30,159 research outputs found

    Finite Length Analysis of Irregular Repetition Slotted ALOHA in the Waterfall Region

    Get PDF
    A finite length analysis is introduced for irregular repetition slotted ALOHA (IRSA) that enables to accurately estimate its performance in the moderate-to-high packet loss probability regime, i.e., in the so-called waterfall region. The analysis is tailored to the collision channel model, which enables mapping the description of the successive interference cancellation process onto the iterative erasure decoding of low-density parity-check codes. The analysis provides accurate estimates of the packet loss probability of IRSA in the waterfall region as demonstrated by Monte Carlo simulations.Comment: Accepted for publication in the IEEE Communications Letter

    Frameless ALOHA with Reliability-Latency Guarantees

    Get PDF
    One of the novelties brought by 5G is that wireless system design has increasingly turned its focus on guaranteeing reliability and latency. This shifts the design objective of random access protocols from throughput optimization towards constraints based on reliability and latency. For this purpose, we use frameless ALOHA, which relies on successive interference cancellation (SIC), and derive its exact finite-length analysis of the statistics of the unresolved users (reliability) as a function of the contention period length (latency). The presented analysis can be used to derive the reliability-latency guarantees. We also optimize the scheme parameters in order to maximize the reliability within a given latency. Our approach represents an important step towards the general area of design and analysis of access protocols with reliability-latency guarantees.Comment: Accepted for presentation at IEEE Globecom 201

    Examining the relationship between student performance and video interactions

    Full text link
    In this work, we attempted to predict student performance on a suite of laboratory assessments using students' interactions with associated instructional videos. The students' performance is measured by a graded presentation for each of four laboratory presentations in an introductory mechanics course. Each lab assessment was associated with between one and three videos of instructional content. Using video clickstream data, we define summary features (number of pauses, seeks) and contextual information (fraction of time played, in-semester order). These features serve as inputs to a logistic regression (LR) model that aims to predict student performance on the laboratory assessments. Our findings show that LR models are unable to predict student performance. Adding contextual information did not change the model performance. We compare our findings to findings from other studies and explore caveats to the null-result such as representation of the features, the possibility of underfitting, and the complexity of the assessment.Comment: 4 pages, 1 figure, submitted to the PERC 2018 proceeding

    Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks

    Get PDF
    Changes in Arctic sea ice affect atmospheric circulation, ocean current, and polar ecosystems. There have been unprecedented decreases in the amount of Arctic sea ice due to global warming. In this study, a novel 1-month sea ice concentration (SIC) prediction model is proposed, with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). This monthly SIC prediction model based on CNNs is shown to perform better predictions (mean absolute error - MAE - of 2.28 %, anomaly correlation coefficient - ACC - of 0.98, root-mean-square error - RMSE - of 5.76 %, normalized RMSE - nRMSE - of 16.15 %, and NSE - Nash-Sutcliffe efficiency - of 0.97) than a random-forest-based (RF-based) model (MAE of 2.45 %, ACC of 0.98, RMSE of 6.61 %, nRMSE of 18.64 %, and NSE of 0.96) and the persistence model based on the monthly trend (MAE of 4.31 %, ACC of 0.95, RMSE of 10.54 %, nRMSE of 29.17 %, and NSE of 0.89) through hindcast validations. The spatio-temporal analysis also confirmed the superiority of the CNN model. The CNN model showed good SIC prediction results in extreme cases that recorded unforeseen sea ice plummets in 2007 and 2012 with RMSEs of less than 5.0 %. This study also examined the importance of the input variables through a sensitivity analysis. In both the CNN and RF models, the variables of past SICs were identified as the most sensitive factor in predicting SICs. For both models, the SIC-related variables generally contributed more to predict SICs over ice-covered areas, while other meteorological and oceanographic variables were more sensitive to the prediction of SICs in marginal ice zones. The proposed 1-month SIC prediction model provides valuable information which can be used in various applications, such as Arctic shipping-route planning, management of the fishing industry, and long-term sea ice forecasting and dynamics

    BM-BC: A Bayesian Method of Base Calling for Solexa Sequence Data

    Get PDF
    Base calling is a critical step in the Solexa next-generation sequencing procedure. It compares the position-specific intensity measurements that reflect the signal strength of four possible bases (A, C, G, T) at each genomic position, and outputs estimates of the true sequences for short reads of DNA or RNA. We present a Bayesian method of base calling, BM-BC, for Solexa-GA sequencing data. The Bayesian method builds on a hierarchical model that accounts for three sources of noise in the data, which are known to affect the accuracy of the base calls: fading, phasing, and cross-talk between channels. We show that the new method improves the precision of base calling compared with currently leading methods. Furthermore, the proposed method provides a probability score that measures the confidence of each base call. This probability score can be used to estimate the false discovery rate of the base calling or to rank the precision of the estimated DNA sequences, which in turn can be useful for downstream analysis such as sequence alignment.NIH/NCI R01 CA132897, K25 CA123344FONDECYT 1100010Institute for Computational Engineering and Sciences (ICES

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields
    corecore