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Abstract. We present two approaches to investigate the validity of connexive principles

and related formulas and properties within coherence-based probability logic. Connexive

logic emerged from the intuition that conditionals of the form if not-A, then A, should

not hold, since the conditional’s antecedent not-A contradicts its consequent A. Our ap-

proaches cover this intuition by observing that the only coherent probability assessment

on the conditional event A|A is p(A|A) = 0. In the first approach we investigate connexive

principles within coherence-based probabilistic default reasoning, by interpreting defaults

and negated defaults in terms of suitable probabilistic constraints on conditional events.

In the second approach we study connexivity within the coherence framework of com-

pound conditionals, by interpreting connexive principles in terms of suitable conditional

random quantities. After developing notions of validity in each approach, we analyze the

following connexive principles: Aristotle’s theses, Aristotle’s Second Thesis, Abelard’s First

Principle, and Boethius’ theses. We also deepen and generalize some principles and inves-

tigate further properties related to connexive logic (like non-symmetry). Both approaches

satisfy minimal requirements for a connexive logic. Finally, we compare both approaches

conceptually.

Keywords: Coherence, Compounds of conditionals, Conditional events, Conditional ran-

dom quantities, Connexive principles, Default reasoning, Iterated conditionals, Probability

logic.

1. Introduction

Connexive logics emerged from the intuition that conditionals of the form if
not-A, then A, denoted by ∼A → A, should not hold, since the conditional’s
antecedent not-A contradicts its consequent A. Indeed, experimental psy-
chological data show that people believe that sentences of the form if not-A,
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then A are false (e.g., [53,55]), which supports the psychological plausibil-
ity of this intuition. Connexive principles were developed to rule out such
self-contradictory conditionals (for overviews, see e.g., [49,51,72]). Many of
these principles can be traced back to antiquity or the middle ages, which
is reflected by the names of these principles, for example, Aristotle’s Thesis
or Abelard’s First Principle (see Table 1).

In classical logic, however, Aristotle’s Thesis, i.e. ∼ (∼ A → A), is not a
theorem since the corresponding material conditional is contingent because
∼ (∼∼ A ∨ A) is logically equivalent to ∼ A (which is not necessarily true).
Moreover, connexive logics aim to capture the intuition that conditionals
should express some “connection” between the antecedent and the conse-
quent or, in terms of inferences, validity should require some connection
between the premise set and the conclusion. There is quite some agreement
in the literature that connexive logic should at least validate Aristotles’
theses (AT) and (AT′) and Boethius’ theses (BT) and (BT′) but Symmetry
should be a non-theorem. Symmetry (or “Non-Symmetry of Implication”) is
(B → A) → (A → B) which, according to connexive logicians, should fail to
be a theorem in any connexive logic ([18,72]). In our contribution we study
prominent candidate principles for connexive logic (listed in Table 1 and like
Symmetry also other debated candidates for connexive non-theorems (i.e.,
Contraposition, Denying a Consequent, Improper Transposition).

The connexive intuition that conditionals of the form if not-A, then A
should not hold is covered in subjective probability theory. Specifically, we
cover this intuition by the observation that for any event A, with A �= ⊥
(where ⊥ denotes the impossible event), the only coherent assessment on
the conditional event A|A is p(A|A) = 0.

The aim of our contribution is to investigate selected connexive principles
within the framework of coherence-based probability logic.1 The coherence
approach to (subjective) probability was originated by Bruno de Finetti (see,
e.g., [14,16]) and has been generalised to the conditional probability and to
previsions of conditional random quantities (see, e.g., [2,3,8,12,30,33,40,46,
67,71]). In the present framework, we present two approaches to connexivity
within coherence-based probability logic. In the first approach we analyze
connections between antecedents and consequents in terms of probabilistic
constraints on conditional events (in the sense of defaults or negated defaults
[25,59–61,63]). In the second approach, based the recently developed more
general framework of compounds of conditionals and iterated conditionals

1This paper is a revised and substantially expanded version of the work presented at
ECSQARU 2021 ([62]).
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([27,28,31,33,37]), we define these connections in terms of constraints on
suitable conditional random quantities. After developing different notions of
negations and notions of validity, we analyze the connexive principles given
in Table 1 within both approaches.

The coherence principle plays a key role in probabilistic reasoning and
allows for probabilistic inferences of a further conditional event (the conclu-
sion) from any coherent probabilistic assessment on an arbitrary family of
conditional events (the premises). We recall that in standard approaches
to probability, the conditional probability p(C|A) is defined by the ra-
tio p(A∧C)

p(A) , which requires positive probability of the conditioning event,
p(A) > 0. However, in the framework of coherence, conditional probability
p(C|A), as a degree of belief, is a primitive notion and it is properly defined
even if the conditioning event has probability zero, i.e., p(A) = 0. Anal-
ogously, within coherence, previsions of conditional random quantities, are
primitive and properly defined even if the conditioning event has probability
zero. Therefore, coherence is a more general approach to conditional prob-
abilities compared to approaches which require positive probability for the
conditioning events. The only requirement is that the conditioning event
must be logically possible. Thus, although p(C|A) is well defined even if
p(A) = 0, it is undefined if A ≡ ⊥. This is in line with the reading that
Boethius and Aristotle thought that principles like (BT) and (AT), respec-
tively, hold only when the conditional’s antecedent is possible (see [47] who
argues that the “ancient logicians most likely meant their theses as ap-
plicable only to ‘normal’ conditionals with antecedents which are not self-
contradictory”; p. 16). It is also in line with the Ramsey test, which is ex-
pressed in his famous footnote: “If two people are arguing ‘If A will C?’ and
are both in doubt as to A, they are adding A hypothetically to their stock
of knowledge and arguing on that basis about C; so that in a sense ‘If A, C’
and ‘If A, C’ are contradictories. We can say they are fixing their degrees of
belief in C given A. If A turns out false, these degrees of belief are rendered
void” [66, p. 155, we adjusted the notation]. The quantitative interpretation
of the Ramsey test became a cornerstone of the conditional probability inter-
pretation of conditionals. Adding a contradiction to your stock of knowledge
does not make sense (as, traditionally, knowledge implies truth). Moreover,
Ramsey’s thought that conditionals with contradicting consequents C and
C contradict each other coincides with the underlying intuition of (AB).

The structure of the paper is as follows. In Section 2, we recall and adapt
some probabilistic preliminary notions and results on coherence-based prob-
ability theory and the theory of compound conditional events. Then, in Sec-
tion 3, we present our first approach to connexivity (Approach 1) in terms of
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probabilistic default reasoning. Specifically, we define and investigate the va-
lidity of connexive principles and further properties of connexivity in terms
of probabilistic constraints on conditional events (in the sense of defaults,
or negated defaults). Section 4 presents the second approach to connexivity
(Approach 2) in terms of compound conditionals in the framework of con-
ditional random quantities. In Approach 2 validity is defined by means of
constant compound conditionals. Then, we investigate the validity of con-
nexive principles and some further properties of connexivity. We also study
the validity of connexive principles under alternative notions of conjunction
of conditionals. Finally, in Section 5 we summarize the main results and
compare both approaches from a conceptual point of view. We conclude
the paper with a brief evaluation of the psychological plausibility of both
approaches and with directions of future research.

2. Preliminary Probabilistic Notions and Results

In this section we recall some preliminary notions and results of the coher-
ence approach to conditional probability assessments (Section 2.1) and of the
theory of logical operations among conditional events as conditional random
quantities (Section 2.2). Section 2.1 will be relevant for both approaches to
connexivity and Section 2.2 will be relevant for Approach 2.

2.1. Coherent Conditional Probability Assessments

In the following paragraphs we recall basic notion of coherence for condi-
tional probability assessments. Specifically, we recall the trivalent notion of
the conditional event, the coherence semantics of probability assessments
in terms of degrees of belief in suitable bets and in geometrical terms. We
also give an example by illustrating how to check coherence of a conditional
probability assessments, which will be also used later in the paper. Finally,
we recall the probabilistic interpretation of defaults and negated defaults
which will be used in Section 3.

2.1.1. Conditional Events and Coherence in the Betting Framework We
recall that an event A is a two-valued logical entity which can be true, or
false. An event E is an uncertain fact described by a (non ambiguous) logical
proposition; in formal terms E is a two-valued logical entity which can be
true, or false. The sure event and impossible event are denoted by 	 and ⊥,
respectively. Given two events A and B, we denote by A ∧ B, or simply by
AB, (resp., A ∨ B) the logical conjunction (resp., the logical disjunction).
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The negation of A is denoted A. We simply write A ⊆ B to denote that A
logically implies B, that is AB = ⊥.

Definition 1. Given two events A and H, with H �= ⊥, the conditional
event A|H (read: A given H) is defined as a three-valued logical entity
which is true if AH is true, false if AH is true, and void if H is false.

We observe that A|H assumes the logical value (true or false) of A, when
H is true, and it is void, otherwise. There is a long history of how to deal
with negations (see, e.g., [41]). In our context, we use the following inner
negation of a conditional event:

Definition 2. The negation of the conditional event “A given H”, denoted
by A|H, is the conditional event A|H, that is “the negation of A” given H.

We use the inner negation to preserve for conditional events the usual
property of negating unconditional events: p(A) = 1 − p(A). In the sub-
jective approach to probability based on the betting scheme, a conditional
probability assessment p(A|H) = x corresponds to a degree of belief, mean-
ing that, for every real number s, you are willing to pay an amount s · x
and to receive s, or 0, or s · x (money back), according to whether AH is
true, or AH is true, or H is true (bet called off), respectively. The ran-
dom gain, which is the difference between the (random) amount that you
receive and the amount that you pay, is G = (sAH + 0AH + sxH) − sx =
sAH + sx(1 − H) − sx = sH(A − x).

