68 research outputs found

    Algorithmic and explicit determination of the Lovász number for certain circulant graphs

    Get PDF
    AbstractWe consider the problem of computing the Lovász theta function for circulant graphs Cn,J of degree four with n vertices and chord length J, 2⩽J⩽n. We present an algorithm that takes O(J) operations if J is an odd number, and O(n/J) operations if J is even. On the considered class of graphs our algorithm strongly outperforms the known algorithms for theta function computation. We also provide explicit formulas for the important special cases J=2 and J=3

    On Hamilton decompositions of infinite circulant graphs

    Get PDF
    The natural infinite analogue of a (finite) Hamilton cycle is a two-way-infinite Hamilton path (connected spanning 2-valent subgraph). Although it is known that every connected 2k-valent infinite circulant graph has a two-way-infinite Hamilton path, there exist many such graphs that do not have a decomposition into k edge-disjoint two-way-infinite Hamilton paths. This contrasts with the finite case where it is conjectured that every 2k-valent connected circulant graph has a decomposition into k edge-disjoint Hamilton cycles. We settle the problem of decomposing 2k-valent infinite circulant graphs into k edge-disjoint two-way-infinite Hamilton paths for k=2, in many cases when k=3, and in many other cases including where the connection set is ±{1,2,...,k} or ±{1,2,...,k - 1, 1,2,...,k + 1}

    The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs: Bounds and Applications

    Get PDF
    The orthogonality dimension of a graph G=(V,E)G=(V,E) over a field F\mathbb{F} is the smallest integer tt for which there exists an assignment of a vector uvFtu_v \in \mathbb{F}^t with uv,uv0\langle u_v,u_v \rangle \neq 0 to every vertex vVv \in V, such that uv,uv=0\langle u_v, u_{v'} \rangle = 0 whenever vv and vv' are adjacent vertices in GG. The study of the orthogonality dimension of graphs is motivated by various application in information theory and in theoretical computer science. The contribution of the present work is two-folded. First, we prove that there exists a constant cc such that for every sufficiently large integer tt, it is NP\mathsf{NP}-hard to decide whether the orthogonality dimension of an input graph over R\mathbb{R} is at most tt or at least 3t/2c3t/2-c. At the heart of the proof lies a geometric result, which might be of independent interest, on a generalization of the orthogonality dimension parameter for the family of Kneser graphs, analogously to a long-standing conjecture of Stahl (J. Comb. Theo. Ser. B, 1976). Second, we study the smallest possible orthogonality dimension over finite fields of the complement of graphs that do not contain certain fixed subgraphs. In particular, we provide an explicit construction of triangle-free nn-vertex graphs whose complement has orthogonality dimension over the binary field at most n1δn^{1-\delta} for some constant δ>0\delta >0. Our results involve constructions from the family of generalized Kneser graphs and they are motivated by the rigidity approach to circuit lower bounds. We use them to answer a couple of questions raised by Codenotti, Pudl\'{a}k, and Resta (Theor. Comput. Sci., 2000), and in particular, to disprove their Odd Alternating Cycle Conjecture over every finite field.Comment: 19 page

    On densities of lattice arrangements intersecting every i-dimensional affine subspace

    Get PDF
    In 1978, Makai Jr. established a remarkable connection between the volume-product of a convex body, its maximal lattice packing density and the minimal density of a lattice arrangement of its polar body intersecting every affine hyperplane. Consequently, he formulated a conjecture that can be seen as a dual analog of Minkowski's fundamental theorem, and which is strongly linked to the well-known Mahler-conjecture. Based on the covering minima of Kannan & Lov\'asz and a problem posed by Fejes T\'oth, we arrange Makai Jr.'s conjecture into a wider context and investigate densities of lattice arrangements of convex bodies intersecting every i-dimensional affine subspace. Then it becomes natural also to formulate and study a dual analog to Minkowski's second fundamental theorem. As our main results, we derive meaningful asymptotic lower bounds for the densities of such arrangements, and furthermore, we solve the problems exactly for the special, yet important, class of unconditional convex bodies.Comment: 19 page

