
AAECC (2012) 23:129–141
DOI 10.1007/s00200-011-0160-6

ORIGINAL PAPER

Polynomial evaluation over finite fields: new algorithms
and complexity bounds

Michele Elia · Joachim Rosenthal ·
Davide Schipani

Received: 21 June 2011 / Revised: 1 December 2011 / Accepted: 3 December 2011 /
Published online: 16 December 2011
© Springer-Verlag 2011

Abstract An efficient evaluation method is described for polynomials in finite fields.
Its complexity is shown to be lower than that of standard techniques, when the degree
of the polynomial is large enough compared to the field characteristic. Specifically, if
n is the degree of the polynomiaI, the asymptotic complexity is shown to be O(

√
n),

versus O(n) of classical algorithms. Applications to the syndrome computation in the
decoding of Reed-Solomon codes are highlighted.

Keywords Polynomial evaluation · Finite fields · Syndrome computation ·
Reed-Solomon codes

Mathematics Subject Classification (2010) 12Y05 · 12E05 · 12E30 · 94B15 ·
94B35

1 Introduction

The direct evaluation of a polynomial P(x) = an xn + an−1xn−1 · · · + a0 of degree
n over a ring or a field in a point α may be performed computing the n powers αi

This is an extended version of the paper ’Efficient evaluation of polynomials over finite fields’ presented
at the 2011 Australian Communications Theory Workshop, Melbourne, Victoria, January 31–Feburary 3,
2011.

M. Elia
Politecnico di Torino, Turin, Italy

J. Rosenthal · D. Schipani (B)
University of Zurich, Zurich, Switzerland
e-mail: davide.schipani@math.uzh.ch
URL: http://www.math.uzh.ch/aa

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159146966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


130 M. Elia et al.

recursively as ηi+1 = αηi , for i = 1, . . . , n − 1, starting with η1 = α, obtaining
P(α) as

P(α) = a0 + a1η1 + a2η2 + · · · + anηn .

This method requires 2n − 1 multiplications and n additions. However, Horner’s rule
(e.g. [7]), which has become a standard, is more efficient and computes the value P(α)

iteratively as

P(α) = (· · · ((anα + an−1)α + an−2)α + · · · )α + a1)α + a0.

This method requires n multiplications and n additions. In particular scenarios, for
example when the number of possible values of the coefficients is finite, more advan-
tageous procedures can be used, as it will be shown in this document.

We point out that what is usually considered in the literature to establish upper and
lower bounds to the minimum number of both “scalar” and “nonscalar” multiplications
refers, sometimes implicitly, to polynomials with coefficients taken from an infinite
set, e.g. fields of characteristic zero, or algebraically closed fields. In fact, in [2,8,14],
Horner’s rule is proved to be optimal assuming that the field of coefficients is infinite;
instead, we show that this is not the case if the coefficients belong to a finite field.
Furthermore, in [9], restricting the field of coefficients to the rational field, and con-
verting multiplications by integers into iterated sums (therefore scalar multiplications
are not counted in that model), it is shown that the number of required multiplications
is less than that required by Horner’s rule, although the number of sums can grow
unboundedly.

In the following we describe a method to evaluate polynomials with coefficients
over a finite field Fps , and estimate its complexity in terms of field multiplications
and sums. However, as is customary, we only focus on the number of multiplica-
tions, that are more expensive operations than additions: in F2m , for example, the
cost of an addition is O(m) in space and 1 clock in time, while the cost of a mul-
tiplication is O(m2) in space and O(log2 m) in time [4]. Clearly, field multiplica-
tion by look-up tables may be faster, but this approach is only possible for small
values of m. We also keep track of the number of additions, so as to verify that
a reduction in the number of multiplications does not bring with it an exorbitant
increase in the number of additions. Our approach exploits the Frobenius auto-
morphism and its group properties, therefore we call it “polynomial automorphic
evaluation”.