Given a probability function p defined on an arbitrary family K of con-
ditional events, consider a finite subfamily F = {A1|H1, . . . , An|Hn} ⊆ K
and the vector P = (x1, . . . , xn), where xi = p(Ai|Hi), i = 1, . . . , n. Based
on the betting scheme, with the pair (F ,P) we associate the random gain
G =

∑n
i=1 siHi(Ai −xi). We denote by GHn

the set of values of G restricted
to Hn = H1 ∨ · · · ∨ Hn, i.e., the set of values of G when Hn is true. Then,
we recall below the notion of coherence in the context of the betting scheme.

Definition 3. The function p defined on K is coherent if and only if, ∀n ≥
1, ∀ s1, . . . , sn, ∀F = {A1|H1, . . . , An|Hn} ⊆ K, it holds that: min GHn

≤
0 ≤ max GHn

.

In betting terms, the coherence of conditional probability assessments
means that in any finite combination of n bets, after discarding the case
where all the bets are called off, the values of the random gain are neither
all positive nor all negative (i.e., no Dutch Book). In particular, coherence of
x = p(A|H) is defined by the condition min GH ≤ 0 ≤ max GH , ∀ s, where
GH is the set of values of G restricted to H (that is when the bet is not called
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off). Depending on the logical relations between A and H (with H �= ⊥),
the set Π of all coherent conditional probability assessments x = p(A|H) is:

Π =

⎧
⎨

⎩

[0, 1], if ⊥ �= AH �= H,
{0}, if AH = ⊥,
{1}, if AH = H.

(1)

2.1.2. Geometrical Characterization of Coherence We recall that coher-
ence can be characterized geometrically. This characterization will be used,
for instance, in Section 3.3 to show the non-validity of selected properties.
Let F = (E1|H1, . . . , En|Hn). As EjHj ∨ EjHj ∨ Hj coincides with sure
event 	, j = 1, . . . , n, it holds that 	 =

∧n
j=1(EjHj ∨ EjHj ∨ Hj). By

applying the distributive property it follows that 	 can also be written as
the disjunction of 3n logical conjunctions, some of which may be impossible.
The remaining ones are the constituents, generated by F and, of course,
form a partition of 	. We denote by C1, . . . , Cm the constituents contained
in Hn and (if Hn �= 	) by C0 the remaining constituent Hn = H1 · · ·Hn,
so that

Hn = C1 ∨ · · · ∨ Cm, 	 = Hn ∨ Hn = C0 ∨ C1 ∨ · · · ∨ Cm, m + 1 ≤ 3n.

Let P = (x1, . . . , xn), where xi = p(Ei|Hi), i = 1, . . . , n. For each con-
stituent Ch, h = 1, . . . ,m, we associate a point Qh = (qh1, . . . , qhn), where
qhi = 1, or 0, or xi, according to whether Ch ⊆ EiHi, or Ch ⊆ EiHi, or
Ch ⊆ Hi. The point Q0 = P is associated with C0. We say that the points
Q0, Q1, . . . , Qm are associated with the pair (F ,P).

Denoting by I the convex hull of Q1, . . . , Qm, by a suitable alternative
theorem (Theorem 2.9 in [20]), the condition P ∈ I is equivalent to the
condition minGHn

≤ 0 ≤ max GHn
given in Definition 3 (see, e.g., [22,30]).

Moreover, the condition P ∈ I amounts to the solvability of the following
system (Σ) in the unknowns λ1, . . . , λm

(Σ) :
∑m

h=1 qhiλh = xi , i ∈ Jn ;
∑m

h=1 λh = 1 ; λh ≥ 0 , h ∈ Jm ,
(2)

where, Jn = {1, 2, . . . , n}, for every integer n. We say that system (Σ) is
associated with the pair (F ,P) and of course its solvability is a necessary
condition for the coherence of P on F . Given a probability assessment P =
(x1, . . . , xn) on F = (E1|H1, . . . , En|Hn), let S be the set of solutions of the
form Λ = (λ1, . . . , λm) of the system (Σ). Then, assuming S �= ∅, we define

Φj(Λ) = Φj(λ1, . . . , λm) =
∑

r:Cr⊆Hj
λr , j ∈ Jn ; Λ ∈ S ;

Mj = maxΛ∈S Φj(Λ) , j ∈ Jn,
(3)
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and
I0 = {j ∈ Jn : Mj = 0}. (4)

Assuming P coherent, each solution Λ = (λ1, . . . , λm) of system (Σ) is a
coherent extension of the assessment P on F to the sequence (C1|Hn, C2|Hn,
. . . , Cm|Hn). Then, for each solution Λ of system (Σ) the quantity Φj(Λ) is
a coherent extension of the conditional probability p(Hj |Hn). Moreover, the
quantity Mj is the upper probability p′′(Hj |Hn) over all the solutions Λ of
system (Σ). Of course, j ∈ I0 if and only if p′′(Hj |Hn) = 0. Notice that I0 is
a strict subset of Jn. If I0 is nonempty, we set F0 = (Ei|Hi ∈ F , i ∈ I0) and
P0 = (p(Ei|Hi), i ∈ I0). We say that the pair (F0,P0) is associated with I0.
Then, we have (Theorem 3.3 in [21]):

Theorem 1. (Characterization of coherence) The assessment P on F is
coherent if and only if the following conditions are satisfied: (i) the system
(Σ) associated with the pair (F ,P) is solvable; (ii) if I0 �= ∅, then P0 is
coherent.

Let S ′ be a nonempty subset of the set of solutions S of system (Σ). We
denote by I ′

0 the set I0 defined as in (4), where S is replaced by S ′, that is

I ′
0 = {j ∈ Jn : M ′

j = 0}, where M ′
j = max

Λ∈S′
Φj(Λ) , j ∈ Jn. (5)

Moreover, we denote by (F ′
0,P ′

0) the pair associated with I ′
0. Then, we obtain

(see, e.g., Theorem 7 in [5])

Theorem 2. The assessment P on F is coherent if and only if the following
conditions are satisfied: (i) the system (Σ) associated with the pair (F ,P)
is solvable; (ii) if I ′

0 �= ∅, then P ′
0 is coherent.

2.1.3. Illustration of How to Check Coherence For an illustration of The-
orem 2 we consider an example with two logically independent events A,B,
which will be also useful in Section 3.3 to prove the non-validity of Symmetry
(i.e., (B → A) → (A → B) fails to be a theorem in connexive logic [18,72]).

We recall that, given n events E1, . . . , En they are said to be logically
independent if there are no logical relations among them. This means that
any conjunction constructed from the n events, such that their respective
conjuncts are either affirmed (Ei) or negated (Ei), is not impossible, that is
E∗

1 ∧ · · · ∧ E∗
n �= ⊥, where E∗

i ∈ {Ei, Ei}, i = 1, . . . , n.

Example 1. Let F = (E1|H1, E2|H2) = (A|B, B|A), where A,B are logi-
cally independent events, and P = (x, y) be a probability assessment on F .
We show that P on F is coherent for every (x, y) ∈ [0, 1]2. It holds that:

	 = (AB ∨ AB ∨ B) ∧ (AB ∨ AB ∨ A) = C0 ∨ C1 ∨ C2 ∨ C3,
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where the constituents are C1 = AB, C2 = AB, C3 = AB, and C0 = A B.
We observe that H2 = C1∨· · ·∨C3 = A∨B. Moreover, the points Q1 = (1, 1),
Q2 = (x, 0), Q3 = (0, y), Q0 = P = (x, y) are associated with (F ,P). We
distinguish two cases: (i) (x, y) �= (0, 0); (ii) (x, y) = (0, 0).

In case (i), it follows that the system (Σ) associated with (F ,P) is
solvable with a solution given by Λ = (λ1, λ2, λ3), where λ1 = xy

x+y−xy ,
λ2 = x−xy

x+y−xy , λ3 = y−xy
x+y−xy . Indeed,

P = (x, y) = λ1Q1 + λ2Q2 + λ3Q3,

where λ1 + λ2 + λ3 = 1, λi ≥ 0, i = 1, 2, 3. We consider the following
subcases: (i1) x > 0 and y > 0; (i2) x = 0 and y > 0; (i3) x > 0 and y = 0.

In case (i1) it holds that Φ1(Λ) = λ1 + λ3 = y
x+y−xy > 0 and Φ2(Λ) =

λ1 + λ2 = x
x+y−xy > 0. Then, by setting S ′ = {Λ} it holds that M ′

1 > 0,
M ′

2 > 0 and hence I ′
0 = ∅. Thus, by Theorem 2 the assessment (x, y), with

x > 0, y > 0, is coherent.
In case (i2) it holds that Φ1(Λ) = λ1 + λ3 = 1 and Φ2(Λ) = λ1 + λ2 = 0.

Then, by setting S ′ = {Λ} it holds that M ′
1 > 0, M ′

2 = 0 and hence I ′
0 = {2}.

We observe that the subassesment P0 = y > 0 on F0 = B|A is coherent.
Thus, by Theorem 2 the assessment (0, y), with y > 0, is coherent.

In case (i3) it holds that Φ1(Λ) = λ1 + λ3 = 0 and Φ2(Λ) = λ1 + λ2 =
x

x+y−xy . Then, by setting S ′ = {Λ} it holds that M ′
1 = 0, M ′

2 > 0 and hence
I ′
0 = {1}. We observe that the subassesment P0 = x > 0 on F0 = A|B is

coherent. Thus, by Theorem 2 the assessment (x, 0), with x > 0, is coherent.
In case (ii), we observe that P = (0, 0) = Q2 = Q3. Then, Λ = (0, 1

2 , 1
2)

is a solution of (Σ), with Φ1(Λ) = λ1 + λ3 = 1
2 > 0 and Φ2(Λ) = λ1 + λ2 =

1
2 > 0. Then, by setting S ′ = {Λ} it holds that M ′

1 > 0, M ′
2 > 0 and hence

I ′
0 = ∅. Thus, by Theorem 2 the assessment (0, 0) is coherent.