    Hamilton decompositions of 6-regular abelian Cayley graphs

    Get PDF
    In 1969, Lovasz asked whether every connected, vertex-transitive graph has a Hamilton path. This question has generated a considerable amount of interest, yet remains vastly open. To date, there exist no known connected, vertex-transitive graph that does not possess a Hamilton path. For the Cayley graphs, a subclass of vertex-transitive graphs, the following conjecture was made: Weak Lovász Conjecture: Every nontrivial, finite, connected Cayley graph is hamiltonian. The Chen-Quimpo Theorem proves that Cayley graphs on abelian groups flourish with Hamilton cycles, thus prompting Alspach to make the following conjecture: Alspach Conjecture: Every 2k-regular, connected Cayley graph on a finite abelian group has a Hamilton decomposition. Alspach’s conjecture is true for k = 1 and 2, but even the case k = 3 is still open. It is this case that this thesis addresses. Chapters 1–3 give introductory material and past work on the conjecture. Chapter 3 investigates the relationship between 6-regular Cayley graphs and associated quotient graphs. A proof of Alspach’s conjecture is given for the odd order case when k = 3. Chapter 4 provides a proof of the conjecture for even order graphs with 3-element connection sets that have an element generating a subgroup of index 2, and having a linear dependency among the other generators. Chapter 5 shows that if Γ = Cay(A, {s1, s2, s3}) is a connected, 6-regular, abelian Cayley graph of even order, and for some1 ≤ i ≤ 3, Δi = Cay(A/(si), {sj1 , sj2}) is 4-regular, and Δi ≄ Cay(ℤ3, {1, 1}), then Γ has a Hamilton decomposition. Alternatively stated, if Γ = Cay(A, S) is a connected, 6-regular, abelian Cayley graph of even order, then Γ has a Hamilton decomposition if S has no involutions, and for some s ∈ S, Cay(A/(s), S) is 4-regular, and of order at least 4. Finally, the Appendices give computational data resulting from C and MAGMA programs used to generate Hamilton decompositions of certain non-isomorphic Cayley graphs on low order abelian groups

    Clique-circulants and the stable set polytope of fuzzy circular interval graphs

    Get PDF
    In this paper, we give a complete and explicit description of the rank facets of the stable set polytope for a class of claw-free graphs, recently introduced by Chudnovsky and Seymour (Proceedings of the Bristish Combinatorial Conference, 2005), called fuzzy circular interval graphs. The result builds upon the characterization of minimal rank facets for claw-free graphs by Galluccio and Sassano (J. Combinatorial Theory 69:1-38, 2005) and upon the introduction of a superclass of circulant graphs that are called clique-circulants. The new class of graphs is invetigated in depth. We characterize which clique-circulants C are facet producing, i.e. are such that Sigma upsilon epsilon V(C) chi(upsilon) <= alpha(C) is a facet of STAB(C), thus extending a result of Trotter (Discrete Math. 12:373-388, 1975) for circulants. We show that a simple clique family inequality (Oriolo, Discrete Appl. Math. 132(2):185-201, 2004) may be associated with each clique-circulant C subset of G, when G is fuzzy circular interval. We show that these inequalities provide all the rank facets of STAB(G), if G is a fuzzy circular interval graph. Moreover we conjecture that, in this case, they also provide all the non-rank facets of STAB(G) and offer evidences for this conjecture

    On Minrank and Forbidden Subgraphs

    Get PDF
    The minrank over a field F\mathbb{F} of a graph GG on the vertex set {1,2,,n}\{1,2,\ldots,n\} is the minimum possible rank of a matrix MFn×nM \in \mathbb{F}^{n \times n} such that Mi,i0M_{i,i} \neq 0 for every ii, and Mi,j=0M_{i,j}=0 for every distinct non-adjacent vertices ii and jj in GG. For an integer nn, a graph HH, and a field F\mathbb{F}, let g(n,H,F)g(n,H,\mathbb{F}) denote the maximum possible minrank over F\mathbb{F} of an nn-vertex graph whose complement contains no copy of HH. In this paper we study this quantity for various graphs HH and fields F\mathbb{F}. For finite fields, we prove by a probabilistic argument a general lower bound on g(n,H,F)g(n,H,\mathbb{F}), which yields a nearly tight bound of Ω(n/logn)\Omega(\sqrt{n}/\log n) for the triangle H=K3H=K_3. For the real field, we prove by an explicit construction that for every non-bipartite graph HH, g(n,H,R)nδg(n,H,\mathbb{R}) \geq n^\delta for some δ=δ(H)>0\delta = \delta(H)>0. As a by-product of this construction, we disprove a conjecture of Codenotti, Pudl\'ak, and Resta. The results are motivated by questions in information theory, circuit complexity, and geometry.Comment: 15 page

    Information transfer fidelity in spin networks and ring-based quantum routers

    Get PDF
    Spin networks are endowed with an Information Transfer Fidelity (ITF), which defines an absolute upper bound on the probability of transmission of an excitation from one spin to another. The ITF is easily computable but the bound can be reached asymptotically in time only under certain conditions. General conditions for attainability of the bound are established and the process of achieving the maximum transfer probability is given a dynamical model, the translation on the torus. The time to reach the maximum probability is estimated using the simultaneous Diophantine approximation, implemented using a variant of the Lenstra-Lenstra-Lov\'asz (LLL) algorithm. For a ring with uniform couplings, the network can be made a metric space by defining a distance (satisfying the triangle inequality) that quantifies the lack of transmission fidelity between two nodes. It is shown that transfer fidelities and transfer times can be improved significantly by means of simple controls taking the form of non-dynamic, spatially localized bias fields, opening up the possibility for intelligent design of spin networks and dynamic routing of information encoded in them, while being more flexible than engineering fixed couplings to favor some transfers, and less demanding than control schemes requiring fast dynamic controls
    corecore