339 research outputs found

    Which point sets admit a k-angulation?

    Get PDF
    For k >= 3, a k-angulation is a 2-connected plane graph in which every internal face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line drawing of G that maps V(G) onto P and has the same facial cycles and outer face as G. We investigate the conditions under which a point set P admits a k-angulation and find that, for sets containing at least 2k^2 points, the only obstructions are those that follow from Euler's formula.Comment: 13 pages, 7 figure

    Vector Graphics Complexes

    Get PDF
    International audienceBasic topological modeling, such as the ability to have several faces share a common edge, has been largely absent from vector graphics. We introduce the vector graphics complex (VGC) as a simple data structure to support fundamental topological modeling operations for vector graphics illustrations. The VGC can represent any arbitrary non-manifold topology as an immersion in the plane, unlike planar maps which can only represent embeddings. This allows for the direct representation of incidence relationships between objects and can therefore more faithfully capture the intended semantics of many illustrations, while at the same time keeping the geometric flexibility of stacking-based systems. We describe and implement a set of topological editing operations for the VGC, including glue, unglue, cut, and uncut. Our system maintains a global stacking order for all faces, edges, and vertices without requiring that components of an object reside together on a single layer. This allows for the coordinated editing of shared vertices and edges even for objects that have components distributed across multiple layers. We introduce VGC-specific methods that are tailored towards quickly achieving desired stacking orders for faces, edges, and vertices

    Induced Ramsey-type results and binary predicates for point sets

    Full text link
    Let kk and pp be positive integers and let QQ be a finite point set in general position in the plane. We say that QQ is (k,p)(k,p)-Ramsey if there is a finite point set PP such that for every kk-coloring cc of (Pp)\binom{P}{p} there is a subset QQ' of PP such that QQ' and QQ have the same order type and (Qp)\binom{Q'}{p} is monochromatic in cc. Ne\v{s}et\v{r}il and Valtr proved that for every kNk \in \mathbb{N}, all point sets are (k,1)(k,1)-Ramsey. They also proved that for every k2k \ge 2 and p2p \ge 2, there are point sets that are not (k,p)(k,p)-Ramsey. As our main result, we introduce a new family of (k,2)(k,2)-Ramsey point sets, extending a result of Ne\v{s}et\v{r}il and Valtr. We then use this new result to show that for every kk there is a point set PP such that no function Γ\Gamma that maps ordered pairs of distinct points from PP to a set of size kk can satisfy the following "local consistency" property: if Γ\Gamma attains the same values on two ordered triples of points from PP, then these triples have the same orientation. Intuitively, this implies that there cannot be such a function that is defined locally and determines the orientation of point triples.Comment: 22 pages, 3 figures, final version, minor correction

    Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes

    Get PDF
    A quadrangulation is a graph embedded on the sphere such that each face is bounded by a walk of length 4, parallel edges allowed. All quadrangulations can be generated by a sequence of graph operations called vertex splitting, starting from the path P_2 of length 2. We define the degree D of a splitting S and consider restricted splittings S_{i,j} with i <= D <= j. It is known that S_{2,3} generate all simple quadrangulations. Here we investigate the cases S_{1,2}, S_{1,3}, S_{1,1}, S_{2,2}, S_{3,3}. First we show that the splittings S_{1,2} are exactly the monotone ones in the sense that the resulting graph contains the original as a subgraph. Then we show that they define a set of nontrivial ancestors beyond P_2 and each quadrangulation has a unique ancestor. Our results have a direct geometric interpretation in the context of mechanical equilibria of convex bodies. The topology of the equilibria corresponds to a 2-coloured quadrangulation with independent set sizes s, u. The numbers s, u identify the primary equilibrium class associated with the body by V\'arkonyi and Domokos. We show that both S_{1,1} and S_{2,2} generate all primary classes from a finite set of ancestors which is closely related to their geometric results. If, beyond s and u, the full topology of the quadrangulation is considered, we arrive at the more refined secondary equilibrium classes. As Domokos, L\'angi and Szab\'o showed recently, one can create the geometric counterparts of unrestricted splittings to generate all secondary classes. Our results show that S_{1,2} can only generate a limited range of secondary classes from the same ancestor. The geometric interpretation of the additional ancestors defined by monotone splittings shows that minimal polyhedra play a key role in this process. We also present computational results on the number of secondary classes and multiquadrangulations.Comment: 21 pages, 11 figures and 3 table

    Fixing the functoriality of Khovanov homology

    Full text link
    We describe a modification of Khovanov homology (math.QA/9908171), in the spirit of Bar-Natan (math.GT/0410495), which makes the theory properly functorial with respect to link cobordisms. This requires introducing `disorientations' in the category of smoothings and abstract cobordisms between them used in Bar-Natan's definition. Disorientations have `seams' separating oppositely oriented regions, coming with a preferred normal direction. The seams satisfy certain relations (just as the underlying cobordisms satisfy relations such as the neck cutting relation). We construct explicit chain maps for the various Reidemeister moves, then prove that the compositions of chain maps associated to each side of each of Carter and Saito's movie moves (MR1238875, MR1445361) always agree. These calculations are greatly simplified by following arguments due to Bar-Natan and Khovanov, which ensure that the two compositions must agree, up to a sign. We set up this argument in our context by proving a result about duality in Khovanov homology, generalising previous results about mirror images of knots to a `local' result about tangles. Along the way, we reproduce Jacobsson's sign table (math.GT/0206303) for the original `unoriented theory', with a few disagreements.Comment: 91 pages. Added David Clark as co-author. Further detail on variations of third Reidemeister moves, to allow treatment of previously missing cases of movie move six. See changelog section for more detai

    ARTMAP-IC and Medical Diagnosis: Instance Counting and Inconsistent Cases

    Full text link
    For complex database prediction problems such as medical diagnosis, the ARTMAP-IC neural network adds distributed prediction and category instance counting to the basic fuzzy ARTMAP system. For the ARTMAP match tracking algorithm, which controls search following a predictive error, a new version facilitates prediction with sparse or inconsistent data. Compared to the original match tracking algorithm (MT+), the new algorithm (MT-) better approximates the real-time network differential equations and further compresses memory without loss of performance. Simulations examine predictive accuracy on four medical databases: Pima Indian diabetes, breast cancer, heart disease, and gall bladder removal. ARTMAP-IC results arc equal to or better than those of logistic regression, K nearest neighbor (KNN), the ADAP perceptron, multisurface pattern separation, CLASSIT, instance-based (IBL), and C4. ARTMAP dynamics are fast, stable, and scalable. A voting strategy improves prediction by training the system several times on different orderings of an input set. Voting, instance counting, and distributed representations combine to form confidence estimates for competing predictions.National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-95-J-0409, N00014-95-0657
    corecore