
tion (11) includes only the trial exemplar gVector. 

  (11) 

Where Euclidian distance r is computed as (12) between firefly xi and trial gVector. 

  (12) 

The gVector is used as the guide for each particle until it cannot improve the solution 
quality for a certain number of iterations, which is called refreshing gap G. When the 
number of non-improved iterations reaches the refreshing gap limit, the learning 
gVector is reconstructed. The (re)construction process of gVector is the same as de-
scribed in Section 2.2. The randomization parameter  is no longer a fixed value but 
computed by (13) [24]. This ensures that the random step will be proportional to a given 
parameter range of the optimized problem. The  represents a random value in a 
range <0, 1> from a uniform distribution. The  and  are upper and lower boundary 
limits of optimized parameters of a given problem. 

  (13) 

The pseudocode 1 below shows the fundamentals of OLFA operations. 

Algorithm 1 OLFA 



4 Experiment Setup 

The performance of the newly proposed hybrid algorithm depends on the setting of its 
control parameters. Although OLFA is a combination of several algorithms, it utilizes 
only three user-defined parameters (inertia weight w, learning coefficient c, and a re-
freshing gap G). It is unlikely that the values of these parameters recommended for 
original versions could still be applied without further analysis. Therefore, a tuning ex-
periment of the control parameters of OLFA was performed.  

4.1 Tuning experiment 

Firstly, the influence of a learning parameter c, which is adapted from original PSO, 
was tested. The tested values of c were selected as {0.8, 1.0, 1.2, 1.4, 1.7, 2}. These 
values are similar as typically set for PSO [4]. Other parameters were fixed on original 
values: G = 5, and w = <0.9  0.4>. Note that inertia weight w can be a single numeric 
variable or a linear decreasing over iterations of an algorithm by (14). Where wS and wE 
are max and min values of w. iteration is the current iteration of the algorithm, and the 
max_iterations represents a maximum number of iterations defined by the user. This 
test used the linear decreasing inertia weight.  

  (14) 

Second test case tested the influence of the refreshing gap G. This time the fixed pa-
rameters were set as c = 2 and w = <0.9  0.4>. The refreshing gap G was tested for 
values {2, 5, 7, 11, 13, 17, 20, 30, 40, 50, 60, 70, 80, 90, 100}.  
Last test case studied the influence of inertia weight w setting. The parameters refresh-
ing gap and learning coefficient were fixed on values G = 5 and c = 2. The constant 
values of w were tested for {0.7, 0.8, 0.9, 1.0, 1.1, 1.2}. The linear decreasing inertia 
weight was also tested, the  was fixed on 0.4 and the  values were {0.7, 0.8, 0.9, 
1.0, 1.1, 1.2}.  
The results were tested for statistical significance using the Friedman Rank test [33]. 
The null hypothesis that the means are equal is rejected at the 5% level based on the 
Friedman Rank test. The corresponding p-values of Friedman Rank tests are presented 
in Table 1. 

Table 1. p-values of performed Friedman rank tests. 

Test case (tested parameter) p-value 

c  

w  

G  

 
If the p-value is lower than 0.05, the further Friedman rankings are relevant. In Figure 
1, the Friedman rankings for the different tested parameter influence for dimension size 



d = 10 are shown. The lower the rank is, the better is the performance of the labeled 
setting. Furthermore, the presented Friedman ranks are accompanied by critical dis-
tance evaluated according to the Nemenyi Critical Distance post-hoc test for multiple 
comparisons. The dashed line represents the critical distance from the best setting (the 
lowest mean rank). 

 

Fig. 1. Friedman rank tests for different parameter tests: learning coefficient c (top left), inertia 
weight w (top right) and a refreshing gap G (bottom). 

According to results presented in Figure 1 (top left), the value of a learning coefficient 
c has no significant influence on the performance of the OLFA. The provided p-value 
in Table 1 support this finding because the null hypothesis is rejected (p-value is lower 
than 0.05). However, this is only valid for the selected range of values.  Different values 
of c may change the quality of the results. Even the different combination of fixed pa-
rameters may interfere with this conclusion. 
As for the gap value G, based on the obtained results depicted in Figure 1 (bottom) the 
higher the gap value, the better is the overall performance. The higher values are likely 
beneficial because fireflies have a longer time to explore possible solutions of a guid-
ance vector. Another reason may be that when a new guidance vector has to be created, 
several evaluations of potential solutions have to be made (without any improvement 
of an obtained best solution) thus less objective function evaluations can be used to 
explore the possible parameters. However, it is possible that there is some upper limit 
for this refreshing gap value, where there is no more space for development. This limit 
could be connected to the number of fireflies (NP) or the maximum number of iteration 
of the algorithm. If the ratio among these settings is low, then a firefly has no time to 
examine the selected guidance vector properly and has no time to create a new one. 



Finally, from the obtained Friedman rank test depicted in Figure 1 (top right), the linear 
decreasing w is more beneficial to the overall performance of OLFA. Particularly the 
setting where w = <0.8  0.4>. It is worth mention that if a w > 1 then the behavior of 
OLFA may not convert to an optimal solution because the newly generated position 
will lie most likely behind the guidance vector. 
Based on the performed tests, the parameter values for refreshing gap G = 100, learning 
coefficient c = 1.2 and inertia weight w = <0.8  0.4> give the average best results. 

