
On The Mathematics of

Data Centre Network Topologies

Iain A. Stewart⋆

School of Engineering and Computing Sciences, Durham University,
Science Labs, South Road, Durham DH1 3LE, U.K.

email: i.a.stewart@durham.ac.uk

Abstract. In a recent paper, combinatorial designs were used to con-
struct switch-centric data centre networks that compare favourably with
the ubiquitous (enhanced) fat-tree data centre networks in terms of the
number of servers within (given a fixed server-to-server diameter). Un-
fortunately there were flaws in some of the proofs in that paper. We
correct these flaws here and extend the results so as to prove that the
core combinatorial construction, namely the 3-step construction, results
in data centre networks with optimal path diversity.

1 Introduction

Data centres are expanding both in terms of their physical size and their reach
and importance as computational platforms for cloud computing, web search,
social networking and so on. There is an increasing demand that data centres
incorporate more and more servers but so that computational efficiency is not
compromised. A key contributor as to the eventual performance of a data cen-
tre is the data centre network (DCN). New topologies are continually being
developed so as to incorporate more servers and best utilize the additional com-
putational power. It is with topological aspects of DCNs that concern us here.

The traditional design of a DCN is switch-centric whereby all routing intel-
ligence resides amongst the switches. In such DCNs, there are no direct server-
to-server links; only server-to-switch and switch-to-switch links. Switch-centric
DCNs are traditionally tree-like with servers located at the ‘leaves’ of the tree-
like structure, e.g., Fat-Tree [1], VL2 [3] and Portland [5]. Whilst it is generally
acknowledged that tree-like, switch-centric DCNs have their limitations when it
comes to, for example, scalability (with the core switches at the ‘roots’ quickly
becoming bottlenecks), tree-like switch-centric DCNs remain popular and can
usually be constructed from commodity hardware. A more recent paradigm,
namely server-centric DCNs, has emerged so that deficiencies of tree-like, switch-
centric DCNs might be ameliorated. In a server-centric DCN, routing intelligence
resides within the servers with switches operating only as dumb crossbars; as

⋆ Supported by EPSRC grant EP/K015680/1 ‘Interconnection Networks: Practice
unites with Theory (INPUT)’.

such, there are only server-to-switch and server-to-server links. However, server-
centric DCNs also suffer from deficiencies such as packet relay overheads caused
by the need to route packets within the server (see [4] for the DCN state of the
art). Both switch-centric and server-centric DCNs are abstracted as undirected
graphs where the set of nodes is partitioned into a set of servers and a set of
switches with edges depending upon the DCN type. It is with switch-centric
DCNs that we are concerned here.

It is difficult to design computationally efficient DCNs so as to incorporate
large numbers of servers as there are additional design considerations. For ex-
ample, switches and (especially) servers have a limited number of ports; so, the
more servers there are, the greater the average or worst-case link-count between
two distinct servers and, consequently, there is a packet latency overhead to be
borne. Also, so as to better support routing, fault-tolerance and load-balancing,
we would prefer that there is path diversity in the form of numerous alternative
(short) paths within the DCN joining any two distinct servers. There are many
other design parameters to bear in mind (see, e.g., [7]).

A recent proposal in [6] advocated the use of combinatorial design theory
in order to design switch-centric DCNs which incorporate more servers, have
short server-to-server paths and possess path diversity. The use of combinato-
rial designs within the study of general interconnection networks is not new and
originated in [2] where the targeted networks involved processors communicating
via buses. A hypergraph framework was developed in [2] where the hypergraph
nodes represented the processors and the hyperedges the buses, and likewise an
analogous framework was developed in [6] where the hypergraph nodes repre-
sented the servers and the hyperedges represented the switches. However, some
of the results derived in [6] are incorrect in that for some of the results there
were errors in the proofs while for other results the actual claims are not true.

In this paper we provide correct proofs for some of the results from [6] and we
also extend and improve the results from [6]. In particular, using the general con-
struction for building switch-centric DCNs from bipartite graphs and transversal
designs as adopted in [6], we prove that in the resulting switch-centric DCNs,
there is the maximal number of internally disjoint paths joining any two distinct
servers and provide a bound on the length of the longest such path. As can be
seen from our proofs, the situation is far more subtle than was assumed in [6].

2 Basic Concepts

Hypergraphs provide the original framework for the 3-step construction as em-
ployed in [2] and [6]. A hypergraph H = (V,E) consists of a finite set V of nodes
together with a finite set E of hyperedges where each hyperedge is a non-empty
set of nodes and each node appears in at least one hyperedge. The degree of
a node is the number of hyperedges containing it and the rank of a hyperedge
is its size as a subset of V . A hypergraph is regular (resp. uniform) if every
node has the same degree (resp. every hyperedge has the same rank) with this
degree (resp. rank) being the degree (resp. rank) of the hypergraph. Every graph

G = (V,E) has a natural representation as a hypergraph: the nodes of the hy-
pergraph are V ; and the hyperedges are E, where the hyperedge e consists of
the pair of nodes incident with the edge e of G.

