28,494 research outputs found

    A Default Logic Patch for Default Logic

    Get PDF
    International audienceThis paper is about the fusion of multiple information sources represented using default logic. More precisely, the focus is on solving the problem that occurs when the standard-logic knowledge parts of the sources are contradictory, as default theories trivialize in this case. To overcome this problem, it is shown that replacing each formula belonging to Minimally Unsatisfiable Subformulas by a corresponding supernormal default allows appealing features. Moreover, it is investigated how these additional defaults interact with the initial defaults of the theory. Interestingly, this approach allows us to handle the problem of default theories containing inconsistent standard-logic knowledge, using the default logic framework itself

    Answer Sets for Consistent Query Answering in Inconsistent Databases

    Full text link
    A relational database is inconsistent if it does not satisfy a given set of integrity constraints. Nevertheless, it is likely that most of the data in it is consistent with the constraints. In this paper we apply logic programming based on answer sets to the problem of retrieving consistent information from a possibly inconsistent database. Since consistent information persists from the original database to every of its minimal repairs, the approach is based on a specification of database repairs using disjunctive logic programs with exceptions, whose answer set semantics can be represented and computed by systems that implement stable model semantics. These programs allow us to declare persistence by defaults and repairing changes by exceptions. We concentrate mainly on logic programs for binary integrity constraints, among which we find most of the integrity constraints found in practice.Comment: 34 page

    Embedding defaults into terminological knowledge representation formalisms

    Get PDF
    We consider the problem of integrating Reiter\u27s default logic into terminological representation systems. It turns out that such an integration is less straightforward than we expected, considering the fact that the terminological language is a decidable sublanguage of first-order logic. Semantically, one has the unpleasant effect that the consequences of a terminological default theory may be rather unintuitive, and may even vary with the syntactic structure of equivalent concept expressions. This is due to the unsatisfactory treatment of open defaults via Skolemization in Reiter\u27s semantics. On the algorithmic side, we show that this treatment may lead to an undecidable default consequence relation, even though our base language is decidable, and we have only finitely many (open) defaults. Because of these problems, we then consider a restricted semantics for open defaults in our terminological default theories: default rules are only applied to individuals that are explicitly present in the knowledge base. In this semantics it is possible to compute all extensions of a finite terminological default theory, which means that this type of default reasoning is decidable

    Connexive Logic, Probabilistic Default Reasoning, and Compound Conditionals

    Get PDF
    We present two approaches to investigate the validity of connexive principles and related formulas and properties within coherence-based probability logic. Connexive logic emerged from the intuition that conditionals of the form if not-A, then A, should not hold, since the conditional’s antecedent not-A contradicts its consequent A. Our approaches cover this intuition by observing that the only coherent probability assessment on the conditional event A | not-A is p(A | not-A) = 0. In the first approach we investigate connexive principles within coherence-based probabilistic default reasoning, by interpreting defaults and negated defaults in terms of suitable probabilistic constraints on conditional events. In the second approach we study connexivity within the coherence framework of compound conditionals, by interpreting connexive principles in terms of suitable conditional random quantities. After developing notions of validity in each approach, we analyze the following connexive principles: Aristotle’s theses, Aristotle’s Second Thesis, Abelard’s First Principle, and Boethius’ theses. We also deepen and generalize some principles and investigate further properties related to connexive logic (like non-symmetry). Both approaches satisfy minimal requirements for a connexive logic. Finally, we compare both approaches conceptually
    • …
    corecore