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Abstract

downstream analysis such as sequence alignment.

Base calling is a critical step in the Solexa next-generation sequencing procedure. It compares the position-specific
intensity measurements that reflect the signal strength of four possible bases (A, C, G, T) at each genomic position,
and outputs estimates of the true sequences for short reads of DNA or RNA. We present a Bayesian method of
base calling, BM-BC, for Solexa-GA sequencing data. The Bayesian method builds on a hierarchical model that
accounts for three sources of noise in the data, which are known to affect the accuracy of the base calls: fading,
phasing, and cross-talk between channels. We show that the new method improves the precision of base calling
compared with currently leading methods. Furthermore, the proposed method provides a probability score that
measures the confidence of each base call. This probability score can be used to estimate the false discovery rate
of the base calling or to rank the precision of the estimated DNA sequences, which in turn can be useful for

Introduction

Next generation sequencing (NGS) such as Solexa sequen-
cing (http://www.illumina.com) is a powerful tool produ-
cing massive sequences of short reads. It is considered the
“digital” version of the classic microarray technology
because in principle it measures the exact number of gene
copies rather than relative abundances. NGS can be used
for studies of sequence variations in genomes ([1,2]), pro-
tein-DNA interactions ([3,4]), transcriptome analysis
([5-7]), and de novo genome assembly [8]. The full poten-
tial of the technology is still being explored as quantitative
researchers try to find efficient ways to streamline the
sample processing and model the processed data.

Many challenges remain in processing NGS data. We
consider one of the important problems, namely base
calling. Base calling refers to the estimation of the true
sequences of DNA or RNA based on the intensity scores
measuring the signal strength of four nucleotides, A, C,
G, and T. One of the most popular NGS technology is
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the Solexa/Illumina sequencing, in which intensity data
from a standard run consist of millions of intensity mea-
surements for the four bases of short reads spanning
across the genome. For each short read, the measure-
ments of their intensities are stored in an / x 4 matrix,
where [ is the length of the read (e.g., I = 36). Such a
matrix corresponds to a colony. The positions i = 1, ..., [
in the short read are sequenced in cycles. As a result,
each row of the colony matrix contains measurements
from a cycle in the experiment in which the sequence of
a single base is synthesized. At each cycle, all four
nucleotides (A, C, G, and T) labeled with four different
fluorescent dyes are probed, thus producing a quadruple
vector of fluorescent intensity scores. Figure 1 plots the
A intensities versus the C intensities (top left panel) and
the G intensities versus the T intensities (top right panel)
for 1,000 arbitrarily chosen colonies. The four colors
used in the bottom two panels represent the estimated
base calls from the proposed BM-BC method. Figure 1
exhibits two main features. First, the A and C intensities
are highly correlated as are the G and T intensities,
which is known as the “cross talk” between channels [9].
Second, when the A or C intensity is large, both the G
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Figure 1 Scatter plot. The panel shows the scatter plots of the A-C and G-T pairs, constructed from the raw data alone. The y axis and the x
axis in the left panel represent the C and A channels respectively. Similarly, the y and the x axes in the right panel denotes the T and G
channels. The top panel consists of smoothed density plots of A intensities versus C intensities, and G intensities versus T intensities. The four
colors in the figures of the bottom panel represent the estimated base calls from the proposed BM-BC method: black- A, red - C-green G, blue-T.
The intensity values shown in the figure are normalized by subtracting from the overall minimum intensity and then dividing by the standard
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and T intensities are small; similarly, when G or T is
large, both A and C are small.

In summary, the final data are millions of quadruple
vectors. Each vector contains four continuous scores
that represent the fluorescent intensities of nucleotides
A, C, G, and T. Using these data, our task is to estimate
the sequence of each short read.