Therefore the assessment (x, y) on (A|B,B|A) is coherent for every (x, y) ∈
[0, 1]2.

The following remark on Example 1 will be used in Section 3.3 to show
the non-validity of Contraposition.

Remark 1. As p(A|B) = 1 − p(A|B) and p(B|A) = 1 − p(B|A), it follows
from Example 1 that the probability assessment (p(A|B), p(B|A)) is coher-
ent for every value in the unit square [0, 1]2. Moreover, by replacing B with
B, it follows that the probability assessment (u, v) on (A|B, B|A) is coherent
for every (u, v) ∈ [0, 1]2.

2.1.4. Defaults and Negated Defaults In order to validate the connexive
principles in Approach 1 we recall the probabilistic interpretation of defauls
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and negated defaults. A default A |∼ C can be read as C is a plausible
consequence of A and is interpreted by the probability constraint p(C|A) = 1
([25]).2 A negated default ∼(A |∼ C) (it is not the case that: C is a plausible
consequence of A; also denoted by A |∼/ C in [19,45]), which is interpreted by
the probabilistic constraint p(C|A) �= 1 and corresponds to the wide scope
negation of negating conditionals ([25]).

2.2. Conditional Random Quantities: Logical Operations among Condi-
tional Events

In the following paragraphs we recall key notions for logical operations
among conditional events in the framework of conditional random quan-
tities, which will be used mainly for constructing Approach 2 in Section 4.
Specifically, we recall the indicator of a conditional event, conditional ran-
dom quantities, the conjunction and the iteration of conditional events, and
illustrate these concepts with some properties.

2.2.1. The Indicator of a Conditional Event In numerical terms, once x =
p(A|H) is assessed by the betting scheme, the indicator of A|H, denoted by
the same symbol, is defined as 1, or 0, or x, according to whether AH is
true, or AH is true, or H is true. Then, by setting p(A|H) = x,

A|H = AH + xH =

⎧
⎨

⎩

1, if AH is true,
0, if AH is true,
x, if H is true.

(6)

Note that since the three-valued numerical entity A|H is defined by the bet-
ting scheme once the value x = p(A|H) is assessed, the definition of (the
indicator of) A|H is not circular. The third value of the random quantity
A|H (subjectively) depends on the assessed probability p(A|H) = x. More-
over, the value x coincides with the corresponding conditional prevision,
denoted by P(A|H), because P(A|H) = P(AH + xH) = p(AH) + xp(H) =
p(A|H)p(H) + xp(H) = xp(H) + xp(H) = x.

In the special case where AH = H, it follows by (1) that x = 1 is the
only coherent assessment for p(A|H); then, for the indicator A|H it holds

2 According to ε-semantics (see, e.g., [1,52]) a default A |∼ C is interpreted by p(C|A) ≥
1 − ε, with ε > 0 and p(A) > 0. Gilio introduced a coherence-based probability semantics
for defaults by also allowing ε and p(A) to be zero ([23]). In this context, defaults in
terms of probability 1 can be used to give a alternative definition of p-entailment which
preserve the usual non-monotonic inference rules like those of System P ([4,23,29,30],
see also [12,13]). For the psychological plausibility of the coherence-based semantics of
non-monotonic reasoning, see, e.g., [54,56–58,65].



Connexive Logic, Probabilistic Default Reasoning...

that
A|H = AH + xH = H + H = 1, if AH = H. (7)

In particular (7) holds when A = 	 (i.e., the sure event), since 	 ∧ H = H
and hence 	|H = H|H = 1. Likewise, if AH = ⊥, it follows by (1) that
x = 0 is the only coherent assessment for p(A|H); then,

A|H = 0 + 0H = 0, if AH = ⊥. (8)

In particular (8) holds when A = ⊥, since ⊥∧H = ⊥ and hence ⊥|H = 0. We
observe that conditionally on H be true, for the (indicator of the) negation
it holds that A|H = A = 1 − A = 1 − A|H. Conditionally on H be false, by
coherence, it holds that A|H = p(A|H) = 1 − p(A|H) = 1 − A|H. Thus, in
all cases it holds that

A|H = A|H = (1 − A)|H = 1 − A|H. (9)

2.2.2. Conditional Random Quantities We denote by X a random quan-
tity, with a finite set of possible values. Given any event H �= ⊥, agreeing
to the betting metaphor, if you assess the prevision P(X|H) = μ means
that for any given real number s you are willing to pay an amount sμ and
to receive sX, or sμ, according to whether H is true, or false (bet called
off), respectively. In particular, when X is (the indicator of) an event A,
then P(X|H) = p(A|H). The notion of coherence can be generalized to the
case of prevision assessments on a family of conditional random quantities
(see, e.g., [34,69]). Given a random quantity X and an event H �= ⊥, with
prevision P(X|H) = μ, likewise formula (6) for the indicator of a condi-
tional event, an extended notion of a conditional random quantity, denoted
by the same symbol X|H, is defined as follows X|H = XH +μH. We recall
now the notion of conjunction of two (or more) conditional events within
the framework of conditional random quantities in the setting of coherence
([28,31,33,35], for alternative approaches see also, e.g., [43,50]).

2.2.3. Conjunction of Conditional Events Given a coherent probability as-
sessment (x, y) on {A|H,B|K}, we consider the random quantity AHBK +
xHBK + yKAH and we set P[(AHBK + xHBK + yKAH)|(H ∨ K)] = z.
Then we define the conjunction (A|H) ∧ (B|K) as follows:

Definition 4. Given a coherent prevision assessment p(A|H) = x, p(B|K) =
y, and P[(AHBK+xHBK+yKAH)|(H∨K)] = z, the conjunction (A|H)∧
(B|K) is the conditional random quantity defined as
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(A|H) ∧ (B|K) = (AHBK + xHBK + yKAH)|(H ∨ K) =

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if AHBK is true,
0, if AH ∨ BK is true,
x, if HBK is true,
y, if AHK is true,
z, if H K is true.

(10)

Notice that, by definition, z = P[(AHBK+xHBK+yKAH)|(H∨K)] =
P[(A|H)∧ (B|K)]. Here, differently from conditional events which are three-
valued objects, the conjunction (A|H) ∧ (B|K) is not any longer a three-
valued object, but a five-valued object with values in [0, 1]. We observe that
(A|H) ∧ (A|H) = A|H and (A|H) ∧ (B|K) = (B|K) ∧ (A|H). Moreover, if
H = K, then (A|H) ∧ (B|H) = AB|H.

Coherence requires that the Fréchet-Hoeffding bounds for prevision of
the conjunction are preserved ([31]), i.e,

max{x + y − 1, 0} ≤ z ≤ min{x, y}, (11)

like in the case of unconditional events, where P (A) = x, P (B) = y, and
P (AB) = z. Differently from the other notions of conjunctions of conditional
events which yield conditional events, the conjunction ∧ yields a conditional
random quantity and preserves the classical logical and probabilistic prop-
erties which hold for unconditional events (see, e.g., [37]).

We notice that if conjunctions of conditional events are defined as suitable
conditional events (see, e.g., [1,6,10,11,39]), classical probabilistic proper-
ties, like the Fréchet-Hoeffding bounds, are not preserved ([68]).

2.2.4. Iterated Conditionals In analogy to formula (6), where the indicator
of a conditional event “A given H” is defined as A|H = A ∧ H + p(A|H)H,
the iterated conditional “B|K given A|H” is defined as follows (see, e.g.,
[27,28,31]):

Definition 5. (Iterated conditioning) Given any pair of conditional events
A|H and B|K, with AH �= ⊥, the iterated conditional (B|K)|(A|H) is
defined as the conditional random quantity (B|K)|(A|H) = (A|H)∧(B|K)+
μA|H, where μ = P[(B|K)|(A|H)].

As the iterated conditional (B|K)|(A|H) has values in [0, 1], it follows
also that μ ∈ [0, 1]. Furthermore, we recall that the compound prevision
theorem is preserved, that is

P[(A|H) ∧ (B|K)] = P[(B|K)|(A|H)]p(A|H). (12)
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Notice that, in the context of betting scheme, μ = P[(B|K)|(A|H)] repre-
sents the amount you agree to pay, with the proviso that you will receive
the quantity

(B|K)|(A|H) = (B|K) ∧ (A|H) + μ A|H =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if AHBK is true,

0, if AHBK is true,

y, if AHK is true,

x + μ(1 − x), if HBK is true,

μ(1 − x), if H BK is true,

z + μ(1 − x), if H K is true,

μ, if AH is true,

(13)

where x = p(A|H), y = p(B|K), z = P[(A|H) ∧ (B|K)], and by (12),
z + μ(1 − x) = μ.

We now show that the iterated conditional (B|K)|(B|K) is constant and
equal to 1, which will be exploited in Section 4, for example where we show
the validity of Boethius theses.

Remark 2. In the particular case where A|H = B|K, with BK �= ⊥, as
(B|K) ∧ (B|K) = B|K, by setting p(B|K) = y, Equation (13) reduces to

(B|K)|(B|K) = B|K + μ(B|K) =

⎧
⎨

⎩

1, if BK is true,
μ, if BK is true,
y + μ(1 − y), if K is true.

By the linearity of prevision we obtain μ = P[(B|K)|(B|K)] = y + μ(1 − y)
and hence

(B|K)|(B|K) = B|K + μ(B|K) =
{

1, if BK is true,
μ, if BK ∨ K is true.