We can represent a hypergraph H = (V,E) as a bipartite graph: the node
set of the bipartite graph is V ∪ E; and there is an edge (v,D), for v ∈ V and
D ∈ E, in the bipartite graph iff v ∈ D in the hypergraph. It is clear that this
yields a one-to-one correspondence between hypergraphs and bipartite graphs
(without isolated nodes) that come complete with a partition of the elements
into a ‘left-hand side’, which will correspond to the nodes of the hypergraph, and
a ‘right-hand side’, which will correspond to the hyperedges of the hypergraph.
We assume (henceforth) that every bipartite graph comes equipped with such
a partition and for clarity we henceforth refer to the nodes on the left-hand
side as nodes and the nodes on the right-hand side as blocks . Likewise, we refer
to the degree of a node as its degree and the degree of a block as its rank . A
bipartite graph corresponding to a regular, uniform hypergraph of degree d and
rank ∆ is called a (d,∆)-bipartite graph. Every bipartite graph (and so every
hypergraph) also describes its dual hypergraph where the roles of the nodes on
the left-hand side and the blocks on the right-hand side of the partition are
reversed in the definition of the hypergraph. With regard to our one-to-one
correspondence between bipartite graphs and hypergraphs described above, if G
is a bipartite graph then it corresponds to a hypergraph via this correspondence
and it also corresponds to a (different) hypergraph via the natural representation
highlighted in the previous paragraph.

A path in some hypergraph H = (V,E) is an alternating sequence of nodes
and hyperedges so that all nodes are distinct, all hyperedges are distinct and
a node v ∈ V follows or preceeds a hyperedge D ∈ E in the sequence only if
v ∈ D in the hypergraph. The length of any path is its length in the bipartite
graph corresponding to the hypergraph, and the distance between two distinct
elements of V ∪E is the length of a shortest path joining these two elements in
the corresponding bipartite graph. The diameter of H is the maximum of the
distances between every pair of distinct nodes of V , and the line-diameter of H
is the maximum of the distances between every pair of distinct hyperedges of E.

We have two remarks. First, we have analogous notions of diameter and
line-diameter in any bipartite graph. Note that our notion of diameter (which
ignores node-to-block and block-to-block paths) is different from the usual graph-
theoretic notion of diameter in a bipartite graph (and likewise for line-diameter).
Second, our graph-theoretic notion of path length in a hypergraph differs from
that in [6] where the focus is on the number of hyperedges in a hyperedge-
to-hyperedge path in some hypergraph. We shall soon move to an exclusively
graph-theoretic formulation in which our notion of length is the natural one.

We shall be interested in building sets of paths in some hypergraphH so that
all paths have the same (distinct) source and destination nodes or hyperedges;
moreover, we shall require that these paths do not ‘interfere’ with one another.
We say that a set of paths in H joining two distinct elements of V ∪E is: pairwise
internally disjoint if every node and every hyperedge different from the source

and destination lies on at most one path from this set; or pairwise internally
edge-disjoint if every pair (v,D) ∈ V × E is such that v follows or precedes D

on at most one path from this set. The reason we make the above differentiation
as regards path disjointness is as follows. Given some hypergraph, our intention
is to ultimately consider the nodes as servers and the hyperedges as switches
(as it happens, we shall go on to compose such hypergraphs so that servers
morph into switches but more later when we discuss composing DCNs). This
intention is best appreciated by working with the corresponding bipartite graph
where the nodes are to denote servers and the blocks switches. Consequently, we
can regard a hypergraph as modelling a switch-centric DCN where there is one
layer of switches. A set of pairwise internally disjoint (resp. edge-disjoint) paths is
required if we want to enable simultaneous data transfer when the corresponding
servers and switches are blocking (resp. non-blocking).

The notion of a transversal design is crucial to what follows.

Definition 1. Let k,∆ ≥ 2. A [∆, k]-transversal design T is a triple (X,D, V)
where: |X | = ∆k; D = (D1, D2, . . . , D∆) is a partition of X into ∆ equal-sized
groups (each of size k); and V = {Vj : j = 1, 2, . . . , k2} is a family of k2 subsets
of X, each of size ∆ and called a block, so that

– |Di ∩ Vj | = 1, for i = 1, 2, . . . , ∆, j = 1, 2, . . . , k2

– each pair of elements {xi, xj}, where xi ∈ Di, xj ∈ Dj and i 6= j, is con-
tained in exactly 1 block (we say that the unique block containing xi and xj

is the block generated by xi and xj).

We adopt a graph-theoretic perspective on transversal designs as defined in
Definition 1: we think of the [∆, k]-transversal design T as a bipartite graph
where the elements of X (resp. V) lie on the left-hand side (resp. right-hand
side) of the partition, and so are called nodes (resp. blocks) within the bipartite
graph, and so that in this bipartite graph there is an edge (p,Q), for p ∈ X and
Q ∈ V , iff in the transversal design the element p is in the block Q. Note that
the bipartite graph corresponding to the transversal design from Definition 1 is a
(k,∆)-bipartite graph. Henceforth, we regard both hypergraphs and transversals
as bipartite graphs unless we state otherwise.