We acknowledge that the proposed method in this
paper deals with the data from Solexa genome analyzer.
New sequencing technologies have been developed by
Solexa/Illumina, such as the HiSeq series. However,
numerous data sets have already been generated using the
genome analyzer, which need to be properly analyzed. We
believe that our proposed base-calling approach will con-
tribute to the analysis of the existing data and also future
data from experiments that still use the genome analyzer
for sequencing. To our knowledge, a few methods for base
calling are available in the literature. Most researchers use
the default procedure, Bustard, built into the commercial
software of the Illumina Genome Analyzer. The procedure

yields an estimated base for each cycle along with a quality
score called fast-q. The fast-q score measures the most
likely base intensity relative to the three other intensities
on a logarithmic scale from -5 to 40. In practice, DNA
tags with small fast-q scores are discarded in Solexa base
calling. A more recent statistical method of base calling is
by [10], who considered a variety of issues in the sequen-
cing data including the base calling. Other works include
[11,12]. A recent addition to this group of methods is Ibis
(Improved Base Calling for Genome Sequence Analyzer)
[13]. Ibis applies multiclass Support Vector Machines to
raw cluster intensities. The model is trained from data
obtained from a reference genome.

In this paper, we propose a model-based Bayesian
method of base-calling (BM-BC) for Solexa sequencing
data. The BM-BC method presents a hierarchical model
that applies a probabilistic-based inference for base call-
ing. The estimation of model parameters is computed
via Markov chain Monte Carlo (MCMC) simulations
and the posterior samples are used to compute the
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probability that each base is A, C, G, or T. These pos-
terior probabilities are used to estimate the true DNA
sequences, to rank the base calls, and to compute the
false discovery rates (FDR). The remainder of this paper
is organized as follows: The Methodology section pre-
sents a probability model for base calling, and the pos-
terior inference procedure. The section on Numerical
examples presents the base-calling results for a Solexa
sequencing data set using the BM-BC method and three
other methods as comparison. The Discussion sections
ends the paper.

Methodology

To start, we introduce the three known sources of noise in
the Solexa data that motivated the proposed probability
models. The first type of noise is called fading (see e.g.,
[10]), which refers to a decay in the intensity as a function
of cycle number. That is, for a colony, as the cycle number
increases, the intensity measurement decreases. This is
usually caused by material loss during the sequencing pro-
cess. The second source is phasing, a well-known source
of noise in Solexa sequencers that use cyclic reversible ter-
mination (CRT) ([14,15]). Basically, errors in the CRT
cause stochastic failures in base-binding that is supposed
to incorporate only one nucleotide per cycle. Instead, the
errors may lead to incorporation of none or more than
one nucleotide in one cycle, thus increasing the noise in
the signal output for down-stream cycles. As a result,
the precision of base calling drops as the cycle number
increases (see Figure 2). The third important source of
noise is a fluorophore cross talk between channels A and
C, and channels G and T. The cross talk induces high cor-
relations between A intensities and C intensities, and
between G intensities and T intensities (see Figure 1).
There are many factors that contribute to cross-talk
between channels, one of them being an overlap in the
wavelengths of the dye schemes used to mark different
nucleotides.

Other important systematic biases also affect the accu-
racy of base calling. For a discussion, see [14,15]. However,
these biases can be removed or reduced using standard
statistical techniques. We assume that these biases have
been removed and now the goal is to model the intensity
scores.

Hierarchical models

We first consider models for sequence data of a single
colony, i.e., measurements corresponding to a short read,
with say I = 36 bases. Let y = {y1, ..., ¥3¢} represent the 36
quadruplets of nucleotide intensity measurements, where
¥: = (Viv Yio» Viz» ¥ia)' 1s the 4 x 1 vector for cycle i, respec-
tively representing the intensities of four nucleotides, A,
C, G, and T at location i of the short reads. Therefore,
strong signals are indicated by large positive values of y;;.
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Because for each cycle only one true nucleotide is pre-
sent, ideally only one of the four y;’s should be positive
and the remaining three should be zero. In the presence
of noise, this is not the case. First, due to channel cross-
talk, y;, and y;, are positively correlated, as are y;3 and 4.
Second, because of fading, the intensities decay over
cycles; that is, for later cycles, the values of y,’s are smal-
ler on average. Last, when phasing is present, the inten-
sity scores at cycle i depend on the ones at cycle (i — 1).

