3,585 research outputs found

    Counting Homomorphisms from Hypergraphs of Bounded Generalised Hypertree Width: A Logical Characterisation

    Full text link
    We introduce the 2-sorted counting logic GCkGC^k that expresses properties of hypergraphs. This logic has available k variables to address hyperedges, an unbounded number of variables to address vertices, and atomic formulas E(e,v) to express that a vertex v is contained in a hyperedge e. We show that two hypergraphs H, H' satisfy the same sentences of the logic GCkGC^k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of generalised hypertree width at most k. Here, H, H' are called homomorphism indistinguishable over a class C if for every hypergraph G in C the number of homomorphisms from G to H equals the number of homomorphisms from G to H'. This result can be viewed as a generalisation (from graphs to hypergraphs) of a result by Dvorak (2010) stating that any two (undirected, simple, finite) graphs H, H' are indistinguishable by the (k+1)-variable counting logic Ck+1C^{k+1} if, and only if, they are homomorphism indistinguishable on the class of graphs of tree width at most k

    NiMo syntax: part 1

    Get PDF
    Many formalisms for the specification for concurrent and distributed systems have emerged. In particular considering boxes and strings approaches. Examples are action calculi, rewriting logic and graph rewriting, bigraphs. The boxes and string metaphor is addressed with different levels of granularity. One of the approaches is to consider a process network as an hypergraph. Based in this general framework, we encode NiMo nets as a class of Annotated hypergraphs. This class is defined by giving the alphabet and the operations used to construct such programs. Therefore we treat only editing operations on labelled hypergraphs and afterwards how this editing operation affects the graph. Graph transformation (execution rules) is not covered here.Postprint (published version

    Guarded Second-Order Logic, Spanning Trees, and Network Flows

    Full text link
    According to a theorem of Courcelle monadic second-order logic and guarded second-order logic (where one can also quantify over sets of edges) have the same expressive power over the class of all countable kk-sparse hypergraphs. In the first part of the present paper we extend this result to hypergraphs of arbitrary cardinality. In the second part, we present a generalisation dealing with methods to encode sets of vertices by single vertices

    On structures in hypergraphs of models of a theory

    Get PDF
    We define and study structural properties of hypergraphs of models of a theory including lattice ones. Characterizations for the lattice properties of hypergraphs of models of a theory, as well as for structures on sets of isomorphism types of models of a theory, are given

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log⁡2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log⁡2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log⁡2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log⁡2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log⁡2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0⊆LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log⁡2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin
    • 

    corecore