3 The 3-step Construction and its Extensions

We begin by describing the 3-step construction (originating in [2] and used in [6])
for building bipartite graphs by using a base bipartite graph and a transversal
design. We’ll then explain how one might iterate it and then compose bipartite
graphs to obtain more complex DCNs (as was done in [6]).
Step 1: Let H0 be a (d,∆)-bipartite graph so that there are n nodes (on the
left-hand side of the partition, each of degree d) and e blocks (on the right-hand
side, each of rank ∆). Such an H0 can be visualized as in Fig. 1(a).
Step 2: Let T be a [∆, k]-transversal design. In particular, there are ∆ groups of

k nodes (on the left-hand side) as well as k2 blocks (on the right-hand side). Such

.

.

.

.

.

.

degree d rank ∆

n

nodes

p , p , ..., p1 2 n

e

blocks

Q , Q , ..., Q1 2 e

(a)

.

.

.

.

.

.

degree k rank ∆

.

..

.

..

.

..

each block is

adjacent to

exactly one

node from

each group

each pair of

nodes in

distinct

groups is

adjacent to

exactly one

∆ groups

D , D , ..., D

of

k nodes

21 ∆

k

blocks

V , V , ..., V

2

21 k2

k nodes

k nodes

k nodes

(b)

Fig. 1. A (d,∆)-bipartite graph H0 and a [∆, k]-transversal.

a T can be visualized as in Fig. 1(b). Build the bipartite graph H as follows. For
every node p of H0, introduce a group Gp of k nodes of H . For every block Q of
H0, adjacent to the nodes p1, p2, . . . , p∆ in H0, introduce a copy of T , denoted
TQ, rooted on the ∆ groups of nodes Gp1

, Gp2
, . . . , Gp∆

(so, corresponding to the
block Q of H0, we have introduced k2 blocks in H). We refer to the ∆ groups of
nodes Gp1

, Gp2
, . . . , Gp∆

as the roots of the copy TQ of T in H . Such a bipartite
graph H can be visualized as in Fig. 2 where two of the copies of T are partially
shown. The bipartite graph H0 essentially provides a template as to where we
introduce copies of T to form H .

Note that: each node of H can be indexed as ap,j , where p ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . , k}, so that p is the node of H0 to which the group Gp in which
ap,j sits corresponds and j is the index of ap,j in this group; and each block of H
can be indexed as BQ,V , where Q ∈ {1, 2, . . . , e} and V ∈ {1, 2, . . . , k2}, so that
Q is the block of H0 to which the set of blocks in which BQ,V sits corresponds
and V is the block of T to which BQ,V corresponds. In addition, each node of T
can be indexed ui,j , where i ∈ {1, 2, . . . , ∆} and j ∈ {1, 2, . . . , k}, so that Di is
the group of nodes in which ui,j sits and j is the index of ui,j in that group.
Step 3: Let H∗ be the bipartite graph obtained from the bipartite graph H by
reversing the roles of nodes and blocks (so, H∗ is the dual bipartite graph of H).
Note that the bipartite graph H∗ is regular of degree ∆ and uniform of rank dk.

We refer to the (dk,∆)-bipartite graph H (resp. the (∆, dk)-bipartite graph
H∗) constructed above as having been constructed by the 2-step (resp. 3-step)
method using the (d,∆)-bipartite graph H0 and the [∆, k]-transversal T .

Our intention with our constructions is to ultimately design switch-centric
DCNs with beneficial properties. Whilst there are many properties we would
like our DCNs to have, it is important that DCNs can integrate a large number
of servers so that the server-to-server distances are short and so that there is
redundancy as to which short server-to-server routes we choose to use. In the
parlance of bipartite graphs, this translates as building bipartite graphs with
a large number of nodes and with redundant, short node-to-node paths. The

.

.

.

.

.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

k nodes

k nodes

k nodes

k nodes

k nodes

k

blocks

2

k

blocks

2

k

blocks

2

k

blocks

2

.

..

copy of T

.

..

.

.

.

rank ∆degree dk

n groups

G , G , ..., G

of

k nodes

21 n e groups

B , B , ..., B

of

k blocks2

21 e

TQ

TQ’

copy of T

Fig. 2. Amalgamating H0 and T to get H .

following result was proven in [2] (it is actually derivable from the proofs of our
upcoming results) and allows us control over the length of block-to-block paths
in 2-step constructions (and so node-to-node paths in 3-step constructions).

Theorem 1 ([2]). Suppose that the (dk,∆)-bipartite graph H has been con-
structed by the 2-step method using the (d,∆)-bipartite graph H0 and the [∆, k]-
transversal T . If H0 has line-diameter λ ≥ 2 then H has line-diameter λ.