Let k; € {1, 2, 3,4} indicates the true base of cycle i,
where {1, 2, 3, 4} correspond to {A, C, G, T}. The main
feature of the sampling model for y; is given by an auto-
regression consisting of a mixture of four multivariate
normal distributions, with each normal distribution
describing the case when the true base is one of {A, C,
G, T}. Specifically, letting MVNy (¢, ) denote a 4-
dimensional normal with mean vector g and covariance
matrix X, we assume that for i = 2, ..., 36,

4
vin ) Pl = j)-
j=1

1)
MVN, [p;-exp(-B-i*)+a -y, 4, 2] 1;
and
4
yim Y Prlly = ) MVNG (), )1, ®)

j=1

where I’s are four indicator functions Ind(-) that truncate
the multivariate normal. Here, I; = Ind(y; = maxi,yy) -
These indicators reflect the prior belief that the true base
should have the largest intensity. Models (2) and (2)
attempt to account for three sources of noise in the data.
Specifically, due to fading, the intensity signals weaken as
the cycle indicator i gets larger. Therefore, we include the
exponential factor exp(—f - i*) to describe the decay of the
mean signal. Note that we specify an exponent A to allow
for more flexibility. For the phasing, we add a term « - y;_5,
; to the mean of the multivariate normal (thus autoregres-
sive), i.e., the intensity of the current cycle i depends on
the intensity of the previous cycle (i — 1) for i > 2.

The cross talk is accounted for by constructing appro-
priate priors for g;’s, as described next. We assume that
the mean intensities when the true base is A, C, G, or T
are given by

Hj €1

Hijx | . 2 | .
M= j=12, p;= j=34.
! €y ! M

€2 Hijs
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Figure 2 Error rates for a random subsample of 1000 clusters. (Colored figure) The error rate for each cycle. The error rate of the Solexa
calls has a large increase after cycle 26, while the error rates of the BM-BC, B-I, and Rolexa calls increase gradually over the cycles.

Cycle Index

When the true base is A (i.e., j = 1), the intensities at
channels A and C are modeled by y;; and p;, while the
intensities at channels T and G will be close to zero,
parametrized as &;; and &;,. In addition, the mean inten-
sity u1; at channel A should be larger than y;, at chan-
nel C. Therefore, the prior for y; is given by

#yy ~ log N(0,1)

Hia = Hyy - 81, &1 ~ beta(1,1),
€11 = M1 810 81 ~ beta(2,10),
€12 = H11 - 8s2r 82 ~ beta(2,10),

3)

We use a log N(0,1) prior for ;. Here, g; accounts
for the cross talk from channel C to channel A. We
assign a beta(l, 1) as its prior. For g,; and g,,, we use
beta(2,10) to reflect our strong belief that the intensities
at channels G and T are much smaller than the intensity
at channel A. We have tried other beta priors beta(a, b)
with a << b and obtained similar results in base calling.

The model is completed by specifying the discrete
uniform prior for k;, i.e., Pr(k; = j) = 1/4 forj =1, 2, 3,
4, a beta(1, 1) prior for 4, o, and B, and an inverse
Wishart(diag(1, 4), 6) prior for ¥;, where diag(1, 4) is
the 4 x 4 identity matrix.
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The models above are built for one colony of sequen-
cing data. With multiple colonies, we use y;. = (Jic,1r -+
¥ic.a) to denote the quadruple intensities of cycle i in
colony ¢, and k;. to represent the latent indicator of the
true base of cycle i in colony ¢. The models for y; are
the same as in (2) and (2), with y;. and k;. replacing y;
and k;. The priors for k;,, uj, A, o, B, and X; remain
unchanged. Since y;/’s are conditionally independent, the
joint likelihood for all the data is simply the product of
the likelihood function for each y,. For simplicity, the
mathematical expression of the models is omitted.

Posterior inference

Inference is carried out via MCMC simulations. The
probability models are coded in C (now included in an
R package). The MCMC simulations output provides
Monte Carlo posterior samples of all the parameters
from the joint posterior distribution. These samples can
be used to perform posterior inference. For example, we
obtain random samples of k;. from its marginal poster-

ior, denoted as {k;l,...,k;B } , where B is the number

of MCMC samples. We can compute

&= Pr(k = jly) =

B
1 S (i = ). @)
E Ind(kic,l = ])/ ]= 1, 2/ 3/ 4/

I=1

as the posterior probability that the ith cycle in colony
¢ has a true base of A, C, G, or T, respectively. These
samples can be used to perform base calling. Specifi-
cally, the Bayesian base call corresponds to the nucleo-
tide with the largest posterior probability in its cycle.
That is, we assign base A, C, G, or T to cycle i in colony
cif s;c equals 1, 2, 3, or 4, where s, = arg max;-l:1 £l .In
addition, one can assess the accuracy of the proposed
method by computing an estimated Bayesian FDR
([16,17]) using the &s. We will demonstrate this feature
with a concrete example in the next section.