The next section describes the principle of the algorithm, with two different meth-
ods, referring to the evaluation in a point of Fpm of a polynomial with coefficients in
the prime field Fp. The complexity is carefully estimated in order to make the com-
parisons self-evident. Section 3 concerns the evaluation in Fpm of polynomials with
coefficients in Fps , for any s > 1 dividing m: different approaches will be described
and their complexity compared. Section 4 includes examples concerning the syndrome
computation in the algebraic decoding of error-correcting codes (cf. also [11]), and
some final remarks.

123



Polynomial evaluation over finite fields 131

2 Polynomial automorphic evaluation: basic principle

Consider a polynomial P(x) of degree n > p over a prime field Fp, and let α be an
element of Fpm . We write P(x) as a sum of p polynomials

P(x) = P1,0(x p) + x P1,1(x p) · · · + x p−1 P1,p−1(x p), (1)

where P1,0(x p) collects the powers of x with exponent a multiple of p and in general
xi P1,i (x p) collects the powers of the form xap+i , with a ∈ N and 0 ≤ i ≤ p − 1.

First method. If σ is the Frobenius automorphism of Fpm mapping γ to γ p, which
leaves invariant the elements of Fp, we write the expression above as

P1,0(σ (x)) + x P1,1(σ (x)) + · · · + x p−1 P1,p−1(σ (x)),

where P1,i (y), i = 0, . . . , p − 1, are polynomials of degree
⌊

n
p

⌋
at most. Then we

may evaluate these p polynomials in the same point σ(α), and obtain P(α) as the
linear combination

P1,0(σ (α)) + αP1,1(σ (α)) · · · + α p−1 P1,p−1(σ (α)).

A possible strategy is now to evaluate recursively the powers α j for j from 2 up

to p, and σ(α) j for j from 2 up to
⌊

n
p

⌋
, compute the p numbers P1,i (σ (α)), i =

0, . . . , p − 1, using n sums and at most
⌊

n
p

⌋
(p − 2) products (the powers of σ(α)

times their possible coefficients; the multiplications by 0 and 1 are not counted), and
obtain P(α) with p − 1 products and p − 1 additions. The total number Mp(n) of
multiplications is

Mp(n) = p − 1 +
⌊

n

p

⌋
− 1 + (p − 1) +

⌊
n

p

⌋
(p − 2) = 2p − 3 +

⌊
n

p

⌋
(p − 1).

Then this procedure is more efficient compared to Horner’s rule as far as Mp(n) < n.
For example, if p = 3 and n = 10 we have M3(10) = 9 < 10, and for every n > 10
the outlined method is always more efficient. More in general the condition is certainly
satisfied whenever n > 2p2 − 3p, as it can be verified by considering n written in
base p.

Let us see an example in detail, for the sake of clarity, in the case p = 3 and n = 10.
Suppose we want to evaluate the polynomial f (x) = 1 + 2x + x2 + 2x4 + x5 + x6 +
2x8 + x10 in some element α ∈ F3m . Writing f (x) as in Eq. (1)

f (x) = 1 + x6 + x(2 + 2x3 + x9) + x2(1 + x3 + 2x6),

123



132 M. Elia et al.

we see that it is sufficient to compute α2, α3, α6, α9, then 2α3, 2α6, 2α9 (all possible
coefficients needed to evaluate the three sub-polymonials), and lastly the two products
by α and α2 in front of the brackets, for a total of 9 multiplications. Note that actually
2α9 is not needed for this particular example, but in general we always suppose to have
a worst case situation. Clearly α should belong to F3m for some m such that 3m > n,
so that the powers of α up to the exponent n are all different. Note, in particular, that
if both the coefficients and the evaluation point are in Fp, then the polynomial has
degree at most p − 1, and our methods cannot be applied.

However, the above mechanism can be iterated, and the point is to find the number
of steps or iterations yielding the maximum gain. In fact we can prove the following:

Theorem 1 Let Lopt be the number of steps of this method yielding the minimum num-
ber of products, G1(p, n, Lopt ), required to evaluate a polynomial of degree n with
coefficients in Fp. Then Lopt is either the integer which is nearest to logp

√
n(p − 1),

or this integer minus 1, and asymptotically we have:

G1(p, n, Lopt ) ≈ 2
√

n(p − 1).

