30 research outputs found

    ExistĂȘncia de minimizantes para integrais n-dimensionais nĂŁo-convexos

    Get PDF
    Primeiro demonstra-se a existĂȘncia de minimizantes para o integral mĂșltiplo ∫ Ω ℓ∗∗ ( u (x) , ρ1 (x, u(x))∇u (x) ) ρ2 (x, u(x)) d x on W 1;1 u@ (Ω) , onde Ω ⊂ Rd Ă© aberto e limitado, u : Ω → R pertence ao espaço de Sobolev u@ (·) + W1;1 0 (Ω), u@ (·) ∈ W1;1 (Ω) ∩ C0 ( Ω ) ; ℓ : R×Rd → [0,∞] Ă© superlinear L⊗B−mensurĂĄvel, ρ1(·, ·), ρ2(·, ·) ∈ C0 (Ω×R) ambos > 0 e ℓ∗∗(·, ·) Ă© apenas sci em (·, 0). TambĂ©m se considera o caso ∫ Ω L∗∗ (x, u(x),∇u(x) ), embora com hipĂłteses mais complexas, mas Ă© igualmente possĂ­vel ter L(x, ·, Ο) nĂŁo-sci para Ο Ìž= 0; Por Ășltimo demonstra-se a existĂȘncia de minimizantes radialmente simĂ©tricos, i.e. uA(x) = UA ( |x| ), uniformemente contĂ­nous para o integral mĂșltiplo ∫ BR L∗∗ ( u(x), |Du(x) | ) d x na bola BR ⊂ Rd, u : Ω → Rm pertence ao espaço de Sobolev A + W1;1 0 (BR, Rm ), L∗∗ : Rm×R → [0,∞] Ă© convexa, sci e superlinear, L∗∗ ( S, · ) Ă© par; note-se tambĂ©m que enquanto no caso escalar, m = 1, apenas necessitamos de mais uma hipĂłtese : ∃ min L∗∗ (R, 0 ), no caso vectorial, m > 1, L∗∗ (·, ·) tambĂ©m tem de satisfazer uma restrição geomĂ©trica, a qual chamamos quasi − escalar; sendo o exemplo mais simples de uma função quasi − escalar o caso biradial L∗∗ ( | u(x) | , |Du(x) | ); ABSTRACT: First it is proved the existence of minimizers for the multiple integral ∫ Ω ℓ∗∗ ( u (x) , ρ1 (x, u(x))∇u (x) ) ρ2 (x, u(x)) d x on W 1;1 u@ (Ω) , where Ω ⊂ Rd is open bounded, u : Ω → R is in the Sobolev space u@ (·) + W1;1 0 (Ω), with boundary data u@ (·) ∈ W1;1 (Ω) ∩ C0 ( Ω ) ; and ℓ : R×Rd → [0,∞] is superlinear L⊗B − measurable with ρ1(·, ·), ρ2(·, ·) ∈ C0 (Ω×R) both > 0 and ℓ∗∗(∫ ·, ·) only has to be lsc at (·, 0). The case Ω L∗∗ (x, u(x),∇u(x) ) is also treated, though with less natural hypotheses, but still allowing L(x, ·, Ο) non − lsc for Ο Ìž= 0; Lastly it is proved the existence of uniformly continuous radially symmetric minimizers uA(x) = UA ( |x| ) for the multiple integral ∫ BR L∗∗ ( u(x), |Du(x) | ) d x on a ball BR ⊂ Rd, among the vector Sobolev functions u(·) in A + W1;1 0 (BR, Rm ), using a convex lsc L∗∗ : Rm×R → [0,∞] with L∗∗ ( S, · ) even and superlinear; but while in the scalar m = 1 case we only need one more hypothesis : ∃ min L∗∗ (R, 0 ), in the vectorial m > 1 case L∗∗ (·, ·) also has to satisfy a geometric constraint, which we call quasi − scalar; the simplest example being the biradial case L∗∗ ( | u(x) | , |Du(x) | )