Numerical examples

We compared the performance of the BM-BC method
with currently leading methods, including the Solexa
Bustard, the Rolexa method [11], and the B-I method
[10].

Data

We obtained Solexa DNA sequencing data from the
control lane for a bacteria phage. This is part of the
standard Solexa protocol. To illustrate the performance
of base calling methods, we randomly selected three
subsets, with each containing 1,000 colonies of the
sequence data.
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The control lane sequences the genome of an entero-
bacteria phage, phiX174, which is composed of 5,386
bases of single stranded DNA sequences and has no
polymorphism. DNA preparation follows Illumina Con-
trol DNA library protocol (Illumina Cat. No CT-901-
1001). DNA are broken to a size of 200 nucleotides and
are subject to 18 cycles of polymerase chain reaction
(PCR) amplification before the generation of DNA colo-
nies by single molecule PCR. The sequences of DNA
colonies are probed by 36 cycles of sequencing by
synthesis.

Each DNA read is compared to the entire phage gen-
ome of 5,386 positions to search for the best matches.
This is done using the Solexa software PhageAlign.
After a tag is aligned to the phage genome, the matched
sequence on the phage genome is considered to be the
true sequence and any mismatched nucleotide is consid-
ered a sequencing error. The assignment of the true
sequence is correct because 1) the phage genome con-
tains no polymorphism and 2) the small genome size
makes a mistaken sequence match over 36 nucleotides
highly unlikely. Note that this is not the case for the
human genome, where polymorphism occurs ([18]).
Here, we treat the bases obtained from the above proce-
dure as the “true” ones and compare the performance of
base calling methods based on the deviation from these
bases.

Analysis with random subsets

We first applied all the methods to a small data set for
illustration purpose. We then implemented the BM-BC
method on a data set from the control lane of the
Solexa sequencing, consisting of about 5 million short
reads. We compare the following four base-calling
methods using the phage sequencing data.

+ Bustard from Solexa’s Genome Analyzer: this is the
commercial software provided by Illumina. More
detailed information about the Genome Analyzer can be
found at http://www.illumina.com.

+ Rolexa: this is a method building upon model-based
clustering [11], which assumes that the quadruplets of
intensities follow four-component univariate Gaussian
mixture models. Instead of performing a full Bayesian
inference using the joint posterior distribution, the
Rolexa method applies the EM algorithm to obtain
point estimates of the parameters.

« B-I: this is the intensity model proposed in Bravo
and Irrizary (2010). The authors carefully examined
potential noises in the intensity data and proposed a lin-
ear mixture model with different means given the indi-
cator of true bases. They applied the EM algorithm to
obtain the posterior probabilities of the true base calls.
See [10].

+ BM-BC: our proposed method.
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We applied all four methods to the three random sub-
sets of phage sequencing data, each with 1,000 colonies.

For the BM-BC method, we performed base calling
using 100 colonies at a time. The Markov chains con-
verged fast and mixed extremely well. We only needed
to throw away 100 burn-in samples with a total of 600
iterations for every 100 colonies.

We compared the estimated bases from the four
methods with the true bases. Table 1 shows the number
of wrong calls for each of the four methods. The BM-
BC method had the smallest number of wrong calls for
two subsets and a close second for the third subset, in
which the Rolexa yields the smallest number of wrong
calls.

In Table 1, we used ACGT as the base calls for the
Rolexa method. In the original paper by Rougemont et al.
(2008), the authors focused on using the International
Union of Pure and Applied Chemistry (IUPAC) symbols
(http://www.bioinformatics.org/sms/iupac.html) as base
calls. These symbols include not only ACGT, but other
ambiguous calls that represent more than one base
within ACGT. The authors stated that the IUPAC sym-
bols gave the Rolexa better performance. For a fair com-
parison, we used the ACGT symbols for the Rolexa.

