41 research outputs found

    On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem

    Full text link
    We investigate three competing notions that generalize the notion of a facet of finite-dimensional polyhedra to the infinite-dimensional Gomory-Johnson model. These notions were known to coincide for continuous piecewise linear functions with rational breakpoints. We show that two of the notions, extreme functions and facets, coincide for the case of continuous piecewise linear functions, removing the hypothesis regarding rational breakpoints. We then separate the three notions using discontinuous examples.Comment: 18 pages, 2 figure

    Light on the Infinite Group Relaxation

    Full text link
    This is a survey on the infinite group problem, an infinite-dimensional relaxation of integer linear optimization problems introduced by Ralph Gomory and Ellis Johnson in their groundbreaking papers titled "Some continuous functions related to corner polyhedra I, II" [Math. Programming 3 (1972), 23-85, 359-389]. The survey presents the infinite group problem in the modern context of cut generating functions. It focuses on the recent developments, such as algorithms for testing extremality and breakthroughs for the k-row problem for general k >= 1 that extend previous work on the single-row and two-row problems. The survey also includes some previously unpublished results; among other things, it unveils piecewise linear extreme functions with more than four different slopes. An interactive companion program, implemented in the open-source computer algebra package Sage, provides an updated compendium of known extreme functions.Comment: 45 page

    New computer-based search strategies for extreme functions of the Gomory--Johnson infinite group problem

    Full text link
    We describe new computer-based search strategies for extreme functions for the Gomory--Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions.Comment: 54 pages, many figure

    Equivariant Perturbation in Gomory and Johnson's Infinite Group Problem. VII. Inverse semigroup theory, closures, decomposition of perturbations

    Full text link
    In this self-contained paper, we present a theory of the piecewise linear minimal valid functions for the 1-row Gomory-Johnson infinite group problem. The non-extreme minimal valid functions are those that admit effective perturbations. We give a precise description of the space of these perturbations as a direct sum of certain finite- and infinite-dimensional subspaces. The infinite-dimensional subspaces have partial symmetries; to describe them, we develop a theory of inverse semigroups of partial bijections, interacting with the functional equations satisfied by the perturbations. Our paper provides the foundation for grid-free algorithms for the Gomory-Johnson model, in particular for testing extremality of piecewise linear functions whose breakpoints are rational numbers with huge denominators.Comment: 67 pages, 21 figures; v2: changes to sections 10.2-10.3, improved figures; v3: additional figures and minor updates, add reference to IPCO abstract. CC-BY-S

    Solid Angle Measure Approximation Methods for Polyhedral Cones

    Get PDF
    Polyhedral cones are of interest in many fields, like geometry and optimization. A simple, yet fundamental question we may ask about a cone is how large it is. As cones are unbounded, we consider their solid angle measure: the proportion of space that they occupy. Beyond dimension three, definitive formulas for this measure are unknown. Consequently, devising methods to estimate this quantity is imperative. In this dissertation, we endeavor to enhance our understanding of solid angle measures and provide valuable insights into the efficacy of various approximation techniques. Ribando and Aomoto independently discovered a Taylor series formula for solid angle measures of certain simplicial cones. Leveraging Brion--Vergne Decomposition, we extend their findings, devising an algorithm for approximating solid angle measures of polyhedral cones, including those where the series is not applicable. We compare our method to other estimation techniques, and explore the practical applications of these methods within optimization. Gomory and Johnson established the use of facets of master cyclic group polyhedra to derive cuts for integer programs. Within this framework, the size of the solid angle subtended by a facet determines its importance. We apply various approximation techniques to measure facet importance, provide computational results, and discuss their implications

    On the development of cut-generating functions

    Get PDF
    Cut-generating functions are tools for producing cutting planes for generic mixed-integer sets. Historically, cutting planes have advanced the progress of algorithms for solving mixed- integer programs. When used alone, cutting-planes provide a finite time algorithm for solving a large family of integer programs [12, 70]. Used in tandem with other algorithmic techniques, cutting planes play a large role in popular commercial solvers for mixed-integer programs [9, 34, 35]. Considering the benefit that cutting planes bring, it becomes important to understand how to construct good cutting planes. Sometimes information about the motivating prob- lem can be used to construct problem-specific cutting planes. One prominent example is the history of the Traveling Salesman Problem [43]. However, it is unclear how much insight into the particular problem is required for these types of cutting-planes. In contrast, cut- generating functions (a term coined by Cornu ́ejols et al. [40]) provide a way to construct cutting planes without using inherent structure that a problem may have. Some of the earliest examples of cut-generating functions are due to Gomory [70] and these have been very successful in practice [34]. Moreover, cut-generating functions produce the strongest cutting planes for some commonly used mixed-integer sets such as Gomory’s corner poly- hedron [66, 95]. In this thesis, we examine the theory of cut-generating functions. Due to the success of the cut-generating function created by Gomory, there has been a proliferation of research in this direction with one end goal being the further advancement of algorithms for mixed- integer programs [78, 40, 28]. We contribute to the theory by assessing the usefulness of certain cut-generating functions and developing methods for constructing new ones. Primary Reader: Amitabh Basu Secondary Reader: Daniel Robinso
    corecore