7 research outputs found

    Further new results on strong resolving partitions for graphs

    Get PDF
    A set W of vertices of a connected graph G strongly resolves two different vertices x, y is not an element of W if either d(G) (x, W) = d(G) (x, y) + d(G) (y, W) or d(G) (y, W) = d(G )(y, x) + d(G) (x, W), where d(G) (x, W) = min{d(x,w): w is an element of W} and d (x,w) represents the length of a shortest x - w path. An ordered vertex partition Pi = {U-1, U-2,...,U-k} of a graph G is a strong resolving partition for G, if every two different vertices of G belonging to the same set of the partition are strongly resolved by some other set of Pi. The minimum cardinality of any strong resolving partition for G is the strong partition dimension of G. In this article, we obtain several bounds and closed formulae for the strong partition dimension of some families of graphs and give some realization results relating the strong partition dimension, the strong metric dimension and the order of graphs

    The neighbor-locating-chromatic number of pseudotrees

    Get PDF
    Ak-coloringof a graphGis a partition of the vertices ofGintokindependent sets,which are calledcolors. Ak-coloring isneighbor-locatingif any two vertices belongingto the same color can be distinguished from each other by the colors of their respectiveneighbors. Theneighbor-locating chromatic numberÂżNL(G) is the minimum cardinalityof a neighbor-locating coloring ofG.In this paper, we determine the neighbor-locating chromatic number of paths, cycles,fans and wheels. Moreover, a procedure to construct a neighbor-locating coloring ofminimum cardinality for these families of graphs is given. We also obtain tight upperbounds on the order of trees and unicyclic graphs in terms of the neighbor-locatingchromatic number. Further partial results for trees are also established.Preprin

    Neighbor-locating colorings in graphs

    Get PDF
    A k -coloring of a graph G is a k -partition Âż = { S 1 ,...,S k } of V ( G ) into independent sets, called colors . A k -coloring is called neighbor-locating if for every pair of vertices u,v belonging to the same color S i , the set of colors of the neighborhood of u is different from the set of colors of the neighborhood of v . The neighbor-locating chromatic number Âż NL ( G ) is the minimum cardinality of a neighbor-locating coloring of G . We establish some tight bounds for the neighbor-locating chromatic number of a graph, in terms of its order, maximum degree and independence number. We determine all connected graphs of order n = 5 with neighbor-locating chromatic number n or n - 1. We examine the neighbor-locating chromatic number for two graph operations: join and disjoint union, and also for two graph families: split graphs and Mycielski graphsPreprin
    corecore