398,608 research outputs found

    On the role of Prognostics and Health Management in advanced maintenance systems

    Get PDF
    The advanced use of the Information and Communication Technologies is evolving the way that systems are managed and maintained. A great number of techniques and methods have emerged in the light of these advances allowing to have an accurate and knowledge about the systems’ condition evolution and remaining useful life. The advances are recognized as outcomes of an innovative discipline, nowadays discussed under the term of Prognostics and Health Management (PHM). In order to analyze how maintenance will change by using PHM, a conceptual model is proposed built upon three views. The model highlights: (i) how PHM may impact the definition of maintenance policies; (ii) how PHM fits within the Condition Based Maintenance (CBM) and (iii) how PHM can be integrated into Reliability Centered Maintenance (RCM) programs. The conceptual model is the research finding of this review note and helps to discuss the role of PHM in advanced maintenance systems.EU Framework Programme Horizon 2020, 645733 - Sustain-Owner - H2020-MSCA-RISE-201

    A framework for effective management of condition based maintenance programs in the context of industrial development of E-Maintenance strategies

    Get PDF
    CBM (Condition Based Maintenance) solutions are increasingly present in industrial systems due to two main circumstances: rapid evolution, without precedents, in the capture and analysis of data and significant cost reduction of supporting technologies. CBM programs in industrial systems can become extremely complex, especially when considering the effective introduction of new capabilities provided by PHM (Prognostics and Health Management) and E-maintenance disciplines. In this scenario, any CBM solution involves the management of numerous technical aspects, that the maintenance manager needs to understand, in order to be implemented properly and effectively, according to the company’s strategy. This paper provides a comprehensive representation of the key components of a generic CBM solution, this is presented using a framework or supporting structure for an effective management of the CBM programs. The concept “symptom of failure”, its corresponding analysis techniques (introduced by ISO 13379-1 and linked with RCM/FMEA analysis), and other international standard for CBM open-software application development (for instance, ISO 13374 and OSA-CBM), are used in the paper for the development of the framework. An original template has been developed, adopting the formal structure of RCM analysis templates, to integrate the information of the PHM techniques used to capture the failure mode behaviour and to manage maintenance. Finally, a case study describes the framework using the referred template.Gobierno de Andalucía P11-TEP-7303 M

    Linking objective and subjective modeling in engineering design through arc-elastic dominance

    Get PDF
    Engineering design in mechanics is a complex activity taking into account both objective modeling processes derived from physical analysis and designers’ subjective reasoning. This paper introduces arc-elastic dominance as a suitable concept for ranking design solutions according to a combination of objective and subjective models. Objective models lead to the aggregation of information derived from physics, economics or eco-environmental analysis into a performance indicator. Subjective models result in a confidence indicator for the solutions’ feasibility. Arc-elastic dominant design solutions achieve an optimal compromise between gain in performance and degradation in confidence. Due to the definition of arc-elasticity, this compromise value is expressive and easy for designers to interpret despite the difference in the nature of the objective and subjective models. From the investigation of arc-elasticity mathematical properties, a filtering algorithm of Pareto-efficient solutions is proposed and illustrated through a design knowledge modeling framework. This framework notably takes into account Harrington’s desirability functions and Derringer’s aggregation method. It is carried out through the re-design of a geothermal air conditioning system

    A schema for generic process tomography sensors

    Get PDF
    A schema is introduced that aims to facilitate the widespread exploitation of the science of process tomography (PT) that promises a unique multidimensional sensing opportunity. Although PT has been developed to an advanced state, applications have been laboratory or pilot-plant based, configured on an end-to-end basis, and limited typically to the formation of images that attempt to represent process contents. The schema facilitates the fusion of multidimensional internal process state data in terms of a model that yields directly usable process information, either for design model confirmation or for effective plant monitoring or control, here termed a reality visualization model (RVM). A generic view leads to a taxonomy of process types and their respective RVM. An illustrative example is included and a review of typical sensor system components is given
    corecore