We can iterate the 3-step construction (as was done in [6]). Note that if
H0 is a (d,∆)-bipartite graph of line-diameter λ then the bipartite graph H1

resulting from the 2-step construction (using H0 and some [∆, k]-transversal
design T) is a (dk,∆)-bipartite graph of line-diameter λ. So, repeating the 2-
step construction but with H1 replacing H0 (we keep the same T , though) yields
a (dk2, ∆)-bipartite graph H2 of line-diameter λ. By iterating this construction,
we can clearly obtain a (dki, ∆)-bipartite graphHi of line-diameter λ. Converting
Hi into H∗

i results in a bipartite graph with ek2i nodes, with dki blocks, with
diameter λ and that is regular of degree ∆ and uniform of rank dki.

In [2], the 3-step construction was the focus as the application there was to
build bus interconnection networks of large size but so as to limit the diameter
of the resulting network. Similarly, in [6], the 3-step construction was the focus
as the intention was to interpret nodes as servers and blocks as switches; were
we to focus on the 2-step method and allow the server degree to grow (in Hi,
above, the degree is dki), this would result in practically infeasible DCNs.

New methods of composing bipartite graphs (built using the 3-step construc-
tion) so as to obtain switch-centric DCNs were also derived in [6] where 4 such

methods were given: Methods M1, M2 and M3 are different cases of our Method
A; and Method M4 is our Method B. Let H be a (σ, ω)-bipartite graph which
we think of as a DCN with the nodes as servers and the blocks as switches, and
where σ < ω.
Method A: We take c copies of H where ω − cσ > 0 and c ≥ 1. For each server
(node) u of H : we remove the corresponding server in each of the c copies of H
and introduce a new switch (this switch is common to all copies of H); we make
all of the cσ links incident with the c original servers incident with this new
switch; and we attach ω− cσ pendant servers to the new switch (in [6], the new
switches are termed level-1 switches with the original switches level-2 switches).
So, the new DCN is such that: all switches have ω ports; there are links from
(new) servers to level-1 switches; and links joining level-1 and level-2 switches.
Note that there is some choice as regards the parameter c. The case where c ≥ 1
corresponds to Method M2 of [6]; the case when c = 1 corresponds to Method

M1; and the case when c = ⌊
⌊ω

2
⌋

σ
⌋ corresponds to Method M3 (here, the aim is

to ensure that every level-1 switch is adjacent to roughly the same number of
level-2 switches as it is nodes).
Method B: We now work with a switch-centric DCN as constructed by Method
A. Let every level-1 switch have ne adjacent servers. Suppose that there is an
even number of level-1 switches. Partition the set of level-1 switches into pairs.
For each pair of switches (S′, S′′): remove ⌊ne

2
⌋ servers that are adjacent to S′

and remove ⌈ne

2
⌉ servers that are adjacent to S′′; and make every server that is

adjacent to the switch S′ or the switch S′′ also adjacent to the other switch.
In [6], various switch-centric DCNs were constructed using the 3-step con-

struction allied with Methods A and B and were favourably compared with the
ubiquitous 3-level fat-tree with regard to the number of servers therein when the
diameter and the switch radix are held constant (see Tables 2–4 in [6]).

4 Constructions of Paths

We are now in a position to use transversal designs to build switch-centric DCNs,
similarly to as was done in [6]. However, in [6] there were a number of problems
with the proofs (so much so that some claimed results are false). We begin by
highlighting these problems and then we provide not only correct proofs but also
extend some of the claimed results in [6] with regard to path diversity.

In order to detail the difficulties in [6], we adopt the terminology of [6]. In
Subcases (1.1) and (2.1) of the proof of Theorem 2 in [6], the situation when
rj = sj , for some j where p 6= tj , was not considered (although this is trivial
to remedy). However, and more importantly, in Subcases (1.2) and (2.2) the
construction does not work when j = i as ri, si, ti all lie in the same group GE

i

and consequently we cannot infer the existence of Ri and Si.
An attempt was also made in [6] to extend Theorem 2 of [6]; see Theorem 3 of

[6]. Assumptions concerning the connectivity of H0 are made and the existence
of additional paths to those constructed in the proof of Theorem 2 are claimed
in the situation when the two blocks BQ,V and BQ′,V ′ are such that Q 6= Q′.

However, there are serious flaws in the proof of Theorem 3 of [6], so much so
that the theorem is untrue. In short, Theorem 3 of [6] claims that if there are ω
pairwise internally disjoint paths inH0 fromQ to Q′ then there are min{∆ω, kω}
pairwise internally disjoint paths in H from BQ,V to BQ′,V ′ . This does not make
sense: the maximum number of pairwise internally disjoint paths in H from
BQ,V to BQ′,V ′ is ∆ (as the bipartite graph H has rank ∆) and so we must have
that min{∆ω, kω} ≤ ∆. For instance, in Example 1 of [6], where the bipartite
graph H0 is the cycle of length 10, so that d = ∆ = 2 and n = e = 5, and a
[2, 3]-transversal T is used, the bipartite graph H built by the 2-step method
has degree 6 and rank 2. However, there are 2 paths from any block of H0 to
any other block of H0 and so if Theorem 3 of [6] were true then there would be
4 pairwise disjoint paths from BQ,V to BQ′,V ′ in H which clearly cannot be the
case.

