97 research outputs found

    Evaluating parametric holonomic sequences using rectangular splitting

    Full text link
    We adapt the rectangular splitting technique of Paterson and Stockmeyer to the problem of evaluating terms in holonomic sequences that depend on a parameter. This approach allows computing the nn-th term in a recurrent sequence of suitable type using O(n1/2)O(n^{1/2}) "expensive" operations at the cost of an increased number of "cheap" operations. Rectangular splitting has little overhead and can perform better than either naive evaluation or asymptotically faster algorithms for ranges of nn encountered in applications. As an example, fast numerical evaluation of the gamma function is investigated. Our work generalizes two previous algorithms of Smith.Comment: 8 pages, 2 figure

    Polynomial evaluation over finite fields: new algorithms and complexity bounds

    Full text link
    An efficient evaluation method is described for polynomials in finite fields. Its complexity is shown to be lower than that of standard techniques when the degree of the polynomial is large enough. Applications to the syndrome computation in the decoding of Reed-Solomon codes are highlighted.Comment: accepted for publication in Applicable Algebra in Engineering, Communication and Computing. The final publication will be available at springerlink.com. DOI: 10.1007/s00200-011-0160-

    Polynomial evaluation over finite fields: new algorithms and complexity bounds

    Get PDF
    An efficient evaluation method is described for polynomials in finite fields. Its complexity is shown to be lower than that of standard techniques, when the degree of the polynomial is large enough compared to the field characteristic. Specifically, if n is the degree of the polynomiaI, the asymptotic complexity is shown to be O(n){O(\sqrt{n})} , versus O(n) of classical algorithms. Applications to the syndrome computation in the decoding of Reed-Solomon codes are highlighte

    Near-optimal Polynomial for Modulus Reduction Using L2-norm for Approximate Homomorphic Encryption

    Get PDF
    Since Cheon et al. introduced an approximate homomorphic encryption scheme for complex numbers called Cheon-Kim-Kim-Song (CKKS) scheme, it has been widely used and applied in real-life situations, such as privacy-preserving machine learning. The polynomial approximation of a modulus reduction is the most difficult part of the bootstrapping for the CKKS scheme. In this paper, we cast the problem of finding an approximate polynomial for a modulus reduction into an L2-norm minimization problem. As a result, we find an approximate polynomial for the modulus reduction without using the sine function, which is the upper bound for the approximation of the modulus reduction. With the proposed method, we can reduce the degree of the polynomial required for an approximate modulus reduction, while also reducing the error compared with the most recent result reported by Han et al. (CT-RSA\u27 20). Consequently, we can achieve a low-error approximation, such that the maximum error is less than 2−402^{-40} for the size of the message m/q≈2−10m/q\approx 2^{-10}. By using the proposed method, the constraint of q=O(m3/2)q = O(m^{3/2}) is relaxed as O(m)O(m), and thus the level loss in bootstrapping can be reduced. The solution of the cast problem is determined in an efficient manner without iteration
    • …
    corecore