(14)

From (12) it holds that y = μy, and hence μ = 1 when y > 0. However, we
show in betting terms that coherence requires μ = 1 in general, even if y = 0.
We observe from (14) that a bet on (B|K)|(B|K), with μ = P[(B|K)|(B|K)],
is called off when BK ∨ K is true, because in this case one receives back
the quantity μ initially paid, for any initially paid value μ. Then, in order
to check coherence, we only consider the set GBK of values of the random
gain G = (B|K)|(B|K) − μ restricted to the case when the bet is not called
off, that is when BK is true. As GBK = {1 − μ}, coherence requires that
minGBK · maxGBK = (1 − μ)2 ≤ 0. Then μ = 1 and hence from (14) we
obtain

(B|K)|(B|K) = 1, (15)
that is (B|K)|(B|K) is constant and equal to 1 (for more general cases see
[36, Theorem 6]).
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3. Approach 1: Connexive Principles and Default Reasoning

In Approach 1 we exploit the probabilistic interpretation of defaults and
negated defaults. In order to validate the connexive principles we interpret
a conditional A → C where A and C are two events, with A �= ⊥, by the
default A |∼ C, which is interpreted by the constraint p(C|A) = 1. Then, the
conditional A → ∼C is interpreted by the default A |∼ C. Likewise, ∼A → C
is interpreted by A |∼ C. Moreover, a negated conditional ∼(A → C) is
interpreted by the negated default ∼(A |∼ C), that is by the constraint
p(C|A) �= 1. The conjunction of two conditionals, denoted by (A → B) ∧
(C → D), is interpreted by the sequence of their associated defaults (A |∼
B,C |∼ D), which represents in probabilistic terms the constraint (p(B|A) =
1, p(D|C) = 1), that is (p(B|A), p(D|C)) = (1, 1). Then, the negation of
the conjunction of two conditionals, denoted by ∼((A → B) ∧ (C → D))
(i.e., in terms of defaults ∼(A |∼ B) ∧ (C |∼ D)) is interpreted by the
negation of the probabilistic constraint (p(B|A), p(D|C)) = (1, 1), that is
(p(B|A), p(D|C)) �= (1, 1). Table 2 summarizes the interpretations.

We now introduce the definition of validity for non-iterated connexive
principles (e.g., (AT), (AT′), (AB)) in Approach 1.

Definition 6. We say that a non-iterated connexive principle is valid in
Approach 1 (valid1) if and only if the probabilistic constraint associated
with the connexive principle is satisfied by every coherent assessment on the
involved conditional events.

3.1. Non-iterated Connexive Principles in Approach 1

In this section we check the validity in terms of Definition 6 of the non-
iterated connexive principles in Table 1.

3.1.1. Aristotle’s Thesis (AT): ∼(∼A → A). We interpret the principle
∼(∼A → A) by the negated default ∼(A |∼ A) with the following associated
probabilistic constraint: p(A|A) �= 1. We observe that p(A|A) = 0 is the
unique precise coherent assessment on A|A. Then, (AT) is valid1 because
every coherent precise assessment p(A|A) is such that p(A|A) �= 1.

3.1.2. Aristotle’s Thesis′ (AT′): ∼(A → ∼A).
Like (AT), it can be shown that (AT)′ is valid1.

3.1.3. Abelard’s First Principle (AB): ∼((A → B) ∧ (A → ∼B)). The
structure of this principle is formalized by ∼((A |∼ B) ∧ (A |∼ B)) which
expresses the constraint (p(B|A), p(B|A)) �= (1, 1). We recall that coherence
requires p(B|A) + p(B|A) = 1. Then, (AT) is valid1 because each coherent
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assessment on (B|A,B|A) is necessarily of the form (x, 1−x), with x ∈ [0, 1],
which of course satisfies (p(B|A), p(B|A)) �= (1, 1).

3.1.4. Non-validity of Aristotle’s Second Thesis (AS): ∼((A → B)∧(∼A →
B)) is not valid1. The structure of this principle is formalized by ∼((A |∼
B)∧(A |∼ B)) which expresses the constraint (p(B|A), p(B|A)) �= (1, 1). We
recall that, given two logically independent events A and B every assessment
(x, y) ∈ [0, 1]2 on (B|A,B|A) is coherent. In particular, (p(B|A), p(B|A)) =
(1, 1) is a coherent assessment which does not satisfy the probabilistic con-
straint (p(B|A), p(B|A)) �= (1, 1). Thus, (AS) is not valid1.

Remark 3. (A restricted version of (AS)) We observe that (AS) can be val-
idated in Approach 1 under some suitable further probabilistic assumptions.
We recall that p(B) = p(B|A)p(A) + p(B|A)p(A). Thus, P (B) = 1 when
p(B|A) = p(B|A) = 1. Then, with contraposition, under the further proba-
bilistic constraint that p(B) �= 1, it follows that p(B|A) and p(B|A) cannot
both be equal to 1 and hence the assessment (1, 1) on (B|A,B|A) is no longer
coherent. Therefore, (AS) is valid1 under the further probabilistic constraint
p(B) �= 1.3 This restricted version of (AS) can be written in terms of defaults
and negated defaults as follows: ∼((A |∼ B) ∧ (∼A |∼ B)) ∧ (	 |∼/ B).

3.2. Iterated Connexive Principles in Approach 1

In this section we check the validity of the iterated connexive principles
in Table 1 within Approach 1: (BT), (BT′), (RBT), (RBT′), (B3), (B4).
We interpret the main connective (→) of iterated connexive principles as
the implication (⇒) from the probabilistic constraint on the premise to the
probabilistic constraint on the conclusion. Then, for instance, the iterated
conditional (A → B) → (C → D) is interpreted by the implication A |∼
B ⇒ C |∼ D, that is p(B|A) = 1 ⇒ p(D|C) = 1. We now define validity
for iterated connexive principles in Approach 1.

Definition 7. An iterated connexive principle © ⇒ � is valid in Ap-
proach 1 (valid1) if and only if the probabilistic constraint of the conclusion
� is satisfied by every coherent extension to the conclusion from any coher-
ent probability assessment satisfying the constraint of the premise ©.

We check the validity in terms of Definition 7 of the iterated connexive
principles in Table 1.

3Thanks to Nic Wilson for a comment inspiring this observation during ECSQARU
2021.
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3.2.1. Boethius’ Thesis (BT): (A → B) → ∼(A → ∼B). This is inter-
preted by the implication A |∼ B ⇒ ∼(A |∼ B), that is p(B|A) = 1 ⇒
p(B|A) �= 1. We observe that, by setting p(B|A) = 1, p(B|A) = 1−p(B|A) =
0 is the unique coherent extension to B|A. Then, as p(B|A) = 1 ⇒ p(B|A) =
0 �= 1, the iterated connexive principle (BT) is valid1.

3.2.2. Boethius’ Thesis′ (BT′): (A → ∼B) → ∼(A → B). Like (BT), it
can be shown that (BT′) is valid1.

3.2.3. Non-validity of Reversed Boethius’ Thesis (RBT) ∼(A → ∼B) →
(A → B)is not valid1. This is interpreted by ∼(A |∼ B) ⇒ A |∼ B, that
is p(B|A) �= 1 ⇒ p(B|A) = 1. We observe that, by setting p(B|A) = x
it holds that p(B|A) = 1 − x is the unique coherent extension to B|A. In
particular by choosing x ∈]0, 1[, it holds that p(B|A) �= 1 and p(B|A) �= 1.
Thus, p(B|A) �= 1 � p(B|A) = 1 and hence (RBT) is not valid1.

3.2.4. Non-validity of Reversed Boethius’ Thesis’ (RBT’) ∼(A → B) →
(A → ∼B). Like (RBT), it can be shown that (RBT′) is not valid1.

3.2.5. Non-validity of Boethius Variation (B3) (A → B) → ∼(∼A → B)
is not valid1. This is interpreted by A |∼ B ⇒ ∼(A |∼ B), that is p(B|A) =
1 ⇒ p(B|A) �= 1. We observe that, by setting p(B|A) = 1, any value
p(B|A) ∈ [0, 1] is a coherent extension to B|A, because the assessment (1, y)
on (B|A,B|A) is coherent for every y ∈ [0, 1]. In particular the assessment
(1, 1) on (B|A,B|A) is coherent. Therefore, as p(B|A) = 1 � p(B|A) �= 1,
(B3) is not valid1.

3.2.6. Non-validity of Boethius Variation (B4) (∼ A → B) → ∼(A →
B)is not valid1. Like (B3), it can be shown that (B4) is not valid1.

We summarize the previous results on connexive principles within Ap-
proach 1 in Table 3.

3.3. Further Properties of Approach 1

In this section we study the validity of selected properties which are dis-
cussed in the literature on connexive logic (see, e.g., [18,49,72]). In par-
ticular, we investigate Symmetry, Minimality, Kapsner-strong, Simplifica-
tion, Conjunction-Idempotence, paradoxes of material conditional, Improper
Transposition, Contraposition, and Denying Conjunct within Approach 1.
Moreover, we study generalized versions of Aristotle’s theses.
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3.3.1. Non-validity of Symmetry As mentioned above, there is a common
agreement that connexive logics should be non-symmetric, i.e.,

(B → A) → (A → B) (16)

fails to be a theorem ([18,72]). In Approach 1, to show that (16) is not
valid1 amounts to show that (B |∼ A) ⇒ (A |∼ B) is not valid1, that is
p(A|B) = 1 � p(B|A) = 1. In Example 1 we showed that the assessment
(x, y) on (A|B,B|A) is coherent for every (x, y) ∈ [0, 1]2. Hence, as the
assessment p(A|B) = 1 and p(B|A) = 0 is coherent, Symmetry is not valid1.

