37 research outputs found

    On the Parameterized Complexity and Kernelization of the Workflow Satisfiability Problem

    Full text link
    A workflow specification defines a set of steps and the order in which those steps must be executed. Security requirements may impose constraints on which groups of users are permitted to perform subsets of those steps. A workflow specification is said to be satisfiable if there exists an assignment of users to workflow steps that satisfies all the constraints. An algorithm for determining whether such an assignment exists is important, both as a static analysis tool for workflow specifications, and for the construction of run-time reference monitors for workflow management systems. Finding such an assignment is a hard problem in general, but work by Wang and Li in 2010 using the theory of parameterized complexity suggests that efficient algorithms exist under reasonable assumptions about workflow specifications. In this paper, we improve the complexity bounds for the workflow satisfiability problem. We also generalize and extend the types of constraints that may be defined in a workflow specification and prove that the satisfiability problem remains fixed-parameter tractable for such constraints. Finally, we consider preprocessing for the problem and prove that in an important special case, in polynomial time, we can reduce the given input into an equivalent one, where the number of users is at most the number of steps. We also show that no such reduction exists for two natural extensions of this case, which bounds the number of users by a polynomial in the number of steps, provided a widely-accepted complexity-theoretical assumption holds

    Constraint Expressions and Workflow Satisfiability

    Full text link
    A workflow specification defines a set of steps and the order in which those steps must be executed. Security requirements and business rules may impose constraints on which users are permitted to perform those steps. A workflow specification is said to be satisfiable if there exists an assignment of authorized users to workflow steps that satisfies all the constraints. An algorithm for determining whether such an assignment exists is important, both as a static analysis tool for workflow specifications, and for the construction of run-time reference monitors for workflow management systems. We develop new methods for determining workflow satisfiability based on the concept of constraint expressions, which were introduced recently by Khan and Fong. These methods are surprising versatile, enabling us to develop algorithms for, and determine the complexity of, a number of different problems related to workflow satisfiability.Comment: arXiv admin note: text overlap with arXiv:1205.0852; to appear in Proceedings of SACMAT 201

    Polynomial Kernels and User Reductions for the Workflow Satisfiability Problem

    Get PDF
    The Workflow Satisfiability Problem (WSP) is a problem of practical interest that arises whenever tasks need to be performed by authorized users, subject to constraints defined by business rules. We are required to decide whether there exists a plan -- an assignment of tasks to authorized users -- such that all constraints are satisfied. The WSP is, in fact, the conservative Constraint Satisfaction Problem (i.e., for each variable, here called task, we have a unary authorization constraint) and is, thus, NP-complete. It was observed by Wang and Li (2010) that the number k of tasks is often quite small and so can be used as a parameter, and several subsequent works have studied the parameterized complexity of WSP regarding parameter k. We take a more detailed look at the kernelization complexity of WSP(\Gamma) when \Gamma\ denotes a finite or infinite set of allowed constraints. Our main result is a dichotomy for the case that all constraints in \Gamma\ are regular: (1) We are able to reduce the number n of users to n' <= k. This entails a kernelization to size poly(k) for finite \Gamma, and, under mild technical conditions, to size poly(k+m) for infinite \Gamma, where m denotes the number of constraints. (2) Already WSP(R) for some R \in \Gamma\ allows no polynomial kernelization in k+m unless the polynomial hierarchy collapses.Comment: An extended abstract appears in the proceedings of IPEC 201

    Tight lower bounds for the Workflow Satisfiability Problem based on the Strong Exponential Time Hypothesis

    Get PDF
    The Workflow Satisfiability Problem (WSP) asks whether there exists an assignment of authorized users to the steps in a workflow specification, subject to certain constraints on the assignment. The problem is NP-hard even when restricted to just not equals constraints. Since the number of steps kk is relatively small in practice, Wang and Li (2010) introduced a parametrisation of WSP by kk. Wang and Li (2010) showed that, in general, the WSP is W[1]-hard, i.e., it is unlikely that there exists a fixed-parameter tractable (FPT) algorithm for solving the WSP. Crampton et al. (2013) and Cohen et al. (2014) designed FPT algorithms of running time O(2k)O^*(2^{k}) and O(2klog2k)O^*(2^{k\log_2 k}) for the WSP with so-called regular and user-independent constraints, respectively. In this note, we show that there are no algorithms of running time O(2ck)O^*(2^{ck}) and O(2cklog2k)O^*(2^{ck\log_2 k}) for the two restrictions of WSP, respectively, with any c<1c<1, unless the Strong Exponential Time Hypothesis fails

    Algorithms for the workflow satisfiability problem engineered for counting constraints

    Get PDF
    The workflow satisfiability problem (WSP) asks whether there exists an assignment of authorized users to the steps in a workflow specification that satisfies the constraints in the specification. The problem is NP-hard in general, but several subclasses of the problem are known to be fixed-parameter tractable (FPT) when parameterized by the number of steps in the specification. In this paper, we consider the WSP with user-independent counting constraints, a large class of constraints for which the WSP is known to be FPT. We describe an efficient implementation of an FPT algorithm for solving this subclass of the WSP and an experimental evaluation of this algorithm. The algorithm iteratively generates all equivalence classes of possible partial solutions until, whenever possible, it finds a complete solution to the problem. We also provide a reduction from a WSP instance to a pseudo-Boolean SAT instance. We apply this reduction to the instances used in our experiments and solve the resulting PB SAT problems using SAT4J, a PB SAT solver. We compare the performance of our algorithm with that of SAT4J and discuss which of the two approaches would be more effective in practice

    The Authorization Policy Existence Problem

    Get PDF
    International audienceConstraints such as separation-of-duty are widely used to specify requirements that supplement basic authorization policies. However, the existence of constraints (and authorization policies) may mean that a user is unable to fulfill her/his organizational duties because access to resources is denied. In short, there is a tension between the need to protect resources (using policies and constraints) and the availability of resources. Recent work on workflow satisfiability and resiliency in access control asks whether this tension compromises the ability of an organization to achieve its objectives. In this paper, we develop a new method of specifying constraints which subsumes much related work and allows a wider range of constraints to be specified. The use of such constraints leads naturally to a range of questions related to“policy existence”, where a positive answer means that an organization’s objectives can be realized. We provide an overview of our results establishing that some policy existence questions, notably for those instances that are restricted to user-independent constraints, are fixed-parameter tractable
    corecore