For ease of exposition, we now focus on the results of
an arbitrary subset, data set 1 in Table 1. We computed
the difference in the number of correct calls per colony
between the BM-BC method and each of the other
three methods.

We can see that the BM-BC method is more likely to
make right calls for a given colony than the other three
methods. In addition, in extreme cases the BM-BC
method could make more than 20 more correct calls (out
of a total of 36) than the other methods. In contrast, the
largest number of more wrong calls the BM-BC method
could make is only 6. Figure 2 compares the error rates
by cycle, defined as the proportion of wrong calls for
each cycle across all colonies. Interestingly, the error rate
for the Solexa calls has a large increase after cycle 26. See
Figure 5 for more results related to this. This seems to

Table 1 Error rates for different methods under
comparison

Data sets Number of wrong calls (percentage)
BM-BC Solexa B-l Rolexa
1 1,340 (3.7%) 1,455 (4.0%) 1,428 (4.0%) 1,601 (4.4%)
2 1,354 (3.7%) 1514 (42%) 1,426 (4.0%) 1,432 (4.0%)
3 1,385 (3.8%) 1438 (4.0%) 1444 (40%) 1,345 (3.7%)

The number of wrong calls for the methods under comparison: the proposed
BM-BC, Solexa calls from the Bustard method, the method in Bravo and
Irizarry (2010) (B-I), and the Rolexa method. Three subsets of Solexa
sequencing data for a bacterial phage were selected, each with 1,000
colonies. Each row contains the number of missed calls (out of 36,000) for a
subset. The bold entry in each row indicates the method with the fewest
wrong calls.
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suggest that the Solexa base calling is more sensitive to
the phasing noise in the data. In contrast, the error rates
for the other three methods increase gradually over the
cycles. Both BM-BC and Rolexa methods are also robust
to phasing as it is specifically accounted for in the prob-
ability models. We can estimate the FDR based on the
posterior probabilities &s for base calls from the BM-BC
method. Because we know the true bases, we can pre-
cisely compute the FDR of the BM-BC method. The idea
is to treat (1 - 511; ) as the local FDR. We present the fol-
lowing algorithm for computing the FDR based on the
true bases.

1. Let the true base be ;. for cycle i in colony c.

2. Compute & = Pr(k;, =t;|data); then (1-&;) is
the local FDR denoting the posterior probability of mak-
ing a wrong call.

3. Rank the pairs (i, ¢) according to the increasing
values of (1-¢&1).

4. Starting from the highest ranking pair (i, ¢) with the
smallest (1- gllc) , move down to the Gth highest rank-
ing pair. The estimated FDR is given by the sum of
(1-¢L) for all G pairs divided by G.

Figure 3 plots the estimated FDR versus the number
of calls (ranked based on increasing values of (1-£L)).
We can see that the FDR is controlled by 0.04. This
seems to agree with the error rate in Table 1. In cases
where we do not know the true base calls, we only need
to replace ¢;. with s; =arg rnax}l:1 fl{ , the estimated
base call by the BM-BC, in the above FDR algorithm to
estimate the Bayesian FDR. This new value will be smal-
ler because the errors in s;. are not accounted for.

0.03
|

Estimated Bayesian FDR
0.02
1

0.00
|

T T I T
0 5000 10000 15000

Number of cycles

Figure 3 FDR plot. Bayesian FDR plot with 18,000 base calls under
the BM-BC method.
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Table 2 Basecall Matching Rates

Predicted calls

A @ G T

A 97.22 2.00 3 3
True calls C 1.06 95.75 129 1.88
G .00 .00 92.89 6.33
T .00 01 .00 98.52

Matching rates of Basecalls by percentages. The overall matching percentage
is 96.24.

