9,932 research outputs found

    On the mathematics of data centre network topologies.

    Get PDF
    In a recent paper, combinatorial designs were used to construct switch-centric data centre networks that compare favourably with the ubiquitous (enhanced) fat-tree data centre networks in terms of the number of servers within (given a fixed server-to-server diameter). Unfortunately there were flaws in some of the proofs in that paper. We correct these flaws here and extend the results so as to prove that the core combinatorial construction, namely the 3-step construction, results in data centre networks with optimal path diversity

    On the mathematics of data centre network topologies

    Get PDF
    In a recent paper, combinatorial designs were used to construct switch-centric data centre networks that compare favourably with the ubiquitous (enhanced) fat-tree data centre networks in terms of the number of servers within (given a fixed server-to-server diameter). Unfortunately there were flaws in some of the proofs in that paper. We correct these flaws here and extend the results so as to prove that the core combinatorial construction, namely the 3-step construction, results in data centre networks with optimal path diversity

    RadiX-Net: Structured Sparse Matrices for Deep Neural Networks

    Full text link
    The sizes of deep neural networks (DNNs) are rapidly outgrowing the capacity of hardware to store and train them. Research over the past few decades has explored the prospect of sparsifying DNNs before, during, and after training by pruning edges from the underlying topology. The resulting neural network is known as a sparse neural network. More recent work has demonstrated the remarkable result that certain sparse DNNs can train to the same precision as dense DNNs at lower runtime and storage cost. An intriguing class of these sparse DNNs is the X-Nets, which are initialized and trained upon a sparse topology with neither reference to a parent dense DNN nor subsequent pruning. We present an algorithm that deterministically generates RadiX-Nets: sparse DNN topologies that, as a whole, are much more diverse than X-Net topologies, while preserving X-Nets' desired characteristics. We further present a functional-analytic conjecture based on the longstanding observation that sparse neural network topologies can attain the same expressive power as dense counterpartsComment: 7 pages, 8 figures, accepted at IEEE IPDPS 2019 GrAPL workshop. arXiv admin note: substantial text overlap with arXiv:1809.0524

    Effects of variations of load distribution on network performance

    Full text link
    This paper is concerned with the characterization of the relationship between topology and traffic dynamics. We use a model of network generation that allows the transition from random to scale free networks. Specifically, we consider three different topological types of network: random, scale-free with \gamma = 3, scale-free with \gamma = 2. By using a novel LRD traffic generator, we observe best performance, in terms of transmission rates and delivered packets, in the case of random networks. We show that, even if scale-free networks are characterized by shorter characteristic-path- length (the lower the exponent, the lower the path-length), they show worst performances in terms of communication. We conjecture this could be explained in terms of changes in the load distribution, defined here as the number of shortest paths going through a given vertex. In fact, that distribu- tion is characterized by (i) a decreasing mean (ii) an increas- ing standard deviation, as the networks becomes scale-free (especially scale-free networks with low exponents). The use of a degree-independent server also discriminates against a scale-free structure. As a result, since the model is un- controlled, most packets will go through the same vertices, favoring the onset of congestion.Comment: 4 pages, 4 figures, included in conference proceedings ISCAS 2005, Kobe Japa

    A New Quartet Tree Heuristic for Hierarchical Clustering

    Get PDF
    We consider the problem of constructing an an optimal-weight tree from the 3*(n choose 4) weighted quartet topologies on n objects, where optimality means that the summed weight of the embedded quartet topologiesis optimal (so it can be the case that the optimal tree embeds all quartets as non-optimal topologies). We present a heuristic for reconstructing the optimal-weight tree, and a canonical manner to derive the quartet-topology weights from a given distance matrix. The method repeatedly transforms a bifurcating tree, with all objects involved as leaves, achieving a monotonic approximation to the exact single globally optimal tree. This contrasts to other heuristic search methods from biological phylogeny, like DNAML or quartet puzzling, which, repeatedly, incrementally construct a solution from a random order of objects, and subsequently add agreement values.Comment: 22 pages, 14 figure

    Statistical Network Analysis for Functional MRI: Summary Networks and Group Comparisons

    Get PDF
    Comparing weighted networks in neuroscience is hard, because the topological properties of a given network are necessarily dependent on the number of edges of that network. This problem arises in the analysis of both weighted and unweighted networks. The term density is often used in this context, in order to refer to the mean edge weight of a weighted network, or to the number of edges in an unweighted one. Comparing families of networks is therefore statistically difficult because differences in topology are necessarily associated with differences in density. In this review paper, we consider this problem from two different perspectives, which include (i) the construction of summary networks, such as how to compute and visualize the mean network from a sample of network-valued data points; and (ii) how to test for topological differences, when two families of networks also exhibit significant differences in density. In the first instance, we show that the issue of summarizing a family of networks can be conducted by adopting a mass-univariate approach, which produces a statistical parametric network (SPN). In the second part of this review, we then highlight the inherent problems associated with the comparison of topological functions of families of networks that differ in density. In particular, we show that a wide range of topological summaries, such as global efficiency and network modularity are highly sensitive to differences in density. Moreover, these problems are not restricted to unweighted metrics, as we demonstrate that the same issues remain present when considering the weighted versions of these metrics. We conclude by encouraging caution, when reporting such statistical comparisons, and by emphasizing the importance of constructing summary networks.Comment: 16 pages, 5 figure
    • …
    corecore