3.3.2. Minimality Since we have shown that Approach 1 validates (AT),
(AT′), (BT), and (BT′) but not Symmetry, Approach 1 satisfies all of
Estrada-González and Ramı́rez-Cámara’s minimal criteria for any connexive
logic ([18, p. 346]) which means that Approach 1 provides a semantics for
connexive logic. However, Approach 1 does not support subminimal connex-
ive logic, which “is a logic which satisfies at least some but not all” of these
criteria [18, p. 347].

3.3.3. Kapsner-Strong We recall that a connexive logic is called Kapsner-
strong ([18]) when the two conditions (i) A → ∼A is not satisfiable and
(ii) A → B and A → ∼B are not simultaneously satisfiable are met ([42]).
Naturally, in Approach 1 satisfiability of the conditional A → B amounts
to the satisfiability of the probabilistic constraint associated with the cor-
responding default A |∼ B, that is p(B|A) = 1 is a coherent assessment.
Approach 1 is Kapsner-strong because

• A → ∼A is unsatisfiable. Indeed, as p(A|A) = 0 for every coherent
probability p, the probabilistic constraint p(A|A) = 1, associated with
the corresponding default A |∼ ∼A, cannot be coherent.

• A → B and A → ∼B are not simultaneously satisfiable. Indeed, as
p(B|A) + p(B|A) = 1 for every coherent probability p, the probability
assessment p(B|A) = 1 and p(B|A) = 1, associated with (A |∼ B) and
(A |∼ ∼B), cannot be coherent.

3.3.4. Simplification Approach 1 also satisfies the two versions of Simpli-
fication (A ∧ B) → A and (A ∧ B) → B. Indeed, Simplification, interpreted
as (A ∧ B) |∼ A and (A ∧ B) |∼ B, is valid1 because p(B|AB) = p(A|AB) =
p(AB|AB) = 1.



N. Pfeifer, G. Sanfilippo

3.3.5. Conjunction-Idempotence Of course, (A∧A) → A and A → (A∧A)
are trivially valid1 because p(A|AA) = p(AA|A) = p(A|A) = 1.

3.3.6. Non-validity of Paradoxes of the Material Conditional We show
the non validity of the following paradoxes of the material conditional in
Approach 1: B → (A → B); ∼A → (A → B). We observe that B ⇒
(A |∼ B) is not valid1 because p(B) = 1 � p(B|A) = 1. Indeed, even if
p(B|A) = 1, when p(A) > 0 and p(B) = 1, however in general as p(A) could
be zero, every p(B|A) ∈ [0, 1] is a coherent extension of p(B) = 1. Moreover,
∼A ⇒ (A |∼ B) is not valid1 because p(A) = 1 � p(B|A) = 1. Indeed,
every p(B|A) ∈ [0, 1] is a coherent extension of p(A) = 1 (for more details
see [54]).

3.3.7. Non-validity of Improper Transposition Improper Transposition is

(A → B) → (∼A → ∼B). (17)

Within Approach 1 formula (17) is interpreted by (A |∼ B) ⇒ (A |∼ B),
which is not valid1 because p(B|A) = 1 does not imply that p(B|A) = 1.
Indeed, as shown below, the assessment P = (x, y) on (B|A,B|A) is coherent
for every (x, y) ∈ [0, 1]2. The constituents Ch and the associated points Qh

are: C1 = AB, C2 = AB, C3 = AB, C4 = A B, and Q1 = (1, y), Q2 = (0, y),
Q3 = (x, 0), Q4 = (x, 1). We observe that the disjunction of the conditioning
events is A ∨ A = 	 and that system (Σ) is solvable because

P = (x, y) = xQ1 + (1 − x)Q2.

Then, as I0 = ∅, from Theorem 1, the assessment P = (x, y) on (AB|	, B|A)
is coherent for every (x, y) ∈ [0, 1]2. Since the assessment (1, 0) on (B|A,B|A)
is coherent, formula (17) is not valid1 in Approach 1.

3.3.8. Non-validity of Contraposition Contraposition is

(A → B) → (∼B → ∼A). (18)

Within Approach 1 formula (18) is interpreted by (A |∼ B) ⇒ (B |∼ A). As
shown in Remark 1, the probability assessment P = (x, y) on (B|A,A|B) is
coherent for every (x, y) ∈ [0, 1]2. In particular (p(B|A), p(A|B)) = (1, 0) is
coherent. Therefore, Contraposition is not valid1, because p(B|A) = 1 does
not imply that p(A|B) is necessarily equal to 1.

3.3.9. Non-validity of Denying a Conjunct Denying a Conjunct is

∼(A ∧ B) → (∼A → B). (19)
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In Approach 1 formula (19) is interpreted by the relation (	 |∼ AB) ⇒
(A |∼ B). We observe that p(AB|	) = p((A ∨ B)|	) = 1 � p(B|A) =
1 and hence (19) is not valid1. Indeed, we show below by exploiting the
geometrical characterization of coherence, that the assessment P = (x, y)
on (AB|	, B|A) is coherent for every (x, y) ∈ [0, 1]2. The constituents Ch

and the associated points Qh are: C1 = AB, C2 = AB, C3 = AB, C4 = A B,
and Q1 = (0, y), Q2 = (1, y), Q3 = (1, 1), Q4 = (1, 0). We observe that the
disjunction of the conditioning events is 	 ∨ A = 	 and that system (Σ)
is solvable because P = (x, y) = (1 − x)Q1 + xQ2. Then, as I0 = ∅, based
on Theorem 1, the assessment P = (x, y) on (AB|	, B|A) is coherent for
every (x, y) ∈ [0, 1]2. Since the assessment (1, 0) on (AB|	, B|A) is coherent,
formula (19) is not valid1.

3.3.10. Generalized Aristotle’s Theses We recall that a basic connexive
intuition is that conditionals of the form if not-A then A should not hold.
We now generalize this intuition by studying iterated versions of Aristotle’s
thesis. Specifically, we replace A by the conditional A → B in (AT) and
(AT)′ and obtain the respective iterated versions:

(IAT) ∼(∼(A → B) → (A → B));
(IAT)′

∼((A → B) → ∼(A → B)).
We interpret the negation of an inference, that is ∼(© ⇒ �), by © ⇒

∼�. Then, (IAT) is interpreted by the inference ∼(A → B) ⇒ ∼(A → B),
that is

∼(A |∼ B) ⇒ ∼(A |∼ B),

which of course holds since p(B|A) < 1 ⇒ p(B|A) < 1. Likewise, (IAT)′

is interpreted by the inference A |∼ B ⇒ A |∼ B, which holds because
p(B|A) = 1 ⇒ p(B|A) = 1. Therefore (IAT) and (IAT)′ are both valid1.

In this section we analyzed connexivity (Sections 3.1 and 3.2) and related
further properties (Sect. 3.3) in terms of the probabilistic interpretation of
defaults and negated defaults. In the next section we consider another ap-
proach to connexivity within our framework of coherence.

4. Approach 2: Connexive Principles and Compounds of
Conditionals

In this section we analyze connexive principles within the theory of logical
operations among conditional events (Approach 2). Specifically, we analyze
connections between antecedents and consequents in terms of constraints
on compounds of conditionals and iterated conditionals. In this approach, a
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basic conditional A → C is interpreted by (the indicator of) the conditional
event C|A (instead of a probabilistic constraint on conditional events as in
Approach 1) which is a three-valued object (see Section 2.2): C|A ∈ {1, 0, x},
where x = p(C|A). The negation ∼(A → C) is interpreted by C|A (which
is the narrow scope negation of negating conditionals). Then, ∼(A → ∼C)
amounts to C|A which coincides with C|A. We recall that logical operations
among conditional events do not yield a conditional event, rather they yield
conditional random quantities with more than three possible values (see,
e.g., [31]). Then, we interpret the results of the logical operations in the
connexive principles by suitable conditional random quantities. In particu-
lar, the conjunction (A → B) ∧ (C → D) (resp., ∼((A → B) ∧ (C → D)))
is interpreted by (B|A)∧ (D|C) (resp., by (B|A) ∧ (D|C)), and the iterated
conditional (A → B) → (C → D) is interpreted by (D|C)|(B|A). Moreover,
we define validity of connexive principles within Approach 2.

Definition 8. A connexive principle is valid in Approach 2 (valid2) if and
only if the associated conditional random quantity is constant and equal to
1.

We now check the validity of the connexive principles in Table 1 according
to Definition 8.

4.1. Connexive Principles in Approach 2

4.1.1. Aristotle’s hesis (AT): ∼(∼A → A). We interpret the principle
∼(∼A → A) by the negation of the conditional event A|A, that is by A|A.
Then, based on equations (9) and (7), it follows that A|A = 1 − A|A =
A|A = 1. Therefore, (AT) is valid2 because the conditional random quantity
A|A, which also coincides with the conditional event A|A, is constant and
equal to 1.

4.1.2. Aristotle’s Thesis′ (AT′): ∼(A → ∼A). We interpret the principle
∼(A → ∼A) by the negation of the conditional event A|A, that is by A|A.
Like in (AT), it holds that A|A = 1 − A|A = A|A = 1, which validates
(AT′) in Approach 2. Notice that, the validity of (AT′) also follows from
(AT) when A is replaced by A (of course A = A).

4.1.3. Abelard’s First Principle (AB): ∼((A → B) ∧ (A → ∼B)). The
structure of this principle is formalized by the conditional random quantity
(B|A) ∧ (B|A), where A �= ⊥. We observe that (B|A)∧(B|A) = (B∧B)|A =
⊥|A. Then, (B|A) ∧ (B|A) = ⊥|A = ⊥|A = 	|A = 1. Therefore, (AB) is
valid2.
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4.1.4. Non-validity of Aristotle’s Second Thesis (AS) ∼((A → B)∧(∼A →
B))is not valid2.