Full data analysis

We implemented the BM-BC method on a data set con-
sisting of 5,120,000 colonies. The data are from a control
lane in a standard Solexa run, in which the true
sequences are known. We first splitted the data into 8
equal parts, each comprising of 640,000 colonies. We
then applied the BM-BC method to each of the eight
subsets in parallel. The eight jobs were executed on an
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iMAC with 2.8 GHz Intel Core i7 and 16 GB of memory.
It took about 4 hours to complete the computation. We
have built an R package “BM-BC”, available to be down-
loaded from http://odin.mdacc.tmc.edu/~yuanj/soft.html

We computed gi as the posterior probability that the
base of cycle i in colony c is j, for j = 1, 2, 3, or 4. The
base call is s;, = arg max}l:1 &/, the base with the largest
posterior probability. We found that almost all the largest
posterior probabilities were greater than 0.95, thus imply-
ing that our model was able to predict most bases with
high degrees of confidence. Since we knew the true
sequences for the data, we compared our predicted calls
to the true sequences. Table 2 cross-tabulates the com-
parison results. In Figure 4, we see that the B-I error
curves, though showing no such drastic jumps, still fares
poorly compared to the BM-BC method. For this dataset
the B-I also has a larger overall error rate of 8% com-
pared to that of BM-BC, which has an overall error rate

59}
o |1 B A-C
B AG
B AT
= C-A
< | W c6
c | O C-T
B-- GA
= G-C
= G-T
o | == TA
s © | m— TC
T B— TG
2 .
i .
t\]- _ n
o I
; - : '\/‘ v :
o
S

0 5 10 20 30

Cycle Index

w
o 1 O A-C
| e A-G
B— AT
[} C-A
. n----- C-G
o | O C-T
B-- G-A
O G-C
O G-T
w | B T-A
W - T-C
© O T-G
S
L
N
o
; ]
o
S -

Cycle Index

Figure 4 Comparison with Bl method. Comparison of Base errors per cycle for the BM-BC method (right panel) and the B-I method (left
panel) in Bravo and Irizarry (2010) for a random subset of 50,000 colonies. The error rate of base calls is about 4.9% for the BM-BC and about
8.0% for the B-l method. The G-T substitution error curve (shown by a turquoise green solid line) and the A-C substitution curve (shown by a
blue dotted line) dominates the other pairwise substitution rate in both the methods. However, clearly, the curves in the BM-BC are lower both
in the absolute scales and in the rate of increase with cycles.
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Figure 5 Comparison with Solexa method. (Colored figure) Base errors per cycle for the entire dataset based on the BM-BC (top panel) and
the Bustard under Solexa sequencing (bottom panel). The plot further confirms that for the BM-BC method, there is no increase in base
substitution errors with increasing cycle, a common problem in most basecalling methods. Also the major potential substitution errors, A-C and
G-T substitutions have been accounted for quite well. For the Bustard method, there is a large increase in the error rates (after cycle 26, shown
by the green dotted line) for A-C substitutions. Both methods yield an overall error rate of 4% in base calling.
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of of 5%. Figure 5 plots the error rates by cycle for the
BM-BC and Solexa methods using the entire dataset.
Although the overall error rates for the BM-BC and the
Solexa methods are comparable, the A-C substitution
rate for the Solexa calls show a large increase after
cycle 26.

Discussion

An important feature of the BM-BC method is that it
yields marginal posterior probabilities of the four
nucleotides for each base. This allows a full probability-

based inference for base calling and subsequent analysis.
For example, one can associate the posterior probability
of the base call with the estimated base and use it as a
quality control measure for downstream sequence align-
ment. Sequences mapped to a genome with overall high
posterior probabilities are more reliable than those with
lower probabilities.

We also compared our method with the Bayesian clas-
sifier BayesCall in [12]. The computation was slow com-
pared to the other methods. The slow speed could be a
potential shortcoming for its application to data from
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NGS platforms, typical consisting of about millions of
clusters. Naive Bayes classifiers, on the other hand, suf-
fer from the simplistic assumptions of independence
which are grossly violated in datasets of these type. One
important feature of BM-BC is that it does not require
any prior learning for its application to GA-I data. How-
ever, unsupervised clustering is not always feasible for
data from newer sequencing technologies. Ibis [13] spe-
cifically uses large training data sets to analyze GA-II
control lanes. In addition, certain platforms possess
unique features and need algorithms specially tailored to
their specific requirements. Ibis, for example, is designed
to model the features of bi-directional phasing and T
accumulation which are present in GA-II. On the other
hand, BM-BC is more suited towards addressing the
issues of phasing, fading and cross talk that arise in the
context of modeling GA-I data.

We acknowledge that there is a scope of improving
the model by incorporating the error sources unique to
the latest sequencing platforms.
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