Proof At step i , the number of polynomials at step i − 1 is multiplied by p since
each polynomial Pi−1,h(x) is partitioned into p sub-polynomials Pi, j+ph(x), j varies
between 0 and p − 1, of degree roughly equal to the degree of Pi−1,h(x) divided by

p, that is of degree
⌊

n
pi

⌋
; the number of these polynomials is pi .

After L steps we need to evaluate pL polynomials of degree nearly n
pL , then P(α) is

reconstructed performing back the linear combinations with the polynomials Pi,h(x)

substituted by the corresponding values Pi,h(α). The total cost of the procedure, in
terms of multiplications and additions, is composed of the following partial costs

• Evaluation of p powers of α, this step also produces σ(α) = α p, and requires
p − 1 products.

• Evaluation of (σ i (α)) j , i = 1, . . . , L − 1, j = 2, . . . , p; this step also produces
σ L(α), and requires (p − 1)(L − 1) products.

• Evaluation of
⌊

n
pL

⌋
powers of σ L(α), this step requires

⌊
n
pL

⌋
− 1 products.

• Evaluation of pL polynomials PL , j (x), of degree at most
⌊

n
pL

⌋
, at the same point

σ L(α), this step requires n additions and
⌊

n
pL

⌋
(p − 2) products at most.

• Computation of p − 1 + (p2 − p) + · · · + pL − pL−1 = pL − 1 multiplications
by powers of σ i (α), (i = 0, . . . , L − 1).

• Computation of p − 1 + (p2 − p) + · · · + pL − pL−1 = pL − 1 additions.

The total number of products as a function of n, p and L is then

G1(p, n, L) =
⌊

n

pL

⌋
(p − 1) + L(p − 1) + pL − 2,

123



Polynomial evaluation over finite fields 133

which should be minimized with respect to L . The values of L that correspond to local
minima are specified by the conditions

G1(p, n, L) ≤ G1(p, n, L − 1) and G1(p, n, L) ≤ G1(p, n, L + 1), (2)

which can be explicitly written in the forms

⌊
n

pL

⌋
+ pL−1 ≤

⌊
n

pL−1

⌋
− 1 and

⌊
n

pL

⌋
− pL ≤

⌊
n

pL+1

⌋
+ 1.

Let {x} denote the fractional part of x , then �x� = x − {x}, thus the last inequalities
can be written as

1 +
{

n

pL−1

}
−

{
n

pL

}
≤ n

pL−1 − n

pL
− pL−1 and

n

pL
− n

pL+1 − pL ≤ 1 +
{

n

pL

}
−

{
n

pL+1

}
.

Since {x} is a number less than 1, these inequalities can be relaxed to

0 <
n

pL−1 − n

pL
− pL−1 and

n

pL
− n

pL+1 − pL < 2,

which imply

p2L < n(p − 1)p and n(p − 1) + p < p2L+1 + 2pL+1 + p = p(pL + 1)2.

Thus, we have the chain of inequalities

1√
p

√
n(p − 1) + p − 1 < pL <

√
p
√

n(p − 1),

and taking the logarithm to base p we have

− logp

(√
1 + p

n(p − 1)
+

√
p

n(p − 1)

)
− 1

2
+ logp

√
n(p − 1)

< L < logp

√
n(p − 1) + 1

2
, (3)

which shows that at most two values of L satisfy the conditions for a min-
imum, because L is constrained to be in an interval of amplitude 1 + ε,

with ε = logp

(√
1 + p

n(p−1)
+

√
p

n(p−1)

)
< 1, around the point of coordinate logp√

n(p − 1). Therefore, the optimal value Lopt is either the integer which is nearest to
logp

√
n(p − 1), or this integer minus 1. Hence, we have the very good asymptotic

123



134 M. Elia et al.

estimation Lopt ≈ logp
√

n(p − 1), and correspondingly a very good asymptotic
estimation for G1(p, n, Lopt ), that is

G1(p, n, Lopt ) ≈ 2
√

n(p − 1).