The structure of this principle is formalized by the random quantity
(B|A) ∧ (B|A) (where A �= ⊥ and A �= ⊥, that is A is contingent). By
setting p(B|A) = x and p(B|A) = y, it follows that [28,32]

(B|A) ∧ (B|A) = (B|A) · (B|A) =

⎧
⎨

⎩

0, if AB ∨ A B is true,
y, if AB is true,
x, if AB is true.

Then, (B|A) ∧ (B|A) = 1− (B|A)∧ (B|A) = 1− (yAB +xAB), which is not
constant and can therefore not necessarily be equal to 1. In particular, by
choosing the coherent assessment x = y = 1, it follows that (B|A) ∧ (B|A) =
1 − AB − AB = 1 − B = B, which is not necessarily equal to 1 as it
could be either 1 or 0, according to whether B is true or false, respectively.
Therefore, (AS) is not valid2. Moreover, by setting P[(B|A) ∧ (B|A)] = μ,
it holds that μ = y p(AB) + x p(AB) = y p(B|A)p(A) + x p(B|A)p(A) =
xy p(A) + xy p(A) = xy. Then, P[(B|A) ∧ (B|A)] = 1 − xy. We also observe
that, in the special case where x = y = 0, it follows that (B|A) ∧ (B|A) = 1.

4.1.5. Boethius’ Thesis (BT): (A → B) → ∼(A → ∼B).
This principle is formalized by the iterated conditional (B|A)|(B|A) (where

AB �= ⊥). We recall that (B|A) = B|A. Then (B|A)|(B|A) = (B|A)|(B|A).
Then, from Remark 2 it follows that

(B|A)|(B|A) = 1. (20)

Therefore (B|A)|(B|A) is constant and equal to 1 and hence (BT) is valid2.

4.1.6. Boethius’ Thesis′ (BT′): (A → ∼B) → ∼(A → B). This principle
is formalized by the iterated conditional (B|A)|(B|A), where AB �= ⊥. From
(20), by replacing B with B, it holds that

(B|A)|(B|A) = 1. (21)

Then, by observing that B|A = B|A, it follows that (B|A)|(B|A) = (B|A)|
(B|A) is constant and equal to 1. Therefore, (BT′) is valid2.

4.1.7. Reversed Boethius’ Thesis (RBT): ∼(A → ∼B) → (A → B). This
principle is formalized by the iterated conditional (B|A)|(B|A), where AB �=
⊥. As (B|A) = B|A it follows that (B|A)|(B|A) = (B|A)|(B|A), which is
constant and equal to 1 because of (20). Therefore, (RBT) is valid2. Notice
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that the interpretation of (BT) and (RBT) amount to the same iterated
conditional (i.e., (B|A)|(B|A)).

4.1.8. Reversed Boethius’ Thesis′ (RBT′): ∼(A → B) → (A → ∼B).
This principle is formalized by the iterated conditional (B|A)|(B|A), where
AB �= ⊥. As (B|A) = B|A it follows that (B|A)|(B|A) = (B|A)|(B|A),
which is constant and equal to 1 because of (21). Therefore (RBT′) is valid2.
Like for (BT) and (RBT), we observe that the interpretation of (BT′) and
(RBT′) amount to the same iterated conditional (i.e., (B|A)|(B|A)).

4.1.9. Non-validity of Boethius Variation (B3) (A → B) → ∼(∼A →
B) is not valid2. This principle is formalized by the iterated conditional
(B|A)|(B|A), where AB �= ⊥. As B|A = 1 − B|A = B|A, it follows that

(B|A)|(B|A) = (B|A)|(B|A). (22)

By setting p(B|A) = x, p(B|A) = y, and P[(B|A)|(B|A)] = μ, it holds that

(B|A)|(B|A) = (B|A)∧(B|A)+μ(1−B|A) =

⎧
⎪⎪⎨

⎪⎪⎩

y, if AB is true,
μ, if AB is true,
μ(1 − x), if AB is true,
x + μ(1 − x), if A B is true,

(23)
which is not constant and can therefore not necessarily be equal to 1. For
example, if we choose the coherent assessment x = y = 1, it follows that

(B|A)|(B|A) = (B|A) ∧ (B|A) + μ(1 − B|A) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if AB is true,
μ, if AB is true,
0, if AB is true,
1, if A B is true,

is not constant and hence not necessarily equal to 1. Therefore, (B3) is not
valid2.

4.1.10. Non-validity of Boethius Variation (B4): (∼ A → B) → ∼(A →
B)is not valid2. This principle is formalized by the iterated conditional (B|A)|
(B|A), where AB �= ⊥. We observe that (B|A)|(B|A) is not constant and
not necessarily equal to 1 because it is equivalent to (B3) when A is replaced
by A. Therefore, (B4) is not valid2.

Connexive principles and their interpretation in terms of compounds of
conditionals or iterated conditionals are illustrated in Table 4.
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4.2. Further Properties of Approach 2

We study in this section the validity of selected further properties relevant
to connexivity within Approach 2. In analogy to Section 3.3, we investi-
gate Symmetry, Minimality, Kapsner-strong, Simplification, Conjunction-
Idempotence, paradoxes of material conditional, Improper Transposition,
Contraposition, and Denying Conjunct. Moreover, we study generalized ver-
sions of Aristotle’s theses in terms of iterated conditionals.

Non-validity of Symmetry: (B → A) → (A → B) is not valid2 . We recall
that connexive logics fail to be symmetric. In Approach 2, Symmetry is
interpreted by the iterated conditional (B|A)|(A|B). We observe that

(B|A)|(A|B) = (A|B) ∧ (B|A) + μ(A|B), (24)

where μ = P[(B|A)|(A|B)]. The conjunction (A|B) ∧ (B|A) is also known
as the biconditional event and it holds that (A|B) ∧ (B|A) = AB|(A ∨ B)
([70]). Then, by setting z = p(AB|(A∨B)) and x = p(A|B), we obtain that

(B|A)|(A|B) = (AB)|(A ∨ B) + μ(A|B) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if AB is true,
μ(1 − x), if AB is true,
μ, if AB is true,
z + μ(1 − x), if A B is true.

By the linearity of prevision, μ = z + μ(1 − x) and hence

(B|A)|(A|B) =

⎧
⎨

⎩

1, if AB is true,
μ(1 − x), if AB is true,
μ, if A is true.

(25)

We observe that by setting, for instance x = 1, the iterated conditional
(B|A)|(A|B) assumes the value 0, when AB is true. Thus, the iterated con-
ditional (B|A)|(A|B) is not constant and hence not necessarily equal to 1.
Therefore, Symmetry does not hold in Approach 2.

4.2.1. Minimality Like in Approach 1, also in Approach 2 (AT), (AT′),
(BT), and (BT′) are valid2, while Symmetry is not valid2. Therefore, Ap-
proach 2 satisfies all minimal any connexive logic should satisfy ([18, p.
346]).

4.2.2. Kapsner-Strong Approach 2 is also Kapsner-strong because the re-
spective conditions (i) A → ∼A is not satisfiable and (ii) A → B and
A → ∼B are not simultaneously satisfiable are met. We first define satisfia-
bility for Approach 2. We say that a conditional A → B is satisfiable iff the
conditional event B|A is not constant and necessarily equal to zero. Then,



Connexive Logic, Probabilistic Default Reasoning...

• (i) A → ∼A is not satisfiable because A|A is constant and equal to 0.

• (ii) A → B and A → ∼B are not simultaneously satisfiable because, as
B|A + B|A = 1, the conditional events (B|A) and (B|A) cannot both be
equal to 1.

Simplification Approach 2 also satisfies the two versions of Simplification:
(A ∧ B) → A and (A ∧ B) → B. Indeed, as A|AB = B|AB = AB|AB = 1,
Simplification is valid2.

4.2.3. Conjunction-Idempotence Of course, (A∧A) → A and A → (A∧A)
are trivially valid2 because A|AA = AA|A = A|A = 1.

4.2.4. Non-validity of Paradoxes of the Material Conditional We show
the non-validity of the following paradoxes of the material conditional in
Approach 2: B → (A → B) (positive paradox); ∼A → (A → B) (negative
paradox). We observe that

(B|A)|B = (B|A) ∧ B + μB =

⎧
⎨

⎩

1, if AB is true,
x, if AB is true,
μ, if B is true,

where x = P (B|A) and μ = P((B|A)|B). This random quantity is not
necessarily constant and equal to 1 (since x could be less than 1). Therefore,
the positive paradox is not valid2.4 Moreover, it holds that

(B|A)|A = (B|A) ∧ A + ηA =
{

x, if A
η, if A is true,

where η = P((B|A)|A). As coherence requires that η = x (see, e.g., [70,
Section 8]) and x = P (B|A) ∈ [0, 1], it holds that the negative paradox is
not valid2. Therefore, positive and negative paradoxes are both not valid2.

4.2.5. Non-validity of Improper Transposition (A → B) → (∼A →
∼B) is not valid2. Improper Transposition is interpreted by (B|A)|(B|A).
This iterated conditional, which coincides with the interpretation of Boethius
Variation (B3), is not constant and hence not necessarily equal to 1 (see
Equation (23)). Therefore, Improper Transposition is not valid2.