We now resurrect (some of) the proofs from [6] and extend the results claimed
in that paper. We use the following easy-to-prove lemma repeatedly.

Lemma 1. Let T be some [∆, k]-transversal with groups of nodes {D1, D2, . . . ,

D∆}. Let U be some block of T . For each i ∈ {1, 2, . . . , ∆}, let ri ∈ Di be the
unique node of Di that is adjacent to U . Set R = {ri : i = 1, 2, . . . , ∆}. Let P be
a set of distinct pairs of nodes so that: exactly one node of any pair in P is in R

and no node of R is in more than one pair of P ; and no pair in P is such that
both nodes lie in the same group. The blocks generated by the pairs in P are all
distinct and different from U .

Theorem 2. Let k,∆, d ≥ 2 but where (k,∆) 6∈ {(2, 3), (2, 5), (2, 7)}. Let H be
built by the 2-step method from the (d,∆)-bipartite graph H0 using the [∆, k]-
transversal T .

(a) If Q and Q′ are distinct blocks of H0 so that there are λ ≥ 1 pairwise
internally disjoint paths in H0 from Q to Q′, each of length at most µ, then
there are min{∆, kλ} pairwise internally disjoint paths from any block BQ,V

of H to any other block BQ′,V ′ of H, each of length at most µ+ 4.
(b) If BQ,V and BQ,V ′ are distinct blocks of H then there are ∆ pairwise inter-

nally disjoint paths from BQ,V to BQ,V ′ , each of length at most 6 and lying
entirely within TQ.

Proof. (a) We may assume that λ ≤ ⌈∆
k
⌉. Consider the λ pairwise internally

disjoint paths from Q to Q′ in H0. We may clearly assume that either every
path has length 2 or that every common neighbour of Q and Q′ in H0 lies on
one of the λ paths (with each of these paths having length 2).

Suppose that b + c = λ, where b ≥ 1 and c ≥ 0, and that the nodes
p1, p2, . . . , pb are common neighbours in H0 of Q and Q′ (the case when there are
no common neighbours is easy). As stated above, we may assume that either:
b = λ; or c > 0 and {p1, p2, . . . , pb} consists of all common neighbours of Q and
Q′ in H0. In the case when c > 0, let the nodes q1, q2, . . . , qc be neighbours of Q
but not of Q′ in H0, and let the nodes q′1, q

′
2, . . . , q

′
c be neighbours of Q′ but not

of Q in H0 so that the remaining c paths from Q to Q′ in H0 are of the form
Q, qi, . . . , q

′
i, Q

′, for i = 1, 2, . . . , c.

We begin with an involved construction. Set k′ = ∆ − k(⌈∆
k
⌉ − 1); so 1 ≤

k′ ≤ k. We can batch groups of nodes of TQ and TQ′ in H as follows:

– for i ∈ {1, 2, . . . , b}, define Gi
0 = Gpi

= Hi
0

– for i ∈ {1, 2, . . . , c} (where c > 0), define Gb+i
0 = Gqi and Hb+i

0 = Gq′
i

– for i ∈ {1, 2, . . . , b + c − 1}, choose groups Gi
1, G

i
2, . . . , G

i
k−1

within TQ

and groups Hi
1, H

i
2, . . . , H

i
k−1 within TQ′ , and choose groups Gb+c

1 , Gb+c
2 , . . . ,

Gb+c
k′−1

within TQ and groups Hb+c
1 , Hb+c

2 , . . . , Hb+c
k′−1

within TQ′ so that:

• all Gi
j , where j > 0, are distinct and different from G1

0, G
2
0, . . . , G

b+c
0

• all Hi
j , where j > 0, are distinct and different from H1

0 , H
2
0 , . . . , H

b+c
0

• any Gi
j , where j > 0, corresponds to some node p of H0 that is adjacent

to both Q and Q′ iff the group Hi
j corresponds to the same node p of

H0, i.e, G
i
j and Hi

j are identical.

We have three remarks: each Gi
j , where j ≥ 0, is in TQ and each Hi

j , where
j ≥ 0, is in TQ′ , so that if c > 0 then the only groups common to both TQ and
TQ′ are Gp1

, Gp2
, . . . , Gpb

; the bound b + c ≤ ⌈∆
k
⌉ means that there are enough

groups available in both TQ and TQ′ for us to be able to choose as above; and
if some group of the form Gi

j , where j > 0, is identical to the group Hi
j then

it must be the case that both are rooted at the same node p of H0 that is a
common neighbour of Q and Q′ in H0, and consequently that c = 0.