�	

Second method. We describe here another approach exploiting the Frobenius auto-
morphism in a different way; although it will appear to be asymptotically less efficient
than the above method, it may be useful in particular situations, as shown in Sect. 4.
Since the coefficients are in Fp,

P(x) = P1,0(x p) + x P1,1(x p) · · · + x p−1 P1,p−1(x p)

can be written as

P1,0(x)p + x P1,1(x)p · · · + x p−1 P1,p−1(x)p,

where P1,i (x), i = 0, . . . , p − 1, are polynomials of degree
⌊

n
p

⌋
at most. Then we

may evaluate these p polynomial in the same point α, and obtain P(α) as the linear
combination

P1,0(α)p + αP1,1(α)p · · · + α p−1 P1,p−1(α)p.

A possible strategy is to evaluate recursively the powers α j for j = 2, . . . ,
⌊

n
p

⌋
, com-

pute the p numbers P1,i (α), i = 0, . . . , p − 1, using sums and at most
⌊

n
p

⌋
(p − 2)

products (the powers of α times their possible coefficients), and obtain P(α) with
p pth powers, p −1 products and p −1 additions. The total number of multiplications

is
⌊

n
p

⌋
−1+ (p −1)+ pcp +

⌊
n
p

⌋
(p −2), where cp denotes the number of products

required by a pth power (so c2 = 1 and cp ≤ 2�log2 p�). The mechanism may be
iterated: after L steps we need to evaluate pL polynomials of degree nearly n

pL , then
P(α) is reconstructed performing back the linear combinations with the p-powers of
the polynomials Pi,h(x) substituted by the corresponding values Pi,h(α).

Theorem 2 Let Lopt be the number of steps of this method yielding the minimum
number of products, G2(p, n, Lopt ), required to evaluate a polynomial of degree n

with coefficients in Fp. Then Lopt lies in an interval around logp

√
n(p−1)2

pcp+p−1 of length

at most 2, and asymptotically we have:

G2(p, n, Lopt ) ≈ 2
√

n(pcp + p − 1).

Proof The total cost of the procedure, in terms of multiplications and additions, is
composed of the following partial costs

123



Polynomial evaluation over finite fields 135

• Evaluation of
⌊

n
pL

⌋
powers of α.

• Evaluation of pL polynomials PL , j (x), of degree at most
⌊

n
pL

⌋
, at the same point

α, this step requires n additions and
⌊

n
pL

⌋
(p − 2) products.

• Computation of p + p2 + · · · + pL = pL+1−p
p−1 pth powers.

• Computation of p − 1 + (p2 − p) + · · · + pL − pL−1 = pL − 1 multiplications
by powers of α.

• Computation of p − 1 + (p2 − p) + · · · + pL − pL−1 = pL − 1 additions.

Then the total number of products as a function of n, p and L is

G2(p, n, L) =
⌊

n

pL

⌋
− 1 + pL+1 − p

p − 1
cp + (pL − 1) +

⌊
n

pL

⌋
(p − 2),

which should be minimized with respect to L . The optimal value of L is obtained by
conditions analogous to (2) and arguing as above we find that this optimal value must
be included in a very small interval.

Setting y = 4n(pcp + p − 1) 1
p , the optimal value for L turns out to be included

into an interval around L1 = logp

√
n(p−1)2

pcp+p−1 of extremes

L1 − 1

2
− logp

(√
1 + 1

y
+

√
1

y

)
and L1 + 1

2
+ logp

(√
1 + 1

y
+

√
1

y

)
,

which restricts the choice of Lopt to at most two values. Hence, we have the very good

asymptotic estimation Lopt ≈ logp

√
n(p−1)2

pcp+p−1 , and correspondingly a very good
asymptotic estimation for G2(p, n, Lopt ), that is

G2(p, n, Lopt ) ≈ 2
√

n(pcp + p − 1). (4)

�	

2.1 p = 2

The prime 2 is particularly interesting because of its occurrence in many practical
applications, for example in error correction coding. In this setting an important issue
is the computation of syndromes for a binary code [12], where it is usually needed
to evaluate a polynomial in several powers of a particular value, so that an additional
advantage of the proposed method may be the possibility of precomputing the powers
of α.