4We recall that the Import–Export principle does not hold in our approach ([31,69]),
that is (B|A)|H �= B|AH. Note that if the Import–Export principle would hold, then
we would inherit the positive paradox of the material conditional, since in this case we
would have that (B|A)|B coincides with B|AB, which is constant and equal to 1 since
B|AB = B|B.
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4.2.6. Non-validity of Contraposition (A → B) → (∼B → ∼A) is not
valid2. Contraposition is interpreted by the iterated conditional (A|B)|(B|A).
By setting p(B|A) = x, p(A|B) = y, and P[(A|B) ∧ (B|A)] = z, we obtain

(A|B)|(B|A) = (A|B) ∧ (B|A) + μ(B|A) =

⎧
⎪⎪⎨

⎪⎪⎩

y, if AB is true,
μ, if AB is true,
z + μ(1 − x), if AB is true,
x + μ(1 − x), if A B is true,

where μ = P[(A|B)|(B|A)]. Notice that, by the linearity of prevision, μ =
z + μ(1 − x). Then,

(A|B)|(B|A) =

⎧
⎨

⎩

y, if AB is true,
μ, if AB ∨ AB is true,
x + μ(1 − x), if A B is true,

(26)

which is not necessarily equal to 1. For instance, by the coherent assessment
x = 1 and y = 0, formula (26) becomes

(A|B)|(B|A) =

⎧
⎨

⎩

0, if AB is true,
μ, if AB ∨ AB is true,
1, if A B is true,

(27)

which coincides with 1, when A B is true and with 0, when AB and hence
(A|B)|(B|A) is not constant and hence not necessarily equal to 1. Therefore,
Contraposition is not valid2.

4.2.7. Non-validity of Denying a Conjunct ∼(A ∧ B) → (∼A → B) is
not valid2. Denying a Conjunct is interpreted by the iterated conditional
(B|A)|(AB). By setting y = p(B|A) we obtain that

(B|A)|(AB) = (AB) ∧ (B|A) + μ · (1 − AB) =

⎧
⎪⎪⎨

⎪⎪⎩

μ, if AB is true,
y, if AB is true,
1, if AB is true,
0, if A B is true,

(28)

where μ = P[(B|A)|AB]. While the Import–Export principle does not hold
in general ([31,69]), it holds in this case because A logically implies A∨B =
AB. Then, we have that (B|A)|AB = B|A ([27, Proposition 1]). In other
words, coherence requires that μ = y in formula (28). Then,

(B|A)|AB = B|A =

⎧
⎨

⎩

y, if A is true,
1, if AB is true,
0, if A B is true,

(29)
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which is not constant and hence not necessarily equal to 1. Therefore, Deny-
ing a Conjunct is not valid2.

4.2.8. Generalized Aristotle’s Theses In this paragraph we study the it-
erated versions of Aristotle’s theses:

(IAT) ∼(∼(A → B) → (A → B));
(IAT)′

∼((A → B) → ∼(A → B)).
Principle (IAT) is formalized by the negated iterated conditional

(B|A)|(B|A) (with AB �= ⊥). For showing the validity of (IAT) in Ap-
proach 2 we prove that this object is constant and equal to 1. We first
introduce the negation of an iterated conditional in analogy to (9).

Definition 9. The negation of the iterated conditional (B|K)|(A|H), de-
noted by (B|K)|(A|H), is defined as follows:

(B|K)|(A|H) = (B|K)|(A|H) = (B|K)|(A|H). (30)

Notice that the negation of the iterated conditional coincides with the
narrow scope interpretation of negating conditionals. Then, the principle
(IAT) is formalized in Approach 2 by the negated iterated conditional
(B|A)|(B|A), where AB �= ⊥. From Definition 9 and equations (9) and
(21), we obtain

(B|A)|(B|A) = (B|A)|(B|A) = (B|A)|(B|A) = 1,

that is (B|A)|(B|A) is constant and equal to 1. Therefore, (IAT) is valid2.
We observe that our interpretation of (IAT) (i.e., (B|A)|(B|A)) coincides
within our interpretation of (BT)′ and (RBT)′ in Approach 2.

We interpret (IAT)′ by the negated iterated conditional (B|A)|(B|A)
(with AB �= ⊥). Analogously to (IAT), From Definition 9 and equations
(9) and (20), we obtain

(B|A)|(B|A) = (B|A)|(B|A) = 1.

Therefore, (IAT)′ is valid2. We observe that our interpretation of (IAT)′

coincides with our interpretation of (BT) and (RBT) within Approach 2.
For validating (IAT) and (IAT)′ in Approach 2 we used Definition 9. In

the next remark we show that, for each given iterated conditional (B|K)|(A|H),
it holds that (B|K)|(A|H) + (B|K)|(A|H) = 1. This equation can be seen
as a proper generalization from non-iterated conditionals of equation (9) to
iterated conditionals. For validating (IAT) and (IAT)′ in Approach 2 we
used Definition 9. In the next remark we show that, for each given iterated
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conditional (B|K)|(A|H), it holds that

(B|K)|(A|H) + (B|K)|(A|H) = 1.

This equation can be seen as a proper generalization of equation (9) from
non-iterated conditionals to iteretad conditionals.

Remark 4. We observe that (B|K)|(A|H) = 1 − (B|K)|(A|H) by proving
that (B|K)|(A|H) = 1 − (B|K)|(A|H). Indeed, by setting, x = p(A|H),
μ = P[(B|K)|(A|H)], and μ′ = P[(B|K)|(A|H)], it holds that μ + μ′ =
P[(B|K)|(A|H) + (B|K)|(A|H)] and

(B|K)|(A|H) + (B|K)|(A|H)
= (A|H) ∧ (B|K) + μ(A|H) + (A|H) ∧ (B|K) + μ(A|H)

= (A|H) + (μ + μ′)(A|H) =

⎧
⎨

⎩

1, if AH is true,
μ + μ′, if AH is true,
x + (μ + μ′)(1 − x) if H is true.

By the linearity of prevision, μ + μ′ = x + (μ + μ′)(1 − x), and hence

(B|K)|(A|H) + (B|K)|(A|H) =
{

1, if AH is true,
μ + μ′, if AH ∨ H is true.

By coherence, it can be proved that μ + μ′ = 1 and hence it follows that
(B|K)|(A|H) = 1 − (B|K)|(A|H). Then, from Definition 9 we obtain

(B|K)|(A|H) = (B|K)|(A|H) = 1 − (B|K)|(A|H). (31)

Moreover, from (31) and by the linearity of prevision, it holds that

P[(B|K)|(A|H)] = P[(B|K)|(A|H)] = 1 − P[(B|K)|(A|H)].

4.3. Connexivity under Alternative Notions of Conjunction of Conditional
Events

In Section. 4.1 we showed that (AB) is valid2, while (AS) is not valid2. In this
section we study whether both connexive principles can be validated when
we use alternative definitions of the conjunction among conditional events.
Specifically, we study the validity of (AB) and (AS) when the conjunction
∧ of conditional events is replaced by the Kleene-Lukasiewicz-Heyting con-
junction (denoted by ∧K) and the Sobocinsky conjunction (denoted by ∧S).
In contrast to ∧, the conjunctions ∧K and ∧S yield a conditional event.
Of course, (AT) and (AT)′ are still valid2 under these different interpreta-
tions of conjunction, because these principles do not involve conjunctions of
conditionals.
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4.3.1. Abelard’s First Principle and Aristotle’s Second Thesis Under ∧K

We recall that the Kleene-Lukasiewicz-Heyting conjunction ∧K among con-
ditional events (see, e.g. [11], which also coincides with the conjunction in
the trivalent logic of de Finetti [15]; see also [17]) is the conditional event
which is

• true if all conjuncts are true;

• false if at least one conjunct is false;

• void otherwise.

In particular, for the two conditional events A|H and B|K, the conjunction
(A|H) ∧K (B|K) is given by

(A|H) ∧K (B|K) = AHBK|(AHBK ∨ AH ∨ BK). (32)

Of course, (A|H)∧K (B|H) = AB|H. Then, as (B|A)∧K (B|A) = ⊥|H = 0,
(B|A) ∧K (B|A) is constant and equal to 1. Therefore (AB) is valid2 under
∧K .

We now show the validity of (AS) under ∧K . The structure of (AS) is
then formalized by the conditional event (B|A) ∧K (B|A), where A �= ⊥ and
A �= ⊥. From (32) we obtain

(B|A) ∧K (B|A) = ⊥|(AB ∨ A B) = ⊥|B = 0.

Thus (B|A) ∧K (B|A) = 1 − (B|A) ∧K (B|A) = 1, which validates (AS)
under ∧K . From the viewpoint of some connexive logics the validity of (AS)
and (AB) is desirable, which is obtained by using ∧K . However, the use of
∧K in probability logic is problematic, since it leads to mismatches with
basic probabilistic properties, as we show now.

Recall that, in case of logical independence of the events A,B,H,K, the
assessment zK = p[(A|H) ∧K (B|K)] is a coherent extension of p(A|H) and
p(B|K) if and only if ([68, Theorem 3])

zK ∈ [0, min{p(A|H), p(B|K)}].

Then, the Fréchet-Hoeffding bounds (11), which hold in the unconditional
case, are not preserved when ∧K is used. For instance, the assessment (1, 1, 0)
on (A|H,B|K, (A|H) ∧K (B|K)) is coherent, while it is not coherent on
(A,B,AB), because p(AB) = 1 is the only coherent extension of (1, 1) on
(A,B). Notice that, in particular, as (B|A)∧K (B|A) = 0, we have that zK =
0 is the only coherent extension of p(B|A) = p(B|A) = 1 on (B|A)∧K (B|A).
This mismatch between the validity of (AS) and the violation of the Fréchet-
Hoeffding bounds is not desirable.



N. Pfeifer, G. Sanfilippo

4.3.2. Abelard’s First Principle and Aristotle’s Second Thesis Under ∧S

We recall that the Sobocinsky conjunction ∧S among conditional events
(see, e.g., [11], which coincides with Adams’ Quasi conjunction [1]), is the
conditional event which is

• true, if at least one conjunct is true and all other conjuncts are not false;

• false, if at least one conjunct is false;

• void, otherwise (i.e., all conjuncts are void).