For each i ∈ {1, 2, . . . , b + c} and each j ∈ {0, 1, . . . , k − 1}, if i 6= b + c, or
each j ∈ {0, 1, . . . , k′ − 1}, if i = b+ c, let rij ∈ Gi

j (resp. sij ∈ Hi
j) be the unique

node of Gi
j (resp. Hi

j) that is adjacent to BQ,V (resp. BQ′,V ′) in H . Note that

the pair rij and sij lie in the same group of H iff both Gi
j and Hi

j are rooted at
the same node of H0 and this node is adjacent to both Q and Q′ in H0.

For each i ∈ {1, 2, . . . , b+c}, letGi
0 = {ri0, t

i
1, . . . , t

i
k−1} andHi

0 = {si0, w
i
1, . . . ,

wi
k−1

} so that in the case when Gi
0 = Hi

0: if r
i
0 = si0 then tij = wi

j , for j ∈

{1, 2, . . . , k − 1}; and if ri0 6= si0 then ri0 = wi
1 and si0 = ti1, with tij = wi

j , for
j ∈ {2, 3, . . . , k − 1}.

We are now ready to generate some blocks within TQ and TQ′ in H . For
each i ∈ {1, 2, . . . , b + c} and each j ∈ {1, 2, . . . , k − 1}, if i 6= b + c, or each
j ∈ {1, 2, . . . , k′ − 1}, if i = b + c: let Bri

j
,ti

j
be the block of TQ in H generated

by rij ∈ Gi
j and tij ∈ Gi

0; and let B′
si
j
,wi

j

be the block of TQ′ in H generated by

sij ∈ Hi
j and wi

j ∈ Hi
0. So, we have generated ∆ − λ blocks in TQ and ∆ − λ

blocks in TQ′ . Note that any block of TQ is necessarily distinct from any block
of TQ′ . By Lemma 1 applied twice to both TQ and TQ′ : all blocks of {Bri

j
,ti

j
: i =

1, 2, . . . , b+ c− 1 and j = 1, 2, . . . , k− 1, or i = b+ c and j = 1, 2, . . . , k′− 1} are
distinct and different from BQ,V ; and all blocks of {B′

si
j
,wi

j

: i = 1, 2, . . . , b+c−1

and j = 1, 2, . . . , k − 1 or i = b + c and j = 1, 2, . . . , k′ − 1} are distinct and
different from BQ′,V ′ ; call these two sets of blocks our working sets of blocks.

Now we build some paths fromBQ,V toBQ′,V ′ inH . For each i ∈ {1, 2, . . . , b}:
if ri0 = si0 then define the paths:

– πi
0 as BQ,V , r

i
0, BQ′,V ′

– πi
1 as BQ,V , r

i
1, BQ′,V ′ , if ri1 = si1, and as BQ,V , r

i
1, Bri

1
,ti

1
, ti1, B

′
si
1
,wi

1

, si1,

BQ′,V ′ , if ri1 6= si1 (note that ti1 = wi
1)

and if ri0 6= si0 then define the paths:

– πi
0 as BQ,V , r

i
0, B

′
si
1
,wi

1

, si1, BQ′,V ′ (note that wi
1 = ri0)

– πi
1 as BQ,V , r

i
1, Bri

1
,ti

1
, si0, BQ′,V ′ (note that ti1 = si0).

The above definition of πi
0 and πi

1 presupposes that both paths exist; that is, that
it is not the case that ∆ = k(b− 1) + 1 and rb0 6= sb0 (as otherwise it is not clear
how we build only πb

0 without having recourse to Gb
1; note that if ∆ = k(b−1)+1

and rb0 = sb0 then πb
0 exists). We shall return to this special case later.

For each i ∈ {1, 2, . . . , b} and each j ∈ {2, 3, . . . , k − 1}, if i < b + c, or each
j ∈ {2, 3, . . . , k′ − 1}, if i = b and c = 0: if rij 6= sij then define the path πi

j as

BQ,V , r
i
j , Bri

j
,ti

j
, tij , B

′
si
j
,wi

j

, sij, BQ′,V ′ ; and if rij = sij then define the path πi
j as

BQ,V , r
i
j , BQ′,V ′ .

Note that out of all the ‘π-paths’ constructed above, the only way that we
can have that two of our paths are not internally disjoint is when ri0 6= si0 but
ri1 = si1, for some i ∈ {1, 2, . . . , b}. In every such case, choose xi

1 ∈ Gi
1 \ {ri1}.