A polynomial P(x) over the binary field is simply decomposed into a sum of two
polynomials by collecting odd and even powers of x as

P(x) = P1,0(x2) + x P1,1(x2) = P1,0(x)2 + x P1,1(x)2.

123



136 M. Elia et al.

The mechanism is then the same as for odd p with a few simplifications. The main
point is that we do not need to multiply with the coefficients, which are either 0 or 1,
so only sums are finally involved when evaluating the polynomials.

And to evaluate 2L polynomials at the same point α we would need to evaluate the

powers α j for j = 2, . . . ,
⌊

n
2L

⌋
, and then obtain each PL j (α) by adding those powers

corresponding to non-zero coefficients; the number of additions for each polynomial
is nearly n

2L , then the total number of additions is not more than n. But the actual
number of additions is much smaller if sums of equal terms can be reused, and it is
upper bounded by O( n

ln(n)
). This bound is a consequence of the fact that in order to

evaluate 2L polynomials of degree h =
⌊

n
2L

⌋
at the same point α, we have to compute

2L sums of the form

αi1 + · · · + αim , m ≤ h

having at disposal the h powers αi . We can then think of a 2L ×
⌊

n
2L

⌋
binary matrix

to be multiplied by a vector of powers of α, and assuming 2L ≈ n
2L (as follows from

the estimation of the minimum discussed above), we may consider the matrix to be
square and apply [5, Theorem 2].

3 Automorphic evaluation of polynomials over extended fields

This section considers the evaluation in α, an element of Fpm , of polynomials P(x)

of degree n over Fps , a subfield of Fpm larger than Fp, thus s > 1 and s|m. There are
two ways to face the problem, one way is more direct, the second way exploits the
Frobenius automorphism.

First method. Let β be a generator of a polynomial basis of Fps , i.e. β is a root
of an irreducible s-degree polynomial over Fp, expressed as an element of Fpm , then
P(x) can be written as

P(x) = P0(x) + β P1(x) + β2 P2(x) + · · · + βs−1 Ps−1(x), (5)

where Pi (x), i = 0, . . . , s − 1, are polynomials over Fp (cf. also [10]). Then P(α)

can be obtained as a linear combination of the s numbers Pi (α). Thus the problem
of evaluating P(α) is reduced to the problem of evaluating s polynomials Pi (x) with
p-ary coefficients followed by the computation of s − 1 products and s − 1 sums in
Fpm .
We can state then the following:

Theorem 3 The minimum number of products required to evaluate a polynomial of
degree n with coefficients in Fps is upper bounded by 2s(

√
n(p − 1) + 1

2 ).

Proof The upper bound is a consequence of Theorem 1 and the comments following
Eq. (5). �	

123



Polynomial evaluation over finite fields 137

The total complexity grows asymptotically as 2s
√

n(p − 1), so that a general upper
bound (possibly tight) for the number of multiplications that are sufficient to compute
P(α), when P(x) has coefficients in any subfield of Fpm , is then 2m

√
n(p − 1).

Second method. This consists in generalizing the basic principle directly. We will
show the following:

Theorem 4 G1(ps, n, Lopt ) ≈ 2
√

n(ps − 1) and G2(ps, n, Lopt ) ≈ 2
√

n(ps − 1)√
1 + cps−1 + cp

p
p−1 .

