7 research outputs found

    Associative polynomial functions over bounded distributive lattices

    Get PDF
    The associativity property, usually defined for binary functions, can be generalized to functions of a given fixed arity n>=1 as well as to functions of multiple arities. In this paper, we investigate these two generalizations in the case of polynomial functions over bounded distributive lattices and present explicit descriptions of the corresponding associative functions. We also show that, in this case, both generalizations of associativity are essentially the same.Comment: Final versio

    The arity gap of polynomial functions over bounded distributive lattices

    Full text link
    Let A and B be arbitrary sets with at least two elements. The arity gap of a function f: A^n \to B is the minimum decrease in its essential arity when essential arguments of f are identified. In this paper we study the arity gap of polynomial functions over bounded distributive lattices and present a complete classification of such functions in terms of their arity gap. To this extent, we present a characterization of the essential arguments of polynomial functions, which we then use to show that almost all lattice polynomial functions have arity gap 1, with the exception of truncated median functions, whose arity gap is 2.Comment: 7 page

    On the effect of variable identification on the essential arity of functions

    Get PDF
    We show that every function of several variables on a finite set of k elements with n>k essential variables has a variable identification minor with at least n-k essential variables. This is a generalization of a theorem of Salomaa on the essential variables of Boolean functions. We also strengthen Salomaa's theorem by characterizing all the Boolean functions f having a variable identification minor that has just one essential variable less than f.Comment: 10 page

    The arity gap of order-preserving functions and extensions of pseudo-Boolean functions

    Get PDF
    The aim of this paper is to classify order-preserving functions according to their arity gap. Noteworthy examples of order-preserving functions are so-called aggregation functions. We first explicitly classify the Lov\'asz extensions of pseudo-Boolean functions according to their arity gap. Then we consider the class of order-preserving functions between partially ordered sets, and establish a similar explicit classification for this function class.Comment: 11 pages, material reorganize

    Generalizations of Swierczkowski's lemma and the arity gap of finite functions

    Get PDF
    Swierczkowski's Lemma - as it is usually formulated - asserts that if f is an at least quaternary operation on a finite set A and every operation obtained from f by identifying a pair of variables is a projection, then f is a semiprojection. We generalize this lemma in various ways. First, it is extended to B-valued functions on A instead of operations on A and to essentially at most unary functions instead of projections. Then we characterize the arity gap of functions of small arities in terms of quasi-arity, which in turn provides a further generalization of Swierczkowski's Lemma. Moreover, we explicitly classify all pseudo-Boolean functions according to their arity gap. Finally, we present a general characterization of the arity gaps of B-valued functions on arbitrary finite sets A.Comment: 11 pages, proofs simplified, contents reorganize

    Parametrized arity gap

    Get PDF
    International audienceWe propose a parametrized version of arity gap. The parametrized arity gap gap (f, ℓ) of a function f:An→B measures the minimum decrease in the number of essential variables of f when ℓ consecutive identifications of pairs of essential variables are performed. We determine gap (f, ℓ) for an arbitrary function f and a nonnegative integer ℓ. We also propose other variants of arity gap and discuss further problems pertaining to the effect of identification of variables on the number of essential variables of functions

    A survey on the arity gap

    Get PDF
    International audienceThe arity gap of a function of several variables is defined as the minimum decrease in the number of essential variables when essential variables of the function are identified. We present a brief survey on the research done on the arity gap, from the first studies of this notion up to recent developments, and discuss some natural extensions and related problems
    corecore