Let Bri
0
,xi

1
be the block of TQ in H generated by ri0 ∈ Gi

0 and xi
1 ∈ Gi

1, and

let B′
si
0
,xi

1

be the block of TQ′ in H generated by si0 ∈ Gi
0 and xi

1 ∈ Gi
1 (in

essence, we have dispensed with the blocks Bri
1
,ti

1
and B′

si
1
,wi

1

and replaced them

with the blocks Bri
0
,xi

1
and B′

si
0
,xi

1

in our working sets of blocks; we reiterate

that we do this for every i ∈ {1, 2, . . . , b} for which ri0 6= si0 and ri1 = si1). The
conditions of Lemma 1 still hold and so the blocks in our working sets of blocks
are all distinct and different from BQ,V and BQ′,V ′ . For each i ∈ {1, 2, . . . , b}
for which ri0 6= si0 and ri1 = si1, redefine the paths: πi

0 as BQ,V , r
i
1, BQ′,V ′ ; and

πi
1 as BQ,V , r

i
0, Bri

0
,xi

1
, xi

1, B
′
si
0
,xi

1

, si0, BQ′,V ′ . The paths from the resulting set of

π-paths are now pairwise internally disjoint.
Let us now return to the situation where ∆ = k(b − 1) + 1 and rb0 6= sb0 (so,

necessarily, c = 0). In this case, we proceed exactly as we did above but without
building the path πb

0. We need to build a path of the form BQ,V , r
b
0, . . . , s

b
0, BQ′,V ′

(that is internally disjoint from all of the above ∆ − 1 π-paths). Suppose that
k ≥ 3; so, there is a node xb−1

0 ∈ Gb−1
0 \{rb−1

0 , sb−1
0 }. Generate the block B

rb
0
,x

b−1

0

of TQ withinH and the blockB
sb
0
,x

b−1

0

of TQ′ withinH . By Lemma 1, these blocks

are different from BQ,V , BQ′,V ′ and all other blocks so generated within TQ and
TQ′ . Define the path πb

0 as BQ,V , r
b
0, Brb

0
,x

b−1

0

, xb−1
0 , B

sb
0
,x

b−1

0

, sb0, BQ′,V ′ . This path

is internally disjoint from all other π-paths. Suppose that k = 2. So, there are 4
blocks in T and consequently ∆ ∈ {3, 5, 7} which yields a contradiction.

If c > 0 then we can define additional paths in H from BQ,V to nodes of
Gb+1

0 , Gb+2
0 , . . . , Gb+c

0 and from BQ′,V ′ to nodes of Hb+1
0 , Hb+2

0 , . . . , Hb+c
0 (note

that in this scenario Gi
j 6= Hi

j unless i ∈ {1, 2, . . . , b} and j = 0). For each

i ∈ {b+1, b+2, . . . , b+ c}, define the paths: ηi0 as BQ,V , r
i
0; and νi0 as BQ′,V ′ , si0.

For each i ∈ {b+1, b+2, . . . , b+ c} and each j ∈ {1, 2, . . . , k− 1}, if i 6= b+ c, or

each j ∈ {1, 2, . . . , k′− 1}, if i = b+ c, define the paths: ηij as BQ,V , r
i
j , Bri

j
,ti

j
, tij ;

and νij as BQ′,V ′ , sij, B
′
si
j
,wi

j

, wi
j . Any 2 distinct paths from our collection of π-

paths, η-paths and ν-paths clearly have no nodes in common and the only block
in common is BQ,V , BQ′,V ′ or both.

If we can find a path in H from ri0 or tij to si0 or wi
j , respectively, for each

i ∈ {b + 1, b2, . . . , b + c} and each j ∈ {1, 2, . . . , k − 1}, if i < b + c, or each
j ∈ {1, 2, . . . , k′ − 1}, if i = b + c, so that no node or block of any of these
paths, apart from the source and destination nodes, lies in TQ or TQ′ and so
that the resulting paths are pairwise internally disjoint then we are done. Fix
i ∈ {1, 2, . . . , c} and let Q, qi, Q1, q

2
i , Q2, q

3
i , . . . , q

m
i , Qm, q′i, Q

′, be one of our
remaining c paths from Q to Q′ in H0; in particular, m ∈ {1, 2, . . . , 1

2
(µ − 2)}.

In H : there are k paths of length 2, each path having a source in Gqi and a
destination in Gq2

i
so that all sources are distinct as are all destinations and

lying entirely within TQ1
; there are k paths of length 2, each path having a

source in Gq2
i
and a destination in Gq3

i
so that all sources are distinct as are all

destinations and lying entirely within TQ2
; . . .; and there are k paths of length

2, each path having a source in Gqm
i

and a destination in Gq′
i
so that all sources

are distinct as are all destinations and lying entirely within TQm
. We are done.

Now return to the case ignored at the beginning of the proof, namely the
case when b = 0 and c = λ. The above construction of paths from BQ,V to each
node of Gqi , concatenated with paths from each node of Gqi to each node of Gq′

i
,

concatenated with paths from each node of Gq′
i
to BQ′,V ′ still works.

(b) Consider the case when our two blocks are BQ,V and BQ,V ′ . Suppose
that the block Q of H0 is adjacent to the nodes p1, p2, . . . , p∆. For each i ∈
{1, 2, . . . , ∆}, let ri ∈ Gpi

be adjacent to BQ,V in H and let si ∈ Gpi
be adjacent

to BQ,V ′ in H . W.l.o.g. suppose that ri 6= si, for i = 1, 2, . . . , b, and that ri = si,
for i = b+ 1, b+ 2, . . . , ∆.