Proof As for the first description, the point now is that there are ps −1 possible coeffi-
cients to be multiplied, so that we get an asymptotic complexity of G1(ps, n, Lopt ) ≈
2
√

n(ps − 1).
Considering the second variant, P(x) = P1,0(x p)+ x P1,1(x p) · · ·+ x p−1 P1,p−1(x p)

is now not directly decomposable into a sum of powers of the polynomials Pi (x) since
the Frobenius automorphism σ alters their coefficients. However, we can write (1) as

P−1
1,0 (x)p + x P−1

1,1 (x)p · · · + x p−1 P−1
1,p−1(x)p,

where P−1
1,i (x) stands for the polynomial obtained from P1,i (x) by substituting its coef-

ficients with their transforms through σ−1 (and if we iterate this for k times we would
consider σ−k). Notice that the polynomials P−1

1,i (x) have degree at most ni = n−i
p ,

and are obtained by computing a total of n automorphisms σ−1. However, in order to
compute the p numbers P−1

1,i (α), i = 0, . . . , p − 1, it is not necessary to compute the
total number of n inverse automorphisms observing that

P−1
1,i (α) =

ni∑
j=0

σ−1(c j )α
j = σ−1

⎛
⎝

ni∑
j=0

c jσ(α j )

⎞
⎠,

where c j , j = 1, . . . , ni , are the coefficients of P1,i (x). It is then sufficient to first eval-
uate σ(α), compute then P1,i (σ (α)) and finally apply σ−1. This procedure requires
the application of only p automorphisms σ−1 instead of n.

If we perform L steps, we need to apply σ−L a number of times not greater than
pL . Notice also that what interests us in σ L is L modulo s because σ s is the identity
automorphism in Fps , the field of the coefficients. The number of multiplications to
be minimized becomes:

G2(ps, n, L) = cp
pL+1 − p

p − 1
+ pL − 1 + cps−1 pL +

⌊
n

pL

⌋
(ps − 1),

where the automorphism σ L counts like a power with exponent pK , with K = L mod
s ≤ s − 1. The optimal value of L is obtained by analogues of conditions (2) and
arguing as above we find that this optimal value must be included in a very small
interval.

123



138 M. Elia et al.

Setting y = 4n(p−1)(pcp+p−1+cps−1 (p−1))

p(ps−1)
, the optimal value for L is included into

an interval around L2 = logp

√
n(p−1)(ps−1)

pcp+p−1+cps−1 (p−1)
of extremes

L2 − 1

2
− logp

(√
1 + 1

y
+

√
1

y

)
and L2 + 1

2
+ logp

(√
1 + 1

y
+

√
1

y

)
,

(6)

which restricts the choice of Lopt to at most two values. Hence, we have the very good

asymptotic estimation Lopt ≈ logp

√
n(p−1)(ps−1)

pcp+p−1+cps−1 (p−1)
, and correspondingly

G2(ps, n, Lopt ) ≈ 2
√

n(ps − 1)

√
1 + cps−1 + cp

p

p − 1
.

�	

4 Examples and conclusions

In some circumstances, for example when s ≈ m ≈ logp n, the optimal L and the
consequent estimated computational cost may obscure the advantages of the new
approach, suggesting the practical use of standard techniques. However, this might
not be always a good strategy, as shown by the following example borrowed from the
error correcting codes.

Let us consider the Reed-Solomon codes that are used in any CD-ROM, or the
famous Reed-Solomon code [255, 223, 33] over F28 used by NASA [13]: in such
applications an efficient evaluation of polynomials over F2m in points of the same
field is of the greatest interest (see also [11]).

What we now intend to show is that in particular scenarios the proposed meth-
ods allow additional cost reductions that can be obtained by a clever choice of the
parameters, for example choosing L as a factor of m that is close to the optimal value
previously found and employing some other strategies as explained below.

The idea will be illustrated considering the computation of the syndromes needed
in the decoding of the above mentioned Reed-Solomon code. We will only show how
to obtain the 32 syndromes; from that point onwards decoding may employ the stan-
dard Berlekamp-Massey algorithm, the Chien search to locate errors, and the Forney
algorithm to compute the error magnitudes [1].

Let r(x) = ∑254
i=0 ri xi , ri ∈ F28 , be a received code word of the Reed-Solomon

code [255, 223, 33] generated by the polynomial g(x) = ∏32
i=1(x − αi ), with α a

primitive element of F28 , i.e. a root of x8 + x5 + x3 + x + 1. The aim is to evaluate
the syndromes S j = r(α j ), j = 1, . . . , 32.