4.2 Performance test 

The performance tests of proposed OLFA were performed on a set of well-known 
benchmark functions  are detailly described in [33]. The tested dimensions 
d were 10 and 30. The maximal number of function evaluation was set d 
(dimension size). The lower and upper boundaries of the search space were set as 

 and  according to the 17 definition. The number of particles 
(fireflies) was set to 40 for all dimension sizes. Every test function was tested for 51 
independent runs, and the results were statistically evaluated. The benchmark includes 
30 test functions in four categories: unimodal, multimodal, hybrid and composite. How-
ever, due to some technical difficulties, the authors of bencthe hmark recommend to 
skip test function f2. The global minimum of each function is easy to determine as it is 

 where i is an order of test function. 
The control parameters settings for all tested and compared algorithms are given in 
Table 2. Parameters were set to optimal values according to literature. The proposed 
OLFA algorithm was tested with the parameters determined by tests performed in pre-
vious Section 4.1. 

Table 2. Parameters of tested algorithms 

Name Parameters 

PSO  

OLPSO  

FA  

FFPSO 
 
 

OLFA  



5 Results 

The results of the performance testing are reported in this section. The overall perfor-
mances of all tested algorithms on dimension sizes 10 and 30 are evaluated and com-
pared using Friedman ranks with critical distance assessed according to the Nemenyi 
Critical Distance post-hoc test for multiple comparisons. The visual outputs of various 
comparisons with rankings are given in Figure 2. All Friedman rank test hypotheses are 
relevant with a p-value lower than 0.05 as presented in Table 3. Figure 2 depicts four 
different comparisons. The first two parts a) and b) are for dimension sizes 10 and 30 
with OLFA parameters set to default values inherited from the original algorithms, on 
which OLFA is based. The parts c) and d) are again for dimension sizes 10 and 30 but 
this time for tuned parameters of OLFA. 
 

a) 10 dim; OLFA original configuration b) 30 dim; OLFA original configuration 

c) 10 dim; OLFA tuned parameters d) 30 dim; OLFA tuned parameters 

Fig. 2. Friedman rank test results. 

Table 3. p-values of performed Friedman rank tests presented in Fig. 2. 

 a) b) c) d) 

p-value     

The overall best performing algorithm is OLPSO, on which idea is OLFA mainly based. 
The classical versions of PSO and FA have almost the same results (mostly for higher 
dimension size). The FFPSO, the ancestor of OLFA, has the same results as OLFA for 



dimension size 10 and slightly better for dimension size 30. This finding is interesting 
because in OLFA the firefly does not move towards other fireflies like classical FA, 
but in direction estimated by the guidance vector created using orthogonal learning. 
FFPSO, on the other hand, using the PSO method of having access to pBest and gBest 
memories. The idea behind OLFA lies somewhere between these two principles. 

6 Conclusion 

The primary aim of this original work is to provide a more in-depth insight into the 
relations between control parameters adjustments, learning techniques, inner swarm 
dynamics and possible hybridization strategies for FA based on the PSO. Both algo-
rithms are popular and have already many applications in several real-world tasks. Spe-
cifically, the focus here is to experimentally investigate the influence of modern tech-
nique, which is orthogonal learning, to the performance of the hybrid FFPSO algorithm. 
Thus novel proposed algorithm orthogonal learning firefly algorithm  OLFA is thor-
oughly tested here. 

Our proposed algorithm has been tested on CEC 2017 benchmark suite. The results 
were statistically evaluated and compared with other algorithms using the Friedman 
rank test. The algorithms in comparisons are canonical FA, FFPSO, PSO, and OLPSO. 
This paper presents two different scenarios in all comparisons. Firstly, the control pa-
rameters of OLFA were initially set to values recommended for its ancestors, and sec-
ondly, an extensive tuning of OLFA parameters have been carried out to improve the 
overall performance of the OLFA algorithm. Thus OLFA had become competitive 
against its hybridized predecessor FFPSO. 

The analyzed data suggest that the orthogonal learning technique performs better 
with the PSO algorithm than applied to FFPSO. This may be affected by the nature of 
FA behavior, which seems to be less suitable for implementation of orthogonal 
learning. However, the proposed approach can be further improved by better parameter 
settings, e.g., refreshing gap G, where performed tests lend weight to the theory, that 
this parameter may be somewhat adaptive and related to the dimensionality of the op-
timization problem being solved. 

Despite the fact, that the ongoing research has brought many powerful and robust 
metaheuristic algorithms, the researchers have to deal with a well-known phenomenon 
so-called no free lunch theorem [36] forcing them to test various methods, techniques, 
adaptations and parameter settings leading to the acceptable results. 

The presented results indicate that the original FFPSO hybrid algorithm offers a no-
ticeable potential to many improvements. Even though the results do not show any sig-
nificant performance improvement, it is necessary to emphasize the fact that, like most 
of the evolutionary/swarm-based algorithms, they are inspired by natural evolution, and 
their development can be considered as a form of evolution. Such a fact is mentioned 
in the article [37] that even incremental steps in algorithm development, including fail-
ures, may be the inspiration for the development of robust and powerful metaheuristics. 

Finally, extensive research including even more optimal parameter tuning is required 
for increasing the understandability of the algorithm behavior and its performance. 



Also, a design of the proposed algorithm offers several possible changes that could 
affect its performance. Majority of them are based on the improvements of the  

prehensive learning and more.  
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