Suppose that b ≥ 2. For each i ∈ {1, 2, . . . , b − 1}, let Bri,si+1
be the

unique block of TQ that is generated by ri and si+1, and let Brb,s1 be the
unique block of TQ that is generated by rb and s1. By Lemma 1, all blocks
Br1,s2 , Br2,s3 , . . . , Brb−1,sb , Brb,s1 are distinct and different fromBQ,V and BQ,V ′ .
Hence, if πi is the path BQ,V , ri, Bri,si+1

, si+1, BQ,V ′ , for i ∈ {1, 2, . . . , b − 1},
πb is the path BQ,V , rb, Brb,s1 , s1, BQ,V ′ , and πi is the path BQ,V , ri, BQ,V ′ , for
i ∈ {b+ 1, b+ 2, . . . , ∆}, then the set of paths are pairwise internally disjoint.

If b = 0 then the above construction trivially yields ∆ paths of length 2 from
BQ,V to BQ,V ′ . Suppose that b = 1. Choose x2 ∈ Gp2

\ {r2} and let Br1,x2

(resp. Bs1,x2
) be the block of TQ generated by r1 and x2 (resp. s1 and x2).

By Lemma 1, Br1,x2
, Bs1,x2

, BQ,V and BQ,V ′ are all distinct. So, if π1 is the
path BQ,V , r1, Br1,x2

, x2, Bs1,x2
, s1, BQ,V ′ and πi is the path BQ,V , ri, BQ,V ′ , for

i ∈ {2, 3, . . . , ∆} then we obtain a pairwise internally disjoint set of paths. ⊓⊔

Note that Theorem 2 is optimal in the sense that if H0 has blocks Q and Q′

so that there are exactly λ pairwise internally disjoint paths from Q to Q′ in
H0 then we can do no better than min{∆, kλ} pairwise internally disjoint paths
from any block BQ,V to any block BQ′,V ′ in H , as by Menger’s Theorem we
can remove λ nodes from H0 so as to disconnect Q and Q′, and so kλ nodes

from H so as to disconnect BQ,V and BQ′,V ′ . Note also that irrespective of the
erroneous proofs in [6], Theorem 2 extends any claimed results in [6] by deriving
min{∆, kλ} pairwise internally disjoint paths from any block BQ,V in H to any
block BQ′,V ′ where not only might we have Q 6= Q′ but also Q = Q′.

5 Conclusion

In this paper we have extended the use of mathematical techniques within the
design of data centre networks. We feel that theoretical computer science has
a lot to offer more practical areas such as data centre design and hope that
this work provides some impetus to theoreticians. Naturally, our work provokes
some directions for further research, both theoretical and applied. Whilst we
have developed an optimal analysis of path diversity as regards using the 3-
step construction, we have yet to use the additional path diversity so obtained.
In order to do this we would need use bipartite graphs H0 (with reference to
the 3-step construction) with additional connectivity properties. In future we
shall seek to build and use such bipartite graphs. Also, our constructions form
part of a wider as yet untouched topic, analogous to the well-established study of
Moore graphs, namely the analysis of (not graphs but) ‘switch-server graphs’ (the
models of DCNs) as to the maximal number of servers that can be incorporated
under ‘degree and diameter’ constraints. Finally, we would like to use techniques
similar to those here so as to build not just switch-centric DCNs but also server-
centric DCNs.

References

1. M. Al-Fares, A. Loukissas and A. Vahdat, A scalable, commodity data center
network architecture, SIGCOMM Comput. Commun. Rev., 38(4), 63–74 (2008)

2. J.C. Bermond, J. Bond and S. Djelloul, Dense bus networks of diameter 2, Proc.
Workshop on Interconnection Networks, DIMACS Series, 21, 9–18 (1995)

3. A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel and S. Sengupta, VL2: a scalable and flexible data center network, SIG-

COMM Comput. Commun. Rev., 39(4), 51–62 (2009)
4. Y. Liu, J.K. Muppala, M. Veeraraghavan, D. Lin and J. Katz, Data Centre

Networks: Topologies, Architectures and Fault-Tolerance Characteristics, Springer
(2013)

5. R.N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan,
V. Subramanya and A. Vahdat, Portland: a scalable fault-tolerant layer 2 data
center network fabric, SIGCOMM Comput. Commun. Rev., 39 (4), 39–50 (2009)

6. G. Qu, Z. Fang, J. Zhang and S.-Q. Zheng, Switch-centric data center network
structures based on hypergraphs and combinatorial block designs, IEEE Trans. on

Par. Distrib. Sys., 26 (4), 154–1164 (2015)
7. K. Wu, J. Xiao and L.M. Ni, Rethinking the architecture design of data center

networks, Frontiers of Comput. Sci., 6 (5), 596–603 (2012)

