3,622 research outputs found

    Massive MIMO and Small Cells: Improving Energy Efficiency by Optimal Soft-Cell Coordination

    Full text link
    To improve the cellular energy efficiency, without sacrificing quality-of-service (QoS) at the users, the network topology must be densified to enable higher spatial reuse. We analyze a combination of two densification approaches, namely "massive" multiple-input multiple-output (MIMO) base stations and small-cell access points. If the latter are operator-deployed, a spatial soft-cell approach can be taken where the multiple transmitters serve the users by joint non-coherent multiflow beamforming. We minimize the total power consumption (both dynamic emitted power and static hardware power) while satisfying QoS constraints. This problem is proved to have a hidden convexity that enables efficient solution algorithms. Interestingly, the optimal solution promotes exclusive assignment of users to transmitters. Furthermore, we provide promising simulation results showing how the total power consumption can be greatly improved by combining massive MIMO and small cells; this is possible with both optimal and low-complexity beamforming.Comment: Published at International Conference on Telecommunications (ICT 2013), 6-8 May 2013, Casablanca, Morocco, 5 pages, 4 figures, 2 tables. This version includes the Matlab code necessary to reproduce the simulations; see the ancillary files. This version also corrects errors in Table 1 and in the simulations, which affected Figs. 3-

    Sum Throughput Maximization in Multi-Tag Backscattering to Multiantenna Reader

    Full text link
    Backscatter communication (BSC) is being realized as the core technology for pervasive sustainable Internet-of-Things applications. However, owing to the resource-limitations of passive tags, the efficient usage of multiple antennas at the reader is essential for both downlink excitation and uplink detection. This work targets at maximizing the achievable sum-backscattered-throughput by jointly optimizing the transceiver (TRX) design at the reader and backscattering coefficients (BC) at the tags. Since, this joint problem is nonconvex, we first present individually-optimal designs for the TRX and BC. We show that with precoder and {combiner} designs at the reader respectively targeting downlink energy beamforming and uplink Wiener filtering operations, the BC optimization at tags can be reduced to a binary power control problem. Next, the asymptotically-optimal joint-TRX-BC designs are proposed for both low and high signal-to-noise-ratio regimes. Based on these developments, an iterative low-complexity algorithm is proposed to yield an efficient jointly-suboptimal design. Thereafter, we discuss the practical utility of the proposed designs to other application settings like wireless powered communication networks and BSC with imperfect channel state information. Lastly, selected numerical results, validating the analysis and shedding novel insights, demonstrate that the proposed designs can yield significant enhancement in the sum-backscattered throughput over existing benchmarks.Comment: 17 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Energy-Efficient Coordinated Multi-Cell Multigroup Multicast Beamforming with Antenna Selection

    Full text link
    This paper studies energy-efficient coordinated beamforming in multi-cell multi-user multigroup multicast multiple-input single-output systems. We aim at maximizing the network energy efficiency by taking into account the fact that some of the radio frequency chains can be switched off in order to save power. We consider the antenna specific maximum power constraints to avoid non-linear distortion in power amplifiers and user-specific quality of service (QoS) constraints to guarantee a certain QoS levels. We first introduce binary antenna selection variables and use the perspective formulation to model the relation between them and the beamformers. Subsequently, we propose a new formulation which reduces the feasible set of the continuous relaxation, resulting in better performance compared to the original perspective formulation based problem. However, the resulting optimization problem is a mixed-Boolean non-convex fractional program, which is difficult to solve. We follow the standard continuous relaxation of the binary antenna selection variables, and then reformulate the problem such that it is amendable to successive convex approximation. Thereby, solving the continuous relaxation mostly results in near-binary solution. To recover the binary variables from the continuous relaxation, we switch off all the antennas for which the continuous values are smaller than a small threshold. Numerical results illustrate the superior convergence result and significant achievable gains in terms of energy efficiency with the proposed algorithm.Comment: 6 pages, 5 figures, accepted to IEEE ICC 2017 - International Workshop on 5G RAN Desig
    corecore