A possible approach is as follows. The power β = α17 is a primitive element of
the subfield F24 , it is a root of the polynomial x4 + x3 + 1, and has trace 1 in F24 .
Therefore, a root γ of z2 + z + β is not in F24 (see [6, Corollary 3.79, p. 118]),

123



Polynomial evaluation over finite fields 139

but it is an element of F28 , and every element of F28 can be written as a + bγ with
a, b ∈ F24 . Consequently, we can write r(x) = r1(x) + γ r2(x) as a sum of two
polynomials over F24 , evaluate each ri (x) in the roots α j of g(x), and obtain each
syndrome S j = r(α j ) = r1(α

j ) + γ r2(α
j ) with 1 multiplication and 1 sum.

Now, we choose to adopt our second variant which turns out to be very well-suited
since we will actually avoid to compute any automorphism. If p(x) is either r1(x) or
r2(x), in order to evaluate p(α j ) we must consider the decomposition

p(x) = (σ−1(p0) + σ−1(p2)x + · · · + σ−1(p254)x127)2 + x(σ−1(p1)

+σ−1(p3)x + · · · + σ−1(p253)x126)2.

Now, each of the two parts can be decomposed again into the sum of two polynomials
of degree at most 63, for instance

σ−1(p0) + σ−1(p2)x + · · · + σ−1(p254)x127

= (σ−2(p0) + σ−2(p4)x + · · · + σ−2(p252)x63)2 + x(σ−2(p2)

+σ−2(p6)x + · · · + σ−2(p254)x63)2

and at this stage we have four polynomials to be evaluated. The next two steps double
the number of polynomials and halve their degree; one polynomial per each stage is
given here as an example

σ−2(p0) + σ−2(p4)x + · · · + σ−2(p252)x63

= (σ−3(p0) + σ−3(p8)x + · · · + σ−3(p248)x31)2 + x(σ−3(p4)

+σ−3(p12)x + · · · + σ−3(p252)x31)2

σ−3(p0) + σ−3(p8)x + · · · + σ−3(p248)x31

= (σ−4(p0) + σ−4(p16)x + · · · + σ−4(p240)x15)2 + x(σ−4(p8)

+σ−4(p24)x + · · · + σ−4(p248)x15)2

Since we choose to halt the decomposition at this stage (notice that L = 4 is a
putative optimal value given by (6)), we must evaluate 16 polynomials of degree at
most 15 with coefficients in F24 . We do not need to compute σ−4 on the coefficients,
as σ−4(pi ) = pi , since the coefficients are in F24 and any element β in this field
satisfies the condition β24 = β.

We remark that up to know we have only indicated how to partition the original
polynomial. This task does not require any computation, it just defines in which order
to read the coefficients of the original polynomial.

Now, let K be the number of code words to be decoded. We compute only once the
following field elements:

• αi , i = 2, . . . , 254 and this requires 253 multiplications;
• αi · β j for i = 0, . . . , 254 and j = 1, . . . , 14, which requires 255 × 14 = 3, 570

multiplications.

123



140 M. Elia et al.

Then only sums (that can be performed in parallel) are required to evaluate 16 poly-
nomials of degree 15 for each α j , j = 1 . . . , 32. Once we have the values of these
polynomials, in order to reconstruct each of r1(α

j ) and r2(α
j ), we need

• 16 + 8 + 4 + 2 squares
• 8 + 4 + 2 + 1 multiplications (and the same number of sums).

Summing up, every r(α j ) = r1(α
j ) + γ r2(α

j ) is obtained with 2 · 45 + 1 = 91 mul-
tiplications. Then the total cost of the computation of 32 syndromes drops down from
31+32 ·254 = 8, 159 with Horner’s rule to 32 × 91 + 3, 570 + 253 = 6, 735. Since
we have K code words the total cost drops from 31+8, 128 · K to 3, 823+2, 912 · K ,
with two further advantages:

– many operations can be parallelized, further increasing the speed;
– the multiplications can be performed in F24 instead of F28 , if we write α j =

a j + γ b j ; this might increase the number of multiplications, but they would be
much faster.