In particular, for the two conditional events A|H and B|K,

(A|H) ∧S (B|K) = ((H ∨ A) ∧ (K ∨ B))|(H ∨ K). (33)

Concerning (AB) we observe that (A|H) ∧S (B|H) = AB|H. Then, as
(B|A) ∧S (B|A) = ⊥|H = 0, (B|A) ∧S (B|A) is constant and equal to 1.
Therefore (AB) is valid2 under ∧S .

We formalize the structure of (AS) by the conditional event (B|A) ∧S (B|A),
where A �= ⊥ and A �= ⊥. We observe that, from (33), it holds that
(B|A) ∧S (B|A) = B. Then,

(B|A) ∧S (B|A) = 1 − (B|A) ∧S (B|A) = B,

which does not coincide with 1 and hence (AS) is not valid2 under ∧S.
Like ∧, the conjunction ∧S, satisfies (AB) but does not satisfy (AS). How-

ever, like ∧K , the conjunction ∧S is problematic for probability logic, as it
violates the probabilistic property (11). Indeed, under logical independence
of the events A,B,H,K, zS = P [(A|H) ∧S (B|K)] is a coherent extension
of (x, y) on (A|H,B|K) if and only if zS ∈ [z′

S , z′′
S ], where ([24,30])

z′
S = max{x + y − 1, 0} and z′′

S =
{ x+y−2xy

1−xy , (x, y) �= (1, 1),
1, (x, y) = (1, 1).

Then, the Fréchet-Hoeffding (11) bounds are not preserved when ∧S is used.
We also recall that z′′

S is an Hamacher t-conorm (with the parameter λ = 0).
Then, as max(x, y) is the smallest t-conorm ([44, p. 13]), it holds that

z′′
S ≥ max{x, y} ≥ min{x, y} ∀(x, y) ∈ [0, 1]2. (34)

We observe that the assessment (1, 0, 1) on (A|H,B|K, (A|H) ∧S (B|K))
is coherent, while it is not coherent on (A,B,AB), because p(AB) = 0 is
the only coherent extension of (1, 0) on (A,B). This is not desirable from a
probabilistic point of view concerning conjunction.

In this section we analyzed connexivity (Section 4.1) and related further
properties (Section 4.2) in terms of compounds of conditionals. Moreover,
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we studied connexivity under alternative notions of conjoined conditionals
within this framework (Section 4.3).

5. Concluding Remarks

We presented two approaches to investigate connexive principles. In Ap-
proach 1, we investigated connexive principles within coherence-based prob-
abilistic default reasoning, by interpreting defaults and negated defaults in
terms of suitable probabilistic constraints on conditional events. Within this
approach we showed that the connexive principles (AT), (AT′), (AB), (BT),
and (BT′) are valid1, whereas (AS), (RBT), (RBT′), (B3), and (B4) are
not valid1 (see Table 3). In Approach 2 we study connexivity within the
coherence framework of compound and iterated conditionals, by interpret-
ing connexive principles in terms of suitable conditional random quantities.
Here, we demonstrated that, like in Approach 1, (AT), (AT′), (AB), (BT),
and (BT′) are valid2, whereas (AS), (B3), and (B4) are not valid2. Contrary
to Approach 1, (RBT) and (RBT′) are valid2 (see Table 4).

Moreover, both approaches satisfy Simplification and
Conjunction-Idempotence. However, Symmetry, paradoxes of the material
conditional, Improper Transposition, Contraposition, and Denying a Con-
junct are neither valid1 nor valid2.

Approach 1 and Approach 2 satisfy the minimality conditions for connex-
ive logic, since both Aristotles’ theses (AT, AT′) and Boethius’ theses (BT,
BT′) are valid1 and valid2, while Symmetry is neither valid1 nor valid2. We
also showed that both Approach 1 and Approach 2 are Kapsner-strong.

We also presented generalised versions of Aristotle’s theses in terms of
iterated conditionals.

Since we observed that Aristotle’s Second Thesis is neither valid1 nor
valid2, we also studied selected ways under which it can be validated within
both approaches, by making suitable additional assumptions. Specifically,
in Approach 1, (AS) can be validated under the assumption that the prob-
ability of the consequent of the involved conditionals is not equal to 1 (i.e,
p(B) �= 1). For Approach 2 we studied the validity of (AS) (and also (AB))
under different interpretation of the conjunction of conditionals in trivalent
logic. However, changing the notion of conjunction yields to the loss of ba-
sic probabilistic properties, which is undesirable from a probability-logical
point of view.

From a conceptual point of view, Approach 1 is characterized by em-
ploying concepts from coherence-based probability theory and probabilistic
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interpretations of defaults and negated defaults. Conditionals, interpreted
as defaults, are negated by the wide scope negation. We gave two notions of
validity, namely for non-iterated and iterated connexive principles, respec-
tively. Approach 2, however, is characterized by interpreting conditionals as
conditional events in the framework of conditional random quantities. This
allows for dealing with logical operations on conditional events and avoids
(see, e.g., [69]) the well known Lewis’ triviality results (see, e.g., [48]). It
therefore offers a more unified approach to connexive principles, which is re-
flected by a unique definition of validity for both, iterated and non-iterated
connexive principles. Moreover, Approach 2 negates conditionals by the nar-
row scope negation. Thus, validity depends on how conditionals and negation
are defined.

One might wonder why neither of the two approaches validates all con-
nexive principles. Apart from the insight obtained from our proofs, this is
not surprising since also not all connexive principles are valid in all sys-
tems of connexive logic. Moreover, some rules which are valid in classi-
cal logic (e.g., transitivity, contraposition, and premise strengthening) are
not valid in probability logic, while, for example, the rules of the basic
nonmonotonic System P are valid within coherence-based probability logic
([12,23,25,26,33]). We have also shown that Aristotle’s Second Thesis can be
validated, when further assumptions are made or when the definition of logi-
cal operations among conditional events is altered. In particular, (AS) can be
validated under the further constraint that the probability of the consequent
B of the involved conditionals is not equal to 1 in Approach 1. (AS) can also
be validated in Approach 2 when the conjunction of conditional events (∧)
is replaced by the Kleene-Lukasiewicz-Heyting-de Finetti conjunction (∧K).
Of course, also Aristotle’s theses and Abelard’s First Principle are valid2

when ∧K is used. This validity result in Approach 2, however, comes with
the cost that basic logical and probabilistic properties of conjunction ([38])
are then lost. Similar losses arise when alternatives to Definition 5 are used
for the iterated conditional (like in [7,15]; for a discussion see [9]).

Finally we note that strong empirical support for the psychological plau-
sibility of Approach 2 can be observed: an experimental-psychological study
on all connexive principles in Table 1 shows that Table 4 correctly predicts
for each connexive principle the majority of participants’ responses [64]. In
particular, human inference is consistent with the validity of (RBT) and
(RBT′), which speaks empirically for Approach 2 and against Approach 1.
Among other formulas, the experimental data are also consistent with the
validity of Simplification, and Generalized Aristotle’s theses as well as with
the non-validity of Improper Transposition, and Denying a Conjunct [64].
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That people reject Contraposition is reported in [58]. All this experimen-
tal evidence speaks for Approach 2. The only prediction, which was not
yet convincingly confirmed experimentally, is Symmetry: only 40% of the
participants responded as predicted, with “cannot tell” (i.e., non-validity of
Symmetry) and 16% responded with “does not hold”. However, still 44%
responded that Symmetry “holds” [64]. This calls for further experimental
research, especially on Symmetry.

We have shown that coherence-based probability logic offers a rich lan-
guage to investigate the validity of various connexive principles and thereby
provides a new semantics of connexive conditionals.

Future work will be devoted to investigations on other intuitively plausi-
ble logical principles contained in alternative and non-classical logics.
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di Palermo within the CRUI-CARE Agreement.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 Interna-

tional License, which permits use, sharing, adaptation, distribution and reproduction in

any medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s

Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use

is not permitted by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Adams, E.W., The Logic of Conditionals An Application of Probability to Deduction.

Reidel, Dordrecht, 1975.

[2] Berti, P., E. Regazzini, and P. Rigo, Well calibrated, coherent forecasting systems.

Theory of Probability and Its Applications 42(1):82–102, 1998.

http://creativecommons.org/licenses/by/4.0/


N. Pfeifer, G. Sanfilippo

[3] Biazzo, V., and A. Gilio, A generalization of the fundamental theorem of de Finetti

for imprecise conditional probability assessments. International Journal of Approxi-

mate Reasoning 24(2-3):251–272, 2000.

[4] Biazzo, V., A. Gilio, T. Lukasiewicz, and G. Sanfilippo, Probabilistic logic un-

der coherence, model-theoretic probabilistic logic, and default reasoning in System P.

Journal of Applied Non-Classical Logics 12(2):189–213, 2002.

[5] Biazzo, V., A. Gilio, and G. Sanfilippo, Coherence checking and propagation of

lower probability bounds. Soft Computing 7:310–320, 2003.

[6] Calabrese, P., An algebraic synthesis of the foundations of logic and probability.

Information Sciences 42(3):187–237, 1987.

[7] Calabrese, P., Reasoning with uncertainty using conditional logic and probability, in

Proceedings of First International Symposium on Uncertainty Modeling and Analysis,

1990, pp. 682–688.

[8] Capotorti, A., F. Lad, and G. Sanfilippo, Reassessing accuracy rates of median

decisions. The American Statistician 61(2):132–138, 2007.

[9] Castronovo, L., and G. Sanfilippo, Iterated conditionals, trivalent logics, and con-

ditional random quantities, in M. Dupin de Saint-Cyr, M. Öztürk-Escoffier, and N.
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