    Constrained Nonsmooth Problems of the Calculus of Variations

    Full text link
    The paper is devoted to an analysis of optimality conditions for nonsmooth multidimensional problems of the calculus of variations with various types of constraints, such as additional constraints at the boundary and isoperimetric constraints. To derive optimality conditions, we study generalised concepts of differentiability of nonsmooth functions called codifferentiability and quasidifferentiability. Under some natural and easily verifiable assumptions we prove that a nonsmooth integral functional defined on the Sobolev space is continuously codifferentiable and compute its codifferential and quasidifferential. Then we apply general optimality conditions for nonsmooth optimisation problems in Banach spaces to obtain optimality conditions for nonsmooth problems of the calculus of variations. Through a series of simple examples we demonstrate that our optimality conditions are sometimes better than existing ones in terms of various subdifferentials, in the sense that our optimality conditions can detect the non-optimality of a given point, when subdifferential-based optimality conditions fail to disqualify this point as non-optimal.Comment: A number of small mistakes and typos was corrected in the second version of the paper. Moreover, the paper was significantly shortened. Extended and improved versions of the deleted sections on nonsmooth Noether equations and nonsmooth variational problems with nonholonomic constraints will be published in separate submission

    Multiscale homogenization of convex functionals with discontinuous integrand

    Full text link
    This article is devoted to obtain the Γ\Gamma-limit, as Ï”\epsilon tends to zero, of the family of functionals FÏ”(u)=∫Ωf(x,xÏ”,...,xÏ”n,∇u(x))dxF_{\epsilon}(u)=\int_{\Omega}f\Bigl(x,\frac{x}{\epsilon},..., \frac{x}{\epsilon^n},\nabla u(x)\Bigr)dx, where f=f(x,y1,...,yn,z)f=f(x,y^1,...,y^n,z) is periodic in y1,...,yny^1,...,y^n, convex in zz and satisfies a very weak regularity assumption with respect to x,y1,...,ynx,y^1,...,y^n. We approach the problem using the multiscale Young measures.Comment: 18 pages; a slight change in the title; to be published in J. Convex Anal. 14 (2007), No.

    Quelques contributions au calcul des variations et aux Ă©quations elliptiques

    Get PDF
    Les travaux de recherche qui sont prĂ©sentĂ©s font partie de trois thĂ©matiques diffĂ©rentes. Le premier sujet concerne les systĂšmes d’une classe d'Ă©quations aux dĂ©rivĂ©es partielles, dites «implicites» dans la littĂ©rature. Ces problĂšmes sont complĂštement non linĂ©aires. Les Ă©quations scalaires, oĂč l'inconnue est une fonction, admettent en gĂ©nĂ©ral, une infinitĂ© de solutions. On dĂ©veloppe des mĂ©thodes variationnelles pour sĂ©lectionner des solutions avec des critĂšres de rĂ©gularitĂ©s. On traite aussi les cadres vectoriels, oĂč l'inconnue est une application, en prĂ©sentant des thĂ©orĂšmes d’existence et quelques applications.Les problĂšmes isopĂ©rimĂ©triques font partie de la deuxiĂšme thĂ©matique de recherche. On traite des inĂ©galitĂ©s isopĂ©rimĂ©triques pour des problĂšmes aux valeurs propres non linĂ©aires, ainsi que la version quantitative de l'inĂ©galitĂ© isopĂ©rimĂ©trique classique. On Ă©tudie aussi les propriĂ©tĂ©s de symĂ©trie desminimiseurs d’un problĂšme variationnel non coercitif sur une boule, en montrant une rupture de symĂ©trie, en fonction de l’un des paramĂštres qui dĂ©finissent le problĂšme.La mauvaise coercitivitĂ© est aussi liĂ©e au troisiĂšme axe de recherche prĂ©sentĂ©. On analyse des rĂ©sultats d’existence et rĂ©gularitĂ© de solutions de certains problĂšmes elliptiques, dĂ©finis Ă  travers un opĂ©rateur elliptique Ă  coercitivitĂ© dĂ©gĂ©nĂ©rĂ©e. On montre en particulier les effets rĂ©gularisants dequelques termes d'ordre infĂ©rieur pour les problĂšmes de Dirichlet correspondants, en fonction de la rĂ©gularitĂ© de la source

    Well-Behavior, Well-Posedness and Nonsmooth Analysis

    Get PDF
    AMS subject classification: 90C30, 90C33.We survey the relationships between well-posedness and well-behavior. The latter notion means that any critical sequence (xn) of a lower semicontinuous function f on a Banach space is minimizing. Here “critical” means that the remoteness of the subdifferential ∂f(xn) of f at xn (i.e. the distance of 0 to ∂f(xn)) converges to 0. The objective function f is not supposed to be convex or smooth and the subdifferential ∂ is not necessarily the usual Fenchel subdifferential. We are thus led to deal with conditions ensuring that a growth property of the subdifferential (or the derivative) of a function implies a growth property of the function itself. Both qualitative questions and quantitative results are considered
    corecore