As said, this example was meant to show that there are important applications of
polynomial evaluation which can take advantage of a complexity reduction and that
there are certainly many other possibilities to further reduce the costs, depending on
the particular problem at hand, the model in consideration and the available technol-
ogy (e.g. availability of storage, of pre-computed tables for finite field mutiplications,
etc.). In particular, this paper has been mainly devoted to the single-point evaluation
of polynomials, showing that it is possible to achieve significant complexity reduction
with respect to Horner’s rule even without any precomputation or storage, especially
when the degree of the polynomial is large. In other models, it may be possible to have
the powers of α as already given data and to store relatively large binary matrices in
order to reduce the number of multiplications in a multi-point evaluation scenario or
it may be possible to reduce them at the cost of a significant increase of the number of
additions. For all these different models, we refer to the vast literature on multi-point
evaluation, e.g. [1,3,10].
In conclusion, we have proposed some methods to evaluate polynomials in extensions
of finite fields that have a multiplicative asymptotical complexity O(

√
n), much better

than O(n), the complexity of standard methods; the constant involved is a function
of the field characteristic. We have proposed different variants and shown that the
choice of an evaluation scheme that uses possibly the smallest number of multiplica-
tions follows from a careful analysis of the particular situation and might involve the
adoption of special tricks dependent on the combination of parameters. It remains to
ascertain whether there exists some evaluation algorithm doing asymptotically better,
i.e. having a complexity O(nt ) with t < 1

2 .

Acknowledgments The Research was supported in part by the Swiss National Science Foundation under
grant No. 132256.

References

1. Blahut, R.E.: Theory and Practice of Error Control Codes. Addison-Wesley, Reading (1983)

123



Polynomial evaluation over finite fields 141

2. Borodin, A., Munro, I.: The Computational Complexity of Algebraic and Numeric Problems. Else-
vier, New York (1975)

3. Costa, E., Fedorenko, S.V., Trifonov, P.V.: On computing the syndrome polynomial in Reed-Solomon
decoder. Eur. Trans. Telecommun. 15(4), 337–342 (2004)

4. Elia, M., Leone, M.: On the inherent space complexity of fast parallel multipliers for G F(2m ). IEEE
Trans. Comput. 51(3), 346–351 (2002)

5. Interlando, J.C., Byrne, E., Rosenthal, J.: The gate complexity of syndrome decoding of Ham-
ming codes. In: Proceeding of 10th International Conference on Applications of Computer Algebra,
pp. 33–37 (2004)

6. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University
Press, Cambridge (1986)

7. Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, vol II. Addison-
Wesley, Reading (1981)

8. Pan, V.Y.: Methods of computing values of polynomials. Uspekhi Mat. Nauk 21, 103–134 (1966)
9. Paterson, M., Stockmeyer, L.: On the number of nonscalar multiplications necessary to evaluate poly-

nomials. SIAM J. Comput. 2, 60–66 (1973)
10. Sarwate, D.V.: Semi-fast fourier transforms over G F(2m ). IEEE Trans. Comput. C-27(3), 283–

285 (1978)
11. Schipani, D., Elia, M., Rosenthal, J.: On the decoding complexity of cyclic codes up to the BCH bound.

In: Proceeding of International Symposium on Information Theory (ISIT), 2011
12. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, New

York (1977)
13. Wicker, S.B., Bhargava, V.K. (eds.): Reed-Solomon Codes and their Applications. IEEE Press,

Piscataway (1994)
14. Winograd, S.: On the number of multiplications required to compute certain functions. Proc. Natl.

Acad. Sci. USA 58(5), 1840–1842 (1967)

123


	Polynomial evaluation over finite fields: new algorithms and complexity bounds
	Abstract
	1 Introduction
	2 Polynomial automorphic evaluation: basic principle
	2.1 p=2

	3 Automorphic evaluation of polynomials over extended fields
	4 Examples and conclusions
	